Skip to main content

Bounds on parallel computation of multivariate polynomials

  • Conference paper
  • First Online:
  • 136 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 601))

Abstract

We consider the problem of fast parallel evaluation of multivariate polynomials over a field F. We define “maximal-degree” (max deg) of a multivariate polynomial f as maxi i=1,..., n.

The first lower bound result states that if a circut G evaluates a multivariate polynomial f, where its nodes are capable of performing (+,*), then the depth(G) is not less than log2[max deg(f)]. This result is a generalization of Kung's[K] results for a univariate polynomial which is log2 [deg f].

In the second part, we consider the circuit G which evaluates an arbitrary polynomial f in n variables with max deg(f)≜d p>1.

We present two algorithms that achieve better performance than the classical results of Hyafil[H] and Valiant et al. [VSBR] for most classes of multivariate polynomials. For the class of ” dense ” polynomials the results are closed to the theorethical bound log C, where C is the sequential complexity.

The algorithms generalize Munro-Paterson[MP] method for the univariate case. It should be noticed that the bound obtained by Hyafil[H] and Valiant, Skyum, Berkowitz and Rackoff[VSBR] is not sufficiently tight for the worst-sequential case (dense multivariate polynomials) and their bound can be reduced by the factor of log d while the number of required processors is only O(C). The best improvement is achieved in a case of a ”dense” multivariate polynomial. A polynomial is dense if the computation necessitates Ω(d np ) sequential steps.

The simple algorithm requires only n log d p+O(n√log d p) parallel steps The second algorithm has parallel complexity, measured by the depth of the circuit, depth(G)n(log d p+β)+log n+√log d p where β ≤ √log d p. If C=Ω(d np ) then it is less than log C+√n · log C where C is the number of sequential steps, and it requires only O(C) processors.

The second algorithm is slightly better than the ” simple” one. The improvement is achieved when β is small. The improvement of both algorithms in the parallel complexity and the number of processors with respect to Valiant is significant for most classes of multivariate polynomials.

This article was processed using the LATEX macro package with LLNCS style

This author was supported by Eshkol Fellowship No. 0375 administered by the Israeli Ministry of Science.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borodin, A., Munro, I.: The Computational Complexity of Algebraic and Numeric problems, American Elsevier Publishing Company, 1975.

    Google Scholar 

  2. Kung, H.: New Algorithm and Lower Bounds for the Parallel Evaluation of Certain Rational Expressions and Recurrences, J. ACM, vol. 23, no. 2 (1976) 252–261.

    Google Scholar 

  3. Hyafil, K.: On the Parallel Evaluation of Multivariate Polynomials, Proc., 10th ACM Symposium on Theory of Computing, (1978) pp. 193–195.

    Google Scholar 

  4. Valiant, L.G., Skyum, S., Berkowitz, S., Rackoff, C.: Fast Parallel Computation of Polynomials using Few Processors, SIAM J. Comput., 12, No. 4, (1983) 641–644.

    Google Scholar 

  5. Munro, I., Paterson, M.: Optimal Algorithms for Parallel Polynomial Evaluation, J. of Computer and System Science 7(1973) 189–198.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

D. Dolev Z. Galil M. Rodeh

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sade, I., Averbuch, A. (1992). Bounds on parallel computation of multivariate polynomials. In: Dolev, D., Galil, Z., Rodeh, M. (eds) Theory of Computing and Systems. ISTCS 1992. Lecture Notes in Computer Science, vol 601. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035174

Download citation

  • DOI: https://doi.org/10.1007/BFb0035174

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55553-7

  • Online ISBN: 978-3-540-47214-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics