Skip to main content

A neural model for the visual attention phenomena

  • Conference paper
  • First Online:
Book cover Advances in Artificial Intelligence (SBIA 1995)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 991))

Included in the following conference series:

Abstract

Two interesting and complex tasks are performed by the brain in the process of perception: The integration of characteristics leading to an easier recognition of a pattern as a whole (binding), and the extraction of properties that need to be detailed and analyzed (attention). Classically, binding is viewed as a process whereby sets of properties are gathered in representative entities, which are themselves linked to form higher level structures, in a sequence that culminates in the total integration of the pattern features in a localized construct. The convergent axonal projections from one cortical area to another would be the neurobiological mechanism through which binding is achieved. Attention comprises the selective excitation of neuronal networks or pathways that stand for specific pattern properties. We propose a computational model aiming at bringing together the main (and apparently diverging) ideas about binding and attention. Based on experimental data, a neuronal network representing cortical pyramidal cells is assembled, and its structure and function are related to the binding and attention phenomena. Computer simulations are shown which reproduce the electrophysiology of pyramidal cells and mimic some interesting experimental results in visual attention. We conclude by conjecturing that attention is a driven interruption in the regular process of binding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stryker, M. P., Is Grandmother an Oscillation ?, Nature, Vol. 338, pp. 297–298, 1989.

    Article  PubMed  MathSciNet  Google Scholar 

  2. Desimone, R., Wessinger, M., Thomas, L., Schneider, W., Attentional Control of Visual Perception: Cortical and Subcortical Mechanisms, Cold Spring Harbor Symposia on Quantitative Biology, Vol. LV, pp. 963–971, Cold Spring Harbor Laboratory Press, 1990.

    Google Scholar 

  3. Van Essen, D. C., Felleman, D. J., DeYoe, E. A., Olavarria, J., Knierim, J., Modular and Hierarchical Organization of Extrastriate Visual Cortex in the Macaque Monkey, Cold Spring Harbor Symposia on Quantitative Biology, Vol. LV, pp. 679–696, Cold Spring Harbor Laboratory Press, 1990.

    Google Scholar 

  4. Gross, C. G., Rocha-Miranda, C. E., Bender, D. B., Visual Properties of Neurons in Inferotemporal Cortex of the Macaque, Journal of Neurophysiology, No. 35, pp. 96–111, 1972.

    Google Scholar 

  5. Perrett, D. I., Rolls, E. T., Caan, W., Visual Neurones Responsive to Faces in the Monkey Temporal Cortex, Experimental Brain Research, No. 47, pp. 329–342, 1982.

    Google Scholar 

  6. Malsburg, C., Schneider, W., A Neural Cocktail-party Processor, Biological Cybernetics, Vol. 54, pp. 29–40, 1986.

    Article  PubMed  Google Scholar 

  7. Crick, F., Function of the Thalamic Reticular Complex: The Searchlight Hypotheses, Proceedings of the National Academy of Science of the U.S.A., Vol. 81, pp. 4586–4590, 1984.

    Google Scholar 

  8. Carvalho, L. A. V., Modeling the Thalamocortical Loop, International Journal of Bio-Medical Computing, 35, pp. 267–296, 1994.

    PubMed  Google Scholar 

  9. Damasio, A., The Brain Binds Entities and Events by Multiregional Activation from Convergence Zones, Neural Computation, No. 1, pp. 123–132, 1989.

    Google Scholar 

  10. Gray, C. M., König, P., Engel, A. K., Singer, W., Oscillatory Response in Cat Visual Cortex Exhibit Inter-columnar Synchronization which Reflects Global Stimulus Projections, Nature, Vol. 338, pp. 334–339, 1989.

    Article  PubMed  Google Scholar 

  11. Crick, F., Koch, C., Some Reflections on Visual Awareness, Cold Spring Harbor Symposia on Quantitative Biology, Vol. LV, pp. 953–962, Cold Spring Harbor Laboratory Press, 1990.

    Google Scholar 

  12. Douglas, R. J., Martin, K. A. C., Neocortex, in The Synaptic Organization of the Brain, Ed. Shepherd, G. M., Oxford University Press, pp. 389–438, 1990.

    Google Scholar 

  13. Berman, N. J., Bush, P. C., Douglas, R. J., Adaptation and Bursting in Neocortical Neurones may be Controlled by a Single Past Potassium Conductance, Quarterly Journal of Experimental Physiology, Vol. 74, pp. 223–226, 1989.

    PubMed  Google Scholar 

  14. Schwindt, P. C., Spain, W. J., Foehring, R. C., Statfstrom, C. E., Chubb, M. C., Crill, W. E., Multiple Potassium Conductances and Their Functions in Neurons From Cat Sensorimotor Cortex in Vitro, Journal of Neurophysiology, Vol. 59, No. 2, pp. 424–449, 1988.

    PubMed  Google Scholar 

  15. McCormick, D. A., Connors, B. W., Lighthall, J. W., Prince, D. A., Comparative Electrophysiology of Pyramidal and Sparsely Spiny Stellate Neurons of the Neocortex, Journal of Neurophysiology, Vol. 54, 782–806, 1985.

    PubMed  Google Scholar 

  16. Connors, B. W., Gutnick, M. J., Prince, D. A., Electrophysiological Properties of Neocortical Neurons in Vitro, Journal of Neurophysiology, Vol. 48, No. 6, pp. 1302–1320, 1982.

    PubMed  Google Scholar 

  17. Bruce, C., Desimone, R., Gross, C. G., Visual Properties of Neurons in a Polysensory Area in Superior Temporal Sulcus of the Macaque, Journal of Neurophysiology, Vol. 46, No. 2, pp. 369–384, 1981.

    PubMed  Google Scholar 

  18. Wise, S. P., Desimone, R., Behavioral Neurophysiology: Insights into Seeing and Grasping, Science, Vol. 242, Nov. 1988.

    Google Scholar 

  19. Boussaoud, D., Ungerleider, L. G., Desimone, R., Pathways for Motion Analyses: Cortical Connections of the Medial Superior Temporal and Fundus of the Superior Temporal Visual Areas in the Macaque, The Journal of Comparative Neurology, Vol. 296, pp. 462–495, 1990.

    Article  PubMed  Google Scholar 

  20. Moran, J., Desimone, R., Processing in the Extrastriate Cortex, Science, Vol. 229, pp. 782–784, Aug. 1985.

    PubMed  Google Scholar 

  21. Gray, C. M., Singer, W., Stimulus-specific Neuronal Oscillations in Orientation Columns of Cat Visual Cortex, Proceedings of the National Academy of Science of the U.S.A., Vol. 86, pp. 1698–1702, 1989.

    Google Scholar 

  22. Singer, W., Gray, C., Engel, A., König, P., Artola, A., Brocher, S., Formation of Cortical Cell Assemblies, Cold Spring Harbor Symposia on Quantitative Biology, Vol. LV, pp. 939–951, Cold Spring Harbor Laboratory Press, 1990.

    Google Scholar 

  23. Gilbert, C. D., Hirsch, J. A., Wiesel, T. N., Lateral Interactions in Visual Cortex, Cold Spring Harbor Symposia on Quantitative Biology, Vol. LV, pp. 663–677, Cold Spring Harbor Laboratory Press, 1990.

    Google Scholar 

  24. MacGregor, R. J., Neural and Brain Modeling, Academic Press Inc., 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Wainer Ariadne Carvalho

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alfredo, L., de Carvalho, V., Roitman, V.L. (1995). A neural model for the visual attention phenomena. In: Wainer, J., Carvalho, A. (eds) Advances in Artificial Intelligence. SBIA 1995. Lecture Notes in Computer Science, vol 991. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0034812

Download citation

  • DOI: https://doi.org/10.1007/BFb0034812

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60436-5

  • Online ISBN: 978-3-540-47467-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics