Advertisement

Problems of postsynaptic autogenous and recurrent inhibition in the mammalian spinal cord

Chapter
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (volume 73)

Keywords

Muscle Spindle Silent Period Ventral Root Recurrent Inhibition Acta Physiol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, E.D., Zotterman, Y.: The impulses produced by sensory nerve-endings. II. The response of a single end-organ. J. Physiol. (Lond.) 61, 151–171 (1926).Google Scholar
  2. Alnaes, E.: Static and dynamic properties of Golgi tendon organs in the anterior tibial and soleus muscles of the cat. Acta physiol. scand. 70, 176–187 (1967).Google Scholar
  3. Alston, W., Angel, R.W., Fink, F.S., Hofmann, W. W.: Motor activity following the silent period in human muscle. J. Physiol. (Lond.) 190, 189–202 (1967).Google Scholar
  4. Andersen, P., Eccles, J.: Inhibitory phasing of neuronal discharge. Nature (Lond.) 196, 645–647 (1962).Google Scholar
  5. Andersen, P., Eccles, J. C., Sears, T. A.: The ventro-basal complex of the thalamus: types of cells, their responses and their functional organization. J. Physiol. (Lond.) 174, 370–399 (1964).Google Scholar
  6. Anderson, J. H.: Dynamic characteristics of Golgi tendon organs. Brain Res. 67, 531–537 (1974).Google Scholar
  7. Angel, R.W., Eppler, W., Iannone, A.: Silent period produced by unloading of muscle during voluntary contraction. J. Physiol. (Lond.) 180, 864–870 (1965).Google Scholar
  8. Balthasar, K.: Morphologie der spinalen Tibialis-und Peronaeus-Kerne bei der Katze. Arch. Psychiat. Nervenkr. 188, 345–378 (1952).Google Scholar
  9. Barker, D.: The innervation of the muscle spindle. Quart. J. micr. Sci. 89, 143–186 (1948).Google Scholar
  10. Barker, D.: Some results of a quantitative histological investigation of stretch receptors in limb muscles of the cat. J. Physiol. (Lond.) 149, 7–9 P (1959).Google Scholar
  11. Barker, D.: The innervation of mammalian skeletal muscle. In: Myotatic, kinesthetic and vestibular mechanisms. Ciba Foundation Symp., p. 3–19, ed. A.V.S. De Reuck and J. Knight. London: J. & A. Churchill 1967.Google Scholar
  12. Barrios, P., Clauss, H., Haase, J.: Die reflektorische Erregbarkeit primärer Spindelafferenzen der Fußextensoren der Katze. Pflügers Arch. 305, 262–268 (1969).Google Scholar
  13. Benecke, R., Hellweg, C., Meyer-Lohmann, J.: Activity and excitability of Renshaw cells in non-decerebrate and decerebrate cats. Exp. Brain Res. 21, 113–124 (1974).Google Scholar
  14. Benecke, R., Meyer-Lohmann, J.: Effects of an antispastic drug (γ-(4-chlorophenyl)-γ-aminobutyric acid) on Renshaw cell activity. J. Neuropharmacol. 13, 1067–1075 (1974).Google Scholar
  15. Bergmans, J., Burke, R., Lundberg, A.: Inhibition of transmission in the recurrent inhibitory pathway to motoneurones. Brain Res. 13, 600–602 (1969).Google Scholar
  16. Bianconi, R., Granit, R., Reis, D. J.: The effects of extensor muscle spindles and tendon organs on homonymous motoneurones in relation to γ-bias and curarization. Acta physiol. scand. 61, 331–347 (1964a).Google Scholar
  17. Bianconi, R., Granit, R., Reis, D. J.: The effects of flexor muscle spindles and tendon organs on homonymous motoneurones in relation to γ-bias and curarization. Acta physiol. scand. 61, 348–356 (1964b).Google Scholar
  18. Biscoe, T. J., Krnjević, K.: Chloralose and the activity of Renshaw cells. Exp. Neurol. 8, 395–405 (1963).Google Scholar
  19. Bracchi, F., Decandia, M., Gualtierotti, T.: Frequency stabilization in the motor centers of spinal cord and caudal brain stem. Amer. J. Physiol. 210, 1170–1177 (1966).Google Scholar
  20. Bradley, K., Easton, D.M., Eccles, J.C.: An investigation of primary or direct inhibition. J. Physiol. (Lond.) 122, 474–488 (1953).Google Scholar
  21. Bradley, K., Eccles, J.C.: Analysis of the fast afferent impulses from thigh muscles. J. Physiol. (Lond.) 122, 462–473 (1953).Google Scholar
  22. Bridgman, C.F., Shumpert, E.E., Eldred, E.: Insertions of intrafusal fibers in muscle spindles of the cat and other mammals. Anat. Rec. 164, 391–401 (1969).Google Scholar
  23. Brooks, V.B.: Contrast and stability in the nervous system. Trans. N. Y. Acad. Sci 21, 387–394 (1959).Google Scholar
  24. Brooks, V.B., Kameda, K., Nagel, R.: Recurrent inhibition in the cat's cerebral cortex. In: Inhibitory neuronal mechanisms, p. 327–331, ed. C.V. Euler, S. Skoglund and U. Söderberg. London: Pergamon Press 1968.Google Scholar
  25. Brooks, V.B., Stoney, S.D.: Motor mechanisms: The role of the pyramidal system in motor control. Ann. Rev. Physiol. 33, 337–392 (1971).Google Scholar
  26. Brooks, V.B., Wilson, V. J.: Localization of stretch reflexes by recurrent inhibition. Science 127, 472–473 (1958).Google Scholar
  27. Brooks, V.B., Wilson, V.J.: Recurrent inhibition in the cat's spinal cord. J. Physiol. (Lond.) 146, 380–391 (1959).Google Scholar
  28. Brown, M.C., Lawrence, D.G., Matthews, P.B.C.: Reflex inhibition by Ia afferent input of spontaneously discharging motoneurons in the decerebrate cat. J. Physiol. (Lond.) 198, 5–7 P (1968 a).Google Scholar
  29. Brown, M.C., Lawrence, D.G., Matthews, P.B.C.: Antidromic inhibition of presumed fusimotor neurones by repetitive stimulation of the ventral root in the decerebrate cat. Experientia (Basel) 24, 1210–1211 (1968b).Google Scholar
  30. Bryan, R.N., Trevino, D.L., Willis, W.D.: Evidence for a common location of alpha and gamma motoneurons. Brain Res. 38, 193–196 (1972).Google Scholar
  31. Burke, R.E.: Group Ia synaptic input to fast and slow twitch motor units of cat triceps surae. J. Physiol. (Lond.) 196, 605–630 (1968a).Google Scholar
  32. Burke, R.E.: Firing patterns of gastocnemius motor units in the decerebrate cat. J. Physiol. (Lond.) 196, 631–654 (1968b).Google Scholar
  33. Burke, R.E., Fedina, L., Lundberg, A.: Spatial synaptic distribution of recurrent and group Ia inhibitory systems in cat spinal motoneurons. J. Physiol. (Lond.) 214, 305–326 (1971).Google Scholar
  34. Cajal see Ramon Y Cajal, S.Google Scholar
  35. Campa, J.F., Engel, W.K.: Histochemical classification of anterior horn neurons. Neurology (Minneap.) 20, 386 (1970).Google Scholar
  36. Ciaccio, G.V.: Sur les plaques nerveuses finales dans les tendons des vertébr és. Arch. ital. Biol. 14, 31–57 (1891).Google Scholar
  37. Cleveland, S., Haase, J., Ross, H.-G., Wand, P.: Antidromic conditioning of reciprocally inhibited monosynaptic extensor and flexor reflexes in decerebrate cats. Pflügers Arch. 337, 219–228 (1972)Google Scholar
  38. Coombs, J.S., Eccles, J.C., Fatt, P.: The action of the inhibitory synaptic transmitter. Aust. J. Sci. 16, 1–5 (1953).Google Scholar
  39. Coombs, J.S., Eccles, J.C., Fatt, P.: The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post-synaptic potentials. J. Physiol. (Lond.) 130, 326–373 (1955).Google Scholar
  40. Coppin, C.M.L., Jack, S.S.B., Maclennan, C.R.: A method for the selective electrical activation of tendon organ afferent fibres from the cat soleus muscle. J. Physiol. (Lond.) 210, 18–20 P (1970).Google Scholar
  41. Csillik, B., Tóth, L., Karcsu, S.: Acetylcholinesterase activity of Renshaw elements and Renshaw bulbs. A light-and electron-histochemical study. J. Neurocytol. 2, 441–455 (1973).Google Scholar
  42. Curtis, D.R.: The pharmacology of central and peripheral inhibition. Pharmacol. Rev. 15, 333–364 (1963).Google Scholar
  43. Curtis, D.R.: Actions of drugs on single neurones in the spinal cord and thalamus. Brit. med. Bull. 21, 5–9 (1965).Google Scholar
  44. Curtis, D.R., Duggan, A.W., Johnston, G.A.R.: Glycine, strychnine, picrotoxin and spinal inhibition. Brain Res. 14, 759–762 (1969).Google Scholar
  45. Curtis, D.R., Eccles, J.C., Eccles, R.M.: Pharmacological studies on spinal reflexes. J. Physiol. (Lond.) 136, 420–434 (1957).Google Scholar
  46. Curtis, D. R., Eccles, R. M.: The excitation of Renshaw cells by pharmacological agents applied electrophoretically. J. Physiol. (Lond.) 141, 435–445 (1958a).Google Scholar
  47. Curtis, D.R., Eccles, R.M.: The effect of diffusional barriers upon the pharmacology of cells within the central nervous system. J. Physiol. (Lond.) 141, 446–463 (1958b).Google Scholar
  48. Curtis, D.R., Hösli, L., Johnston, G.A.R., Johnston, I.H.: Glycine and spinal inhibition. Brain Res. 5, 112–114 (1967).Google Scholar
  49. Curtis, D.R., Hösli, L., Johnston, G.A.R., Johnston, I.A.: The hyperpolarization of spinal motoneurones by glycine and related amino acids. Exp. Brain Res. 5, 235–258 (1968).Google Scholar
  50. Curtis, D.R., Johnston, G. A.R.: Amino acid transmitters in the mammalian central nervous system. Ergebn. Physiol. 69, 97–188 (1974).Google Scholar
  51. Curtis, D.R., Phillis, J.W., Watkins, J. C.: The depression of spinal neurons by γ-amino-n-butyric acid and β-alanine. J. Physiol. (Lond.) 146, 185–203 (1959).Google Scholar
  52. Curtis, D.R., Phillis, J.W., Watkins, J. C.: Cholinergic and non-cholinergic transmission in the mammalian spinal cord. J. Physiol. (Lond.) 158, 296–323 (1961).Google Scholar
  53. Curtis, D. R., Ryall, R. W.: Nicotinic and muscarinic receptors of Renshaw cells. Nature (Lond.) 203, 652–653 (1964).Google Scholar
  54. Curtis, D.R., Ryall, R.W.: The excitation of Renshaw cells by cholinomimetics. Exp. Brain Res. 2, 49–65 (1966a).Google Scholar
  55. Curtis, D.R., Ryall, R.W.: The acetylcholine receptors of Renshaw cells. Exp. Brain Res. 2, 66–80 (1966b).Google Scholar
  56. Curtis, D.R., Ryall, R.W.: The synaptic excitation of Renshaw cells. Exp. Brain Res. 2, 81–96 (1966 c).Google Scholar
  57. Dale, H.H.: Pharmacology and nerve endings. Proc. roy. Soc. Med. 28, 319–332 (1935).Google Scholar
  58. Dale, H. H.: Transmission of effects from nerve-endings. London: Oxford University Press 1952.Google Scholar
  59. Davidoff, R.A., Aprison, M.H., Werman, R.: The effects of strychnine on the inhibition of interneurons by glycine and γ-amino-butyric acid. Int. J. Neuropharmacol. 8, 191–194 (1969).Google Scholar
  60. Denny-Brown, D.: On inhibition as a reflex accompaniment of the tendon jerk and of other forms of active muscular response. Proc. roy. Soc. B 103, 321–336 (1928).Google Scholar
  61. Denny-Brown, D.: On the nature of postural reflexes. Proc. roy. Soc. B 104, 252–301 (1929).Google Scholar
  62. Devanandan, M.S., Eccles, R.M., Yokota, T.: Muscle stretch and the presynaptic inhibition of the group Ia pathway to motoneurones. J. Physiol. (Lond.) 179, 430–441 (1965).Google Scholar
  63. Diete-Spiff, K., Pascoe, J.E.: The spindle motor nerves to the gastrocnemius muscle of the rabbit. J. Physiol. (Lond.) 149, 120–134 (1959).Google Scholar
  64. Dietrichson, P.: The silent period in spastic, rigid, and normal subjects during isotonic and isometric muscle contractions. Acta neurol. scand. 47, 183–193 (1971).Google Scholar
  65. Duggan, A. W.: The differential sensitivity to L-glutamate and L-aspartate of spinal inter-neurones and Renshaw cells. Exp. Brain Res. 19, 522–528 (1974).Google Scholar
  66. Eccles, J. C.: Studies on the flexor reflex. III. The central effects produced by an antidromic volley. Proc. roy. Soc. Med. B 107, 557–585 (1931).Google Scholar
  67. Eccles, J. C.: Synaptic and neuromuscular transmission. Ergebn. Physiol. 38, 339–444 (1936).Google Scholar
  68. Eccles, J. C.: The neurophysiological basis of mind. The principles of neurophysiology. Oxford: Clarendon Press 1953.Google Scholar
  69. Eccles, J.C.: The central action of antidromic impulses in motor nerve fibres. Pflügers Arch. 260, 385–415 (1955).Google Scholar
  70. Eccles, J.C.: The physiology of nerve cells. Baltimore: John Hopkins Press 1957.Google Scholar
  71. Eccles, J.C.: Inhibitory pathways to motoneurons. In: Nervous inhibition, p. 47–60, ed. E. Florey. Oxford: Pergamon Press 1961a.Google Scholar
  72. Eccles, J.C.: The synaptic mechanism for postsynaptic inhibition. In: Nervous inhibition, p. 71–86, ed. E. Florey. Oxford: Pergamon Press 1961b.Google Scholar
  73. Eccles, J.C.: Postsynaptic and presynaptic inhibitory actions in the spinal cord. In: Progress in brain research vol. 1. Brain mechanisms, p. 1–22, ed. G. Moruzzi, Amsterdam: Elsevier 1963.Google Scholar
  74. Eccles, J. C.: The physiology of synapses. p. 1–916. Berlin-New York-Heidelberg: Springer 1964.Google Scholar
  75. Eccles, J.C.: Pharmacology of central inhibitory synapses. Brit. med. Bull. 21, 19–25 (1965).Google Scholar
  76. Eccles, J.C., Eccles, R.M., Fatt, P.: Pharmacological investigations on a central synapse operated by acetylcholine. J. Physiol. (Lond.) 131, 154–169 (1956a).Google Scholar
  77. Eccles, J.C., Eccles, R.M., Iggo, A., Ito, M.: Distribution of recurrent inhibition among motoneurones. J. Physiol. (Lond.) 159, 479–499 (1961a).Google Scholar
  78. Eccles, J.C., Eccles, R.M., Iggo, A., Lundberg, A.: Electrophysiological studies on Gamma motoneurones. Acta physiol. scand. 50, 32–40 (1960).Google Scholar
  79. Eccles, J.C., Eccles, R.M., Iggo, A., Lundberg, A.: Electrophysiological investigations on Renshaw cells. J. Physiol. (Lond.) 159, 461–478 (1961b).Google Scholar
  80. Eccles, J.C., Eccles, R.M., Lundberg, A.: Synaptic actions on motoneurones in relation to the two components of the group I muscle afferent volley. J. Physiol. (Lond.) 136, 527–546 (1957 a).Google Scholar
  81. Eccles, J.C., Eccles, R.M., Lundberg, A.: The convergence of monosynaptic excitatory afferents onto many different species of alpha motoneurones. J. Physiol. (Lond.) 137, 22–50 (1957b).Google Scholar
  82. Eccles, J.C., Eccles, R.M., Lundberg, A.: Synaptic actions on motoneurones caused by impulses in Golgi tendon organ afferents. J. Physiol. (Lond.) 138, 227–252 (1957c).Google Scholar
  83. Eccles, J.C., Fatt, P., Koketsu, K.: Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J. Physiol. (Lond.) 126, 524–562 (1954).Google Scholar
  84. Eccles, J.C., Fatt, P., Landgren, S.: Central pathway for direct inhibitory action of impulses in largest afferent nerve fibres to muscle. J. Neurophysiol. 19, 75–98 (1956b).Google Scholar
  85. Eccles, J.C., Sherrington, C.S.: Studies on the flexor reflex. VI. Inhibition. Proc. roy. Soc. B 109, 91–113 (1931).Google Scholar
  86. Eccles, R.M., Lundberg, A.: Supraspinal control of interneurones mediating spinal reflexes. J. Physiol. (Lond.) 147, 565–584 (1959 a).Google Scholar
  87. Eccles, R.M., Lundberg, A.: Synaptic actions in motoneurones by afferents which may evoke the flexion reflex. Arch. ital. Biol. 97, 199–221 (1959b).Google Scholar
  88. Eldred, E., Granit, R., Merton, P.A.: Supraspinal control of the muscle spindles and its significance. J. Physiol. (Lond.) 122, 498–523 (1953).Google Scholar
  89. Eldred, E., Hagbarth, K.E.: Facilitation and inhibition of gamma efferents by stimulation of certain skin areas. J. Neurophysiol. 17, 59–65 (1954).Google Scholar
  90. Ellaway, P.H.: Antidromic inhibition of fusimotor neurones. J. Physiol. (Lond.) 198, 39–40 P (1968).Google Scholar
  91. Ellaway, P.H.: Recurrent inhibition of fusimotor neurones exhibiting background discharges in the decerebrate and the spinal cat. J. Physiol. (Lond.) 216, 419–439 (1971).Google Scholar
  92. Erulkar, S.D., Nichols, C.W., Popp, M.B., Koelle, G.B.: Renshaw elements: localization and acetylcholinesterase content. J. Histochem. Cytochem. 16, 128–135 (1968).Google Scholar
  93. Fedina, L., Hultborn, H.: Facilitation from ipsilateral primary afferents of interneuronal transmission in the Ia inhibitory pathway to motoneurones. Acta physiol. scand. 86, 59–81 (1972).Google Scholar
  94. Forbes, A., Smith, O.C., Lambert, E.F., Caveness, W.F., Derbyshire, A. J.: The central inhibitory mechanism investigated by means of antidromic impulses. Amer. J. Physiol. 103, 131–142 (1933).Google Scholar
  95. Frank, K., Fuortes, M. G. F.: Unitary activity of spinal interneurones of cats. J. Physiol. (Lond.) 131, 424–435 (1956).Google Scholar
  96. Fromm, Chr., Haase, J.: Positionsempfindlichkeit und fusimotorische Aktivierung prätibialer Muskelspindelendigungen vor und nach Deafferentierung. Pflügers Arch. 321, 242–252 (1970).Google Scholar
  97. Fromm, Chr., Haase, J., Noth, J.: Length-dependent autogenetic inhibition of extensor γ-motoneurones in the decerebrate cat. Pflügers Arch. 346, 251–262 (1974)Google Scholar
  98. Fromm, Chr., Noth, J.: Autogenetic inhibition of γ-motoneurons in the spinal cat uncovered by Dopa injection. Pflügers Arch. 349, 247–256 (1974).Google Scholar
  99. Fromm, Chr., Noth, J.: Vibration-induced autogenetic inhibition of γ-motoneurons. Brain Res. 83, 495–497 (1975).Google Scholar
  100. Fulton, J.F., Pi-Suñer, J.: A note concerning the probable function of various afferent end-organs in skeletal muscle. Amer. J. Physiol. 83, 554–562 (1928).Google Scholar
  101. Gelfan, S.: Neurone and synapse populations in the spinal cord: indication of role in total integration. Nature (Lond.) 198, 162–163 (1963).Google Scholar
  102. Gill, P.K., Kuno, M.: Properties of phrenic motoneurones. J. Physiol. (Lond.) 168, 258–273 (1963a).Google Scholar
  103. Gill, P. K., Kuno, M.: Excitatory and inhibitory actions on phrenic motoneurones. J. Physiol. (Lond.) 168, 274–289 (1963b).Google Scholar
  104. Golgi, C: Sulla fina anatomia degli organi centrali del sistema nervoso. Milano: Hoepli 1886.Google Scholar
  105. Golgi, C.: Untersuchungen über den feineren Bau des centralen und peripherischen Nervensystems. Jena: Gustav Fischer 1894.Google Scholar
  106. Graham Brown, T.: On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J. Physiol. (Lond.) 48, 18–46 (1914).Google Scholar
  107. Granit, R.: Reflex self-regulation of the muscle contraction and autogenetic inhibition. J. Neurophysiol. 13, 351–372 (1950).Google Scholar
  108. Granit, R.: Reflexes to stretch and contraction of antagonists around ankle joint. J. Neurophysiol. 15, 269–279 (1952).Google Scholar
  109. Granit, R.: Receptors and sensory perception. A discussion of aims, means, and results of electro-physiological research into the process of reception. New Haven: Yale University Press 1955.Google Scholar
  110. Granit, R.: Neuromuscular interaction in postural tone of the cat's isometric soleus muscle. J. Physiol. (Lond.) 143, 387–402 (1958).Google Scholar
  111. Granit, R.: Circuit analysis of postural reflexes and the relative significance of alpha and gamma motoneurones. XXI Congreso international de Ciencias fisiologicas, Buenos Aires, 9–15 de Agost 1959.Google Scholar
  112. Granit, R.: Regulation of discharge rate by inhibition especially by recurrent inhibition. In: Nervous inhibition, p. 61–70, ed. E. Florey. Oxford: Pergamon Press 1961.Google Scholar
  113. Granit, R.: Quantitative aspects of control of the discharge frequency of nerve cells. XXII International Congr. Physiol. Sciences, Leiden, vol. 1, p. 22–27 (1962).Google Scholar
  114. Granit, R.: Recurrent inhibition as a mechanism of control. In: Progress in brain research, vol. 1, Brain mechanisms, p. 23–37, ed. G. Moruzzi, A. Fessard and H.H. Jasper. Amsterdam: Elsevier 1963.Google Scholar
  115. Granit, R.: The basis of motor control. Integrating the activity of muscles, alpha and gamma motoneurons and their leading control systems. p. 1–346. London: Academic Press 1970.Google Scholar
  116. Granit, R., Burke, R.E.: The control of movement and posture. Brain Res. 53, 1–28 (1973).Google Scholar
  117. Granit, R., Haase, J., Rutledge, L.T.: Recurrent inhibition in relation to frequency of firing and limitation of discharge rate of extensor motoneurones. J. Physiol. (Lond.) 154, 308–328 (1960).Google Scholar
  118. Granit, R., Kellerth, J.-O., Szumski, A.J.: Intracellular autogenetic effects of muscular contraction on extensor motoneurones. The silent period. J. Physiol. (Lond.) 182, 484–503 (1966).Google Scholar
  119. Granit, R., Pascoe, J. E., Steg, G.: The behaviour of tonic α and γ motoneurones during stimulation of recurrent collaterals. J. Physiol. (Lond.) 138, 381–400 (1957).Google Scholar
  120. Granit, R., Pompeiano, O., Waltman, B.: The early discharge of mammalian muscle spindles at onset of contraction. J. Physiol. (Lond.) 147, 399–418 (1959).Google Scholar
  121. Granit, R., Renkin, B.: Net depolarization and discharge rate of motoneurones as measured by recurrent inhibition. J. Physiol. (Lond.) 158, 461–475 (1961).Google Scholar
  122. Granit, R., Rutledge, L.T.: Surplus excitation in reflex action of motoneurones as measured by recurrent inhibition. J. Physiol. (Lond.) 154, 288–307 (1960).Google Scholar
  123. Granit, R., Ström, G. Autogenetic modulation of excitability of single ventral horn cells. J. Neurophysiol. 14, 113–132 (1951).Google Scholar
  124. Granit, R., Van Der Meulen, J. P.: The pause during contraction in the discharge of the spindle afferents from primary end organs in cat extensor muscle. Acta physiol. scand. 55, 231–244 (1962).Google Scholar
  125. Green, D.G., Kellerth, J.-O.: Intracellular autogenetic and synergistic effects of muscular contraction on flexor motoneurones. J. Physiol. (Lond.) 193, 73–94 (1967).Google Scholar
  126. Grillner, S.: The influence of DOPA on the static and dynamic fusimotor activity to the triceps surae of the spinal cat. Acta physiol. scand. 77, 490–509 (1969a).Google Scholar
  127. Grillner, S.: Supraspinal and segmental control of static and dynamic γ-motoneurones in the cat. Acta physiol. scand., Suppl. 327 (1969b).Google Scholar
  128. Grillner, S., Hongo, T., Lund, S.: Descending monosynaptic and reflex control of γ-motoneurones. Acta physiol. scand. 75, 592–613 (1969).Google Scholar
  129. Haase, J.: Die Transformation des Entladungsmusters der Renshaw-Zellen bei tetanischer antidromer Reizung. Pflügers Arch. ges. Physiol. 276, 471–480 (1963).Google Scholar
  130. Haase, J., Kuckuck, L., Noth, J.: Disinhibition der Extensor-Motoneurone nach intercollicularer Dezerebrierung. Pflügers Arch. 311, 148–158 (1969).Google Scholar
  131. Haase, J., Schlegel, J.-J., Ziesemer, G.: Die Verteilung genuiner fr üher Entladungen auf primäre und sekundäre Muskelspindelafferenzen. Pflügers Arch. 324, 134–145 (1971).Google Scholar
  132. Haase, J., Van Der Meulen, J.P.: The effects of supraspinal stimulation on Renshaw cells belonging to extensor motoneurones. J. Neurophysiol. 24, 510–520 (1961a).Google Scholar
  133. Haase, J., Van Der Meulen, J.P.: Die spezifische Wirkung der Chloralose auf die recurrente Inhibition. Pflügers Arch. ges. Physiol. 274, 272–280 (1961b).Google Scholar
  134. Haase, J., Vogel, B.: Die reflektorische Aktivierung prätibialer Muskelspindeln durch Spindelafferenzen. Pflügers Arch. 311, 168–178 (1969).Google Scholar
  135. Haase, J., Vogel, B.: Die Erregung der Renshaw-Zellen durch reflektorische Entladungen der α-Motoneurone. Pflügers Arch. 325, 14–27 (1971a).Google Scholar
  136. Haase, J., Vogel, B.: Direkte und indirekte Wirkungen supraspinaler Reizungen auf Renshaw-Zellen. Pflügers Arch. 325, 334–346 (1971 b).Google Scholar
  137. Hagbarth, K.-E.: EMG studies of stretch reflexes in man. EEG clin. Neurophysiol., Suppl. 25, 74–79 (1967).Google Scholar
  138. Hagbarth, K.-E., Naess, K.: The autogenetic inhibition during stretch and contraction of the muscle. Acta physiol. scand. 21, 41–53 (1950).Google Scholar
  139. Hansen, K., Hoffmann, P.: Weitere Untersuchungen über die Bedeutung der Eigenreflexe für unsere Bewegungen. I. Anspannungs-und Entlastungsreflexe. Z. Biol. 75, 293–304 (1922).Google Scholar
  140. Hartline, H.K., Ratliff, F., Miller, W.H.: Inhibitory interaction in the retina and its significance in vision. In: Nervous inhibition, p. 241–284, ed. E. Florey. Oxford: Pergamon Press 1961.Google Scholar
  141. Henatsch, H.-D., Kaese, H.J., Langrehr, D., Meyer-Lohmann, J.: Einfluß des motorischen Cortex der Katze auf die Renshaw-Rückkopplungshemmung der Motoneurone. Pflügers Arch. ges. Physiol. 274, 51 (1961).Google Scholar
  142. Henatsch, H.D., Schulte, F.J.: Reflexerregung und Eigenhemmung tonischer und phasischer Alpha-Motoneurone während chemischer Dauererregung der Muskelspindeln. Pflügers Arch. ges. Physiol. 268, 134–147 (1958).Google Scholar
  143. Hoffmann, P.: Demonstration eines Hemmungsreflexes im menschlichen R ückenmark. Z. Biol. 70, 515–524 (1919).Google Scholar
  144. Hoffmann, P.: Untersuchungen über die Eigenreflexe (Sehnenreflexe) menschlicher Muskeln, p. 1–106. Berlin: Springer 1922.Google Scholar
  145. Hoffmann, P., Keller, C. J.: Über gleichzeitige willkürliche und k ünstliche Reizung von Nerven. Z. Biol. 87, 527–536 (1928).Google Scholar
  146. Holmgren, B., Merton, P. A.: Local feedback control of motoneurones. J. Physiol. (Lond.) 123, 47–48 P. (1954).Google Scholar
  147. Holmquist, B., Lundberg, A.: On the organization of the supraspinal inhibitory control of interneurones of various spinal reflex arcs. Arch. ital. Biol. 97, 340–356 (1959).Google Scholar
  148. Hongo, T., Jankowska, E., Lundberg, A.: The rubrospinal tract. II. Facilitation of interneuronal transmission in reflex paths to motoneurones. Brain Res. 7, 365–391 (1969).Google Scholar
  149. Houk, J., Henneman, E.: Responses of Golgi tendon organs to active contraction of the soleus muscle in the cat. J. Neurophysiol. 30, 466–481 (1967a).Google Scholar
  150. Houk, J., Henneman, E.: Feedback control of skeletal muscles. Brain Res. 5, 433–451 (1967b).Google Scholar
  151. Houk, J., Singer, J. J., Goldman, M.: An evalution of length and force feedback in decerebrate cats. J. Neurophysiol. 33, 784–811 (1970).Google Scholar
  152. Houk, J., Singer, J., Henneman, E.: Adequate stimulus for tendon organs with observation on mechanics of ankle joint. J. Neurophysiol. 34, 1051–1065 (1971).Google Scholar
  153. Hubbard, J.I., Llinás, R., Quastel, D. M. J.: Electrophysiological analysis of synaptic transmission, p. 265–293. London: Arnold 1969.Google Scholar
  154. Huber, G.C., De Witt, L.M.: A contribution on the nerve terminations in neuro-tendinous endorgans. J. comp. Neurol. 10, 159–208 (1900).Google Scholar
  155. Hufschmidt, H.-J.: Wird die Silent period nach direkter Muskelreizung durch Golgi-Sehnenorgane ausgelöst? Pflügers Arch. 271, 35–39 (1960a).Google Scholar
  156. Hufschmidt, H.-J.: Über die Willkürkontraktion des Parkinsonisten. Dtsch. Z. Nervenheilk. 181, 37–45 (1960b).Google Scholar
  157. Hufschmidt, H.-J.: Bausteine motorischer Regelung. Schweiz. Arch. Neurol. Psychiat. 87, 260–280 (1961).Google Scholar
  158. Hufschmidt, H.-J.: Golgi-Sehnenorgane und spinale Koordination der Motorik beim Kaninchen. Pflügers Arch. 275, 121–133 (1962).Google Scholar
  159. Hufschmidt, H.-J.: The demonstration of autogenic inhibition and its significance in human voluntary movement. In: Muscular afferents and motor control. Nobel Symp. I. p. 269–274. ed. R. Granit. Stockholm: Almquist und Wilsell 1966.Google Scholar
  160. Hultborn, H.: Convergence on interneurones in the reciprocal Ia inhibitory pathway to motoneurones. Acta physiol. scand., Suppl. 375, 3–42 (1972).Google Scholar
  161. Hultborn, H., Jankowska, E., Lindström, S.: Recurrent inhibition from motor axon collaterals of transmission in the Ia inhibitory pathway to motoneurones. J. Physiol. (Lond.) 215, 591–612 (1971 a).Google Scholar
  162. Hultborn, H., Jankowska, E., Lindström, S. Recurrent inhibition of interneurones monosynaptically activated from group Ia afferents. J. Physiol. (Lond.) 215, 613–636 (1971b).Google Scholar
  163. Hultborn, H., Jankowska, E., Lindström, S: Relative contribution from different nerves to recurrent depression of Ia IPSPs in motoneurones. J. Physiol. (Lond.) 215, 637–664 (1971c).Google Scholar
  164. Hultborn, H., Jankowska, E., Lindström, S., Roberts, W.: Neuronal pathway of the recurrent facilitation of motoneurones. J. Physiol. (Lond.) 218, 495–514 (1971).Google Scholar
  165. Hultborn, H., Lundberg, A.: Reciprocal inhibition during the stretch reflex. Acta physiol. scand. 85, 136–138 (1972).Google Scholar
  166. Hultborn, H., Udo, M.: Convergence in the reciprocal Ia inhibitory pathway of excitation from descending pathways and inhibition from motor axon collaterals. Acta physiol. scand. 84, 95–108 (1972a).Google Scholar
  167. Hultborn, H., Udo, M.: Recurrent depression from motor axon collaterals of supraspinal inhibition in motoneurones. Acta physiol. scand. 85, 44–57 (1972b).Google Scholar
  168. Hunt, C. C.: The reflex activity of mammalian small-nerve fibres. J. Physiol. (Lond.) 115, 456–469 (1951).Google Scholar
  169. Hunt, C. C.: The effect of stretch receptors from muscle on the discharge of motoneurones. J. Physiol. (Lond.) 117, 359–379 (1952).Google Scholar
  170. Hunt, C. C.: Diameter and function of afferent fibres from muscle. Proc. XIX. Int. Physiol. Congr. Montreal, p. 485–486, 1953.Google Scholar
  171. Hunt, C. C.: Relation of function to diameter in afferent fibers of muscle nerves. J. gen. Physiol. 38, 117–131 (1954).Google Scholar
  172. Hunt, C.C., Kuffler, S.W.: Stretch receptor discharges during muscle contraction. J. Physiol. (Lond.) 113, 298–315 (1951).Google Scholar
  173. Hunt, C. C., Paintal, A. S.: Spinal reflex regulation of fusimotor neurones. J. Physiol. (Lond.) 143, 195–212 (1958).Google Scholar
  174. Hunt, C. C., Perl, E. R.: Spinal reflex mechanisms concerned with skeletal muscle. Physiol. Rev. 40, 538–579 (1960).Google Scholar
  175. Jankowska, E., Lindström, S. Morphological identification of Renshaw cells. Acta physiol. scand. 81, 428–430 (1971).Google Scholar
  176. Jankowska, E., Roberts, W.J.: Synaptic actions of single interneurones mediating reciprocal Ia inhibition of motoneurones. J. Physiol. (Lond.) 222, 623–642 (1972).Google Scholar
  177. Jankowska, E., Smith, D. O.: Antidromic activation of Renshaw cells and their axonal projections. Acta physiol. scand 88, 198–214 (1973).Google Scholar
  178. Jansen, J.K.S., Nicolaysen, K., Walløe, L.: On the inhibition of transmission to the dorsal spinocerebellar tract by stretch of various ankle muscle of the cat. Acta physiol. scand. 70, 362–368 (1967).Google Scholar
  179. Jansen, J.K.S., Rudjord, T.: On the silent period and Golgi tendon organs of the soleus muscle of the cat. Acta physiol. scand. 62, 364–379 (1964).Google Scholar
  180. Jansen, J.K.S., Rudjord, T.: Dorsal spinocerebellar tract: response pattern of nerve fibers to muscle stretch. Science 149, 1109–1111 (1965).Google Scholar
  181. Job, C.: Über autogene Inhibition und Reflexumkehr bei spinalisierten und decerebrierten Katzen. Pflügers Arch. ges. Physiol. 256, 406–418 (1953).Google Scholar
  182. Jung, R.: In: The spinal cord. Ciba Foundation Symposium, p 130. London: J. & A. Churchill 1953.Google Scholar
  183. Kato, M., Fukushima, K.: Effect of differential blocking of motor axons on antidromic activation of Renshaw cells in the cat. Exp. Brain Res. 20, 135–143 (1974).Google Scholar
  184. Kellerth, J.-O: Aspects on the relative significance of pre-and postsynaptic inhibition in the spinal cord In: Structure and function of inhibitory neuronal mechanisms p. 197–212, ed. C. Von Euler, S. Skoglund and U. Söderberg. Oxford: Pergamon Press 1968.Google Scholar
  185. Kernell, D.: Input resistance, electrical excitability, and size of ventral horn cells in cat spinal cord. Science 152, 1637–1640 (1966).Google Scholar
  186. Kobayashi, Y., Oshima, K., Tasaki, I.: Analysis of afferent and efferent systems in the muscle nerve of the toad and cat. J. Physiol. (Lond.) 117, 152–171 (1952).Google Scholar
  187. Koll, W., Schütz, R. M.: Die Wirkungen von Nikotin auf mono-und polysynaptische Reflexe der tiefspinalen Katze. Arch. int. Pharmacodyn. 79, 343–363 (1960).Google Scholar
  188. Kuffler, S. W., Hunt, C.C.: The mammalian small—nerve fibres: a system for efferent nervous regulation of muscle spindle discharge. Res. Publ. Ass. nerv. ment. Dis. 30, 24–47 (1952).Google Scholar
  189. Kuno, M.: Excitability following antidromic activation in spinal motoneurones supplying red muscles. J. Physiol. (Lond.) 149, 374–393 (1959).Google Scholar
  190. Laporte, Y., Bessou, P.: Etude des sous-groupes lent et rapide du groupe I (fibres affèrentes d'origine musculaire de grand diamétre) chez le chat. J. Physiol. (Paris) 49, 1025–1037 (1957).Google Scholar
  191. Laporte, Y., Lloyd, D.P.C: Nature and significance of the reflex connections established by large afferent fibers of muscular origin. Amer. J. Physiol. 169, 609–621 (1952).Google Scholar
  192. Larson, M.D.: An analysis of the action of strychnine on the recurrent 1PSP and amino acid induced inhibitions. Brain Res. 15, 185–200 (1969).Google Scholar
  193. Liddell, E.G.T.: Spinal shock and some features of isolation-alteration of the spinal cord in cats. Brain 57, 386–400 (1934).Google Scholar
  194. Liddell, E.G.T.: The influence of experimental lesion of the spinal cord upon the jerk. II. Chronic lesions. With an appendix “a note on the “spinal” and “decerebrate” type of knee jerk in the cat”. Brain 59, 160–174 (1936).Google Scholar
  195. Liddell, E.G.T., Sherrington, C.S.: Reflexes in response to stretch (Myotatic reflexes). Proc. roy. Soc. B 96, 212–242 (1924).Google Scholar
  196. Lloyd, D.P.C.: Conduction and synaptic transmission of reflex response to stretch in spinal cat. J. Neurophysiol. 6, 317–326 (1943).Google Scholar
  197. Lloyd, D.P.C: Facilitation and inhibition of spinal motoneurons. J. Neurophysiol. 9, 421–438 (1946).Google Scholar
  198. Lloyd, D.P.C: After-currents, after-potentials, excitability, and ventral root electrotonus in spinal motoneurons. J. gen. Physiol. 35, 289–321 (1951).Google Scholar
  199. Lloyd, D.P.C.: A study of some twentieth century thoughts on inhibition in the spinal cord. In: Nervous inhibition, p. 13–31, ed. E. Florey. Oxford: Pergamon Press 1961.Google Scholar
  200. Lloyd, D.P.C., Chang, H.-T.: Afferent fibers in muscle nerves. J. Neurophysiol. 11, 199–207 (1948).Google Scholar
  201. Longo, V.G., Martin, W.R., Unna, K.R.: A pharmacological study on the Renshaw cell. J. Pharmacol. exp. Ther. 129, 61–68 (1960).Google Scholar
  202. Lucas, M. E., Willis, W. D.: Identification of muscle afferents which activate interneurons in the intermediate nucleus. J. Neurophysiol. 37, 282–293 (1974).Google Scholar
  203. Lundberg, A., The supraspinal control of transmission in spinal reflex pathways. In: Recent advances in clinical neurophysiology, p. 35–46. EEG clin. Neurophysiol., Suppl. 25, 1967.Google Scholar
  204. Lundberg, A.: The significance of segmental spinal mechanisms in motor control. 4th Internat. Biophysics Congress, Moscow, p. 1–13 (1972).Google Scholar
  205. Lundberg, A., Voorhoeve, P.: Effects from the pyramidal tract on spinal reflex arcs. Acta physiol. scand. 56, 201–219 (1962).Google Scholar
  206. Maclean, J.B., Leffman, H.: Supraspinal control of Renshaw cells. Exp. Neurol. 18, 94–104 (1967).Google Scholar
  207. McCouch, G.P., Deering, I.D., Stewart, W.B.: Inhibition of knee jerk from tendon spindles of crureus. J. Neurophysiol. 13, 343–350 (1950).Google Scholar
  208. McLaughlin, B. J.: The fine structure of neurons and synapses in the motor nuclei of the cat spinal cord. J. comp. Neurol. 144, 429–460 (1972).Google Scholar
  209. Magladery, J.W., Teasdall, R.D., Park, A.M., Porter, W.E.: Excitation and inhibition of two-neurone reflexes by afferent impulses in the same nerve trunk. Bull. Johns Hopk. Hosp. 88, 520–537 (1951).Google Scholar
  210. Matthews, B.H.C.: Nerve endings in mammalian muscle. J. Physiol. (Lond.) 78, 1–33 (1933).Google Scholar
  211. Matthews, P.B.C. Muscle spindles and their motor control. Physiol. Rev. 44, 219–288 (1964).Google Scholar
  212. Matthews, P.B.C.: Evidence that the secondary as well as the primary endings of the muscle spindles may be responsible for the tonic stretch reflex of the decerebrate cat. J. Physiol. (Lond.) 204, 365–393 (1969).Google Scholar
  213. Matthews, P. B. C.: Mammalian muscle receptors and their central actions. London: Edward Arnold 1972.Google Scholar
  214. Matthews, P. B. C.: The advances of the last decade of animal experimentation upon muscle spindles. In: New developments in electromyography and clinical neurophysiology, vol 3, p. 95–125, ed. J. E. Desmedt. Basel: S. Karger 1973a.Google Scholar
  215. Matthews, P. B. C.: A critique of the hypothesis that the spindle secondary endings contribute excitation to the stretch reflex. In: Control of Posture and Locomotion, p. 227–243, ed. R. B. Stein, K.G. Pearson, R. S. Smith, and J. B. Redford. New York: Plenum Press 1973b.Google Scholar
  216. Mellström, A. Recurrent and antidromic effects on the monosynaptic reflex during postnatal development in the cat. Acta physiol. scand. 82, 490–499 (1971).Google Scholar
  217. Merrillees, N. C. R.: Some observations on the fine structure of a Golgi tendon organ of a rat. In: Symposium on Muscle Receptors, ed. D. Barker. Hongkong: University Press 1962.Google Scholar
  218. Merton, P.A.: The silent period in a muscle of the human hand. J. Physiol. (Lond.) 114, 183–198 (1951).Google Scholar
  219. Mountcastle, V. B.: Modality and topographic properties of single neurons of cat's somatic sensory cortex. J. Neurophysiol. 20, 408–434 (1957).Google Scholar
  220. Naka, K.-I.: Electrophysiology of the fetal spinal cord. II. Interaction among peripheral inputs and recurrent inhibition. J. gen. Physiol. 47, 1023–1038 (1964).Google Scholar
  221. Noske, W., Ross, H.-G., Cleveland, S., Haase, J.: Decrease of antidromic inhibition due to orthodromic tetanic stimuli. Pflügers Arch. 350, 223–230 (1974).Google Scholar
  222. Noth, J.: Aktivitätsänderungen der Extensor-Fusimotoneurone der Katze infolge Reizung niedrigschwelliger Muskelafferenzen. Pflügers Arch. 326, 231–239 (1971a).Google Scholar
  223. Noth, J.: Recurrente Hemmung der Extensor-Fusimotoneurone? Pflügers Arch. 329, 23–33 (1971b).Google Scholar
  224. Phillips, C. G.: Actions of antidromic pyramidal volleys on single Betz cells in the cat. Quart. J. exp. Physiol. 44, 1–25 (1959).Google Scholar
  225. Phillips, C. G.: Corticomotoneuronal organization. Arch. Neurol. (Chic.) 17, 188–195 (1967).Google Scholar
  226. Piercey, M. F., Goldfarb, J.: Discharge patterns of Renshaw cells evoked by volleys in ipsilateral cutaneous and high-threshold muscle afferents and their relationship to reflexes recorded in ventral roots. J. Neurophysiol. 37, 294–302 (1974).Google Scholar
  227. Piercey, M. F., Goldfarb, J., Ryall, R. W.: Effects of picrotoxin and bicuculline on the excitation and inhibition of Renshaw cells. Neuropharmacol. 12, 975–982 (1973).Google Scholar
  228. Pompeiano, O., Wand, P., Sontag, K.-H.: Excitation of Renshaw cells by orthodromic group Ia volleys following vibration of extensor muscles. Pflügers Arch. 347, 137–144 (1974).Google Scholar
  229. Poppele, R. E., Terzuolo, C. A.: Myotatic reflex: its input-output relation. Science 159, 743–745 (1968).Google Scholar
  230. Prestige, M. C.: Initial collaterals of motor axons within the spinal cord of the cat. J. comp. Neur. 126, 123–136 (1966).Google Scholar
  231. Proske, U., Lewis, D. M.: The effects of muscle stretch and vibration on fusimotor activity in the lightly anaesthesised cat. Brain Res. 46, 55–69 (1972).Google Scholar
  232. Ramon y Cajal, S.: Textura del sistema nervioso del hombre y de los vertebrados. N. Moya, Madrid 1899.Google Scholar
  233. Ramon y Cajal, S.: Textura del sistema nervioso del hombre y de los vertebrados. N. Moya, Madrid, vol. 2, pt. II, p. 519–1209. 1904.Google Scholar
  234. Ramon y Cajal, S.: Histologie du systéme nerveux de l'homme et des vert èbrès. Paris: Maloine 1909.Google Scholar
  235. Ratliff, F.: Mach Bands: Quantitative studies on neural networks in the retina, p. 1–365. San Francisco: Holden-Day 1965.Google Scholar
  236. Ratliff, F., Miller, W. H., Hartline, H. K.: Neural interaction in the eye and the integration of receptor activity. Ann. N. Y. Acad. Sci. 74, 210–222 (1958).Google Scholar
  237. Renshaw, B.: Influence of discharge of motoneurons upon excitation of neighboring motoneurons. J. Neurophysiol. 4, 167–183 (1941).Google Scholar
  238. Renshaw, B.: Central effects of centripetal impulses in axons of spinal ventral roots. J. Neurophysiol. 9, 191–204 (1946)Google Scholar
  239. Rexed, B.: Some aspects of the cytoarchitectonics and synaptology of the spinal cord. In: Progress in brain research, vol. 11, p. 58–92. Organization of the spinal cord, ed. J. C. Eccles and J. P. Schadé. Amsterdam: Elsevier 1964.Google Scholar
  240. Roberts, W. J.: Tendon organ function. Brain Res. 28, 345–350 (1971).Google Scholar
  241. Roberts, W. J., Rosenthal, N. P., Terzuolo, C. A.: A control model of stretch reflex. J. Neurophysiol. 34, 620–634 (1971).Google Scholar
  242. Romanes, G. J.: The motor pools of the spinal cord. In: Progress in brain research, vol. 11, p. 93–119. Organization of the Spinal Cord, ed. J. C. Eccles and J. P. Schadé. Amsterdam: Elsevier 1964.Google Scholar
  243. Ross, H.-G., Cleveland, S., Haase, J.: Quantitative relation of Renshaw cell discharges to monosynaptic reflex height. Pflügers Arch. 332, 73–79 (1972).Google Scholar
  244. Ross, H.-G., Cleveland, S., Haase, J.: Response of Renshaw cells to minimal antidromic input at various frequencies. Pflügers Arch. 355, Suppl. R 91 (1975).Google Scholar
  245. Ross, H.-G., Cleveland, S., Wolf, E., Haase, J.: Changes in the excitability of Renshaw cells due to orthodromic tetanic stimuli. Pflügers Arch. 344, 299–307 (1973).Google Scholar
  246. Ryall, R. W.: Renshaw cell mediated inhibition of Renshaw cells: Pattern of excitation and inhibition from impulses in motor axon collaterals. J. Neurophysiol. 33, 257–270 (1970).Google Scholar
  247. Ryall, R. W.: Excitatory convergence on Renshaw cells. J. Physiol. (Lond.) 226, 69–70 P (1972).Google Scholar
  248. Ryall, R. W., Piercey, M. F.: Excitation and inhibition of Renshaw cells by impulses in peripheral afferent nerve fibers. J. Neurophysiol. 34, 242–251 (1971).Google Scholar
  249. Ryall, R. W., Piercey, M. F., Polosa, C: Intersegmental and intrasegmental distribution of mutual inhibition of Renshaw cells. J. Neurophysiol. 34, 700–707 (1971).Google Scholar
  250. Ryall, R. W., Piercey, M. F., Polosa, C: Strychnine-resistant mutual inhibition of Renshaw cells. Brain Res. 41, 119–129 (1972a).Google Scholar
  251. Ryall, R. W., Piercey, M. F., Polosa, C., Goldfarb, J.: Excitation of Renshaw cells in relation to orthodromic and antidromic excitation of motoneurons. J. Neurophysiol. 35, 137–148 (1972b).Google Scholar
  252. Sasaki, K.: Electrophysiological studies on oculomotor neurons of the cat. Jap. J. Physiol. 13, 287–302 (1963).Google Scholar
  253. Scheibel, M. E., Scheibel, A. B.: Are there Renshaw cells? Anat. Rec. 148, 332 (1964).Google Scholar
  254. Scheibel, M. E., Scheibel, A. B.: Spinal motoneurons, interneurons and Renshaw cells. A Golgi study. Arch. ital. Biol. 104, 328–353 (1966).Google Scholar
  255. Scheibel, M. E., Scheibel, A. B.: Inhibition and the Renshaw cell. A structural critique. Brain Behav. Evol. 4, 53–93 (1971).Google Scholar
  256. Schlegel, H.-J., Sontag, K.-H.: Reflektorische Aktivierung prätibialer Fusimotoneurone der Katze durch Reizung niedrigschwelliger antagonistischer Muskelafferenzen. Pflügers Arch. 319, 200–204 (1970).Google Scholar
  257. Schmidt, R. F.: Presynaptic inhibition in the vertebrate central nervous system. Ergebn. Physiol. 63, 20–101 (1971).Google Scholar
  258. Schoultz, T. W., Swett, J. E.: The fine structure of Golgi tendon organs. J. Neurocytol. 1, 1–26 (1972).Google Scholar
  259. Schoultz, T. W., Swett, J. E.: Ultrastructural organization of the sensory fibers innervating the Golgi tendon organ. Anat. Rec. 179, 147–162 (1974).Google Scholar
  260. Severin, F. V., Orlovskii, G. N., Shik, M. L.: Work of the muscle receptors during controlled locomotion. Biofizika 12, 502–511 (1967).Google Scholar
  261. Sherrington, C. S.: On the anatomical constitution of nerves of skeletal muscles; with remarks on recurrent fibres in the ventral spinal nerve-root. J. Physiol. (Lond.) 17, 211–258 (1894).Google Scholar
  262. Sherrington, C. S.: On plastic tonus and proprioceptive reflexes. Quart. J. exp. Physiol. 2, 109–156 (1909).Google Scholar
  263. Sherrington, C. S.: Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J. Physiol. (Lond.) 40, 28–121 (1910).Google Scholar
  264. Sherrington, C. S.: Reflex inhibition as a factor in the co-ordination of movements and postures. Quart. J. exp. Physiol. 6, 251–310 (1913).Google Scholar
  265. Sommer, J.: Der Entlastungsreflex des menschlichen Muskels. Dtsch. Z. Nervenheilk. 150, 83–92 (1940).Google Scholar
  266. Sontag, K.-H.: The effects on primary and secondary spindle afferents of fusimotor reflex during ramp and sinusoidal muscle stretch. Pflügers Arch. 331, 266–274 (1972).Google Scholar
  267. Spencer, W. A., Kandel, E. R.: Hippocampal neuron responses in relation to normal and abnormal function. In: Physiologie de l'Hippocampe. Coll. int. centre national recherche sci. (Paris) 107, 71–103 (1962).Google Scholar
  268. Sprague, J. M.: Motor and propriospinal cells in the thoracic and lumbar ventral horn of the rhesus monkey. J. comp. Neurol. 95, 103–123 (1951).Google Scholar
  269. Sprague, J. M., Hongchien, HA: The terminal fields of dorsal root fibers in the lumbosacral spinal cord of the cat, and the dendritic organization of the motor nuclei. In: Progress in brain research, vol. 11, p. 120–154. Organization of the spinal cord, ed. J. C. Eccles and J. P. Schade. Amsterdam: Elsevier 1964.Google Scholar
  270. Struppler, A., Landau, W. M., Mehls, H.: Analyse des Entlastungsreflexes (ER) am Men-schen. Pflügers Arch. ges. Physiol. 279, R 18–19 (1964).Google Scholar
  271. Stuart, D. G., Goslow, G. E., Mosher, C. G., Reinking, R. M.: Stretch responsiveness of Golgi tendon organs. Exp. Brain Res. 10, 463–476 (1970).Google Scholar
  272. Stuart, D. G., Mosher, C.G., Gerlach, R. L., Reinking, R. M.: Mechanical arrangement and transducing properties of Golgi tendon organs. Exp. Brain Res. 14, 274–292 (1972).Google Scholar
  273. Sumner, A. J.: Properties of Ia and Ib afferent fibres serving stretch receptors of the cat's medial gastrocnemius muscle. Proc. Univ. Otago Med. Sch. 39, 3–5 (1961).Google Scholar
  274. Swett, J. E., Eldred, E.: Distribution and numbers of stretch receptors in medial gastrocnemius and soleus muscles of the cat. Anat. Rec. 137, 453–460 (1960).Google Scholar
  275. Szentágothai, J.: The anatomical basis of synaptic transmission of excitation and inhibition in motoneurons. Acta morph. Acad. Sci. hung. 8, 287–309 (1958).Google Scholar
  276. Szentágothai, J.: Anatomical aspects of inhibitory pathways and synapses. In: Nervous inhibition, p. 32–46, ed. E. Florey. Oxford: Pergamon Press 1961.Google Scholar
  277. Szentágothai, J.: Synaptic architecture of the spinal motoneuron pool. In: Recent advances in clinical neurophysiology. Electroenceph. clin. Neurophysiol. n25, Suppl. p. 4–19. Amsterdam: Elsevier 1967.Google Scholar
  278. Taugner, R., Culp, W.: Über die Wirkung von Nikotin auf das R ückenmark der Katze. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 220, 423–432 (1953).Google Scholar
  279. Taylor, W. K.: A model of learning mechanisms in the brain. In: Progress in brain research, vol. 17, Cybernetics of the nervous system, p. 369–397, ed. N. Wiener and J. P. Schadé. Amsterdam: Elsevier 1965.Google Scholar
  280. Terzuolo, C. A., Viviani, P.: Parameters of motion and EMG activities during some simple motor tasks in normal subjects and cerebellar patients. In: The cerebellum, epilepsy and behavior, p. 173–215, ed. J. S. Cooper, M. Riklan, R. S. Snider. New York: Plenum 1973.Google Scholar
  281. Thomas, R. C, Wilson, V. J.: Precise localization of Renshaw cells with a new marking technique. Nature (Lond.) 206, 211–213 (1965).Google Scholar
  282. Thomas, R. C., Wilson, V. J.: Recurrent interactions between motoneurons of known location in the cervical cord of the cat. J. Neurophysiol. 30, 661–674 (1967).Google Scholar
  283. Tönnies, J. F.: Die Erregungssteuerung im Zentralnervensystem. Arch. Psychiat. Nervenkr. 182, 478–535 (1949).Google Scholar
  284. Tönnies, J. F., Jung, R.: Über rasch wiederholte Entladungen der Motoneurone und die Hemmungsphase des Beugereflexes. Pflügers Arch. ges. Physiol. 250, 667–693 (1948).Google Scholar
  285. van Keulen, L. C. M.: Morphology of Renshaw cells. Pflügers Arch. 328, 235 P (1971).Google Scholar
  286. Voorhoeve, P. E., Rey, J. G.: Inhibition récurrente des décharges fusimotrices, présumées statiques, chez le chat. J. Physiol. (Paris) 65, 314–315 A (1972).Google Scholar
  287. Voorhoeve, P. E., van Kanten, W.: Reflex behaviour of fusimotor neurones of the cat upon electrical stimulation of various afferent fibres. Acta physiol. pharmacol. neerl. 10, 391–407 (1962).Google Scholar
  288. Weight, F. F.: Cholinergic mechanisms in recurrent inhibition of motoneurons. Psychopharmacology: A review of progress, 1957–1967, p. 69–75. Washington: Government Printing Office 1968.Google Scholar
  289. Werman, R., Davidoff, R. A., Aprison, M. H.: Glycine and postsynaptic inhibition in cat spinal cord. Physiologist 9, 318 (1966).Google Scholar
  290. Werman, R., Davidoff, R. A., Aprison, M. H.: Inhibitory action of glycine on spinal neurons in the cat. J. Neurophysiol. 31, 81–95 (1968).Google Scholar
  291. Willis, W. D.: The localization of functional groups of interneurons. In: The interneuron, p. 267–287, ed. A. B. Brazier. Berkeley-Los Angeles: Univ. of Calif. Press 1969.Google Scholar
  292. Willis, W. D.: The case for the Renshaw cell. Brain Behav. Evol. 4, 5–52 (1971).Google Scholar
  293. Willis, W. D., Willis, J. C: Location of Renshaw cells. Nature (Lond.) 204, 1214–1215 (1964).Google Scholar
  294. Willis, W. D., Willis, J. C.: Properties of interneurons in the ventral spinal cord. Arch. ital. Biol. 104, 354–386 (1966).Google Scholar
  295. Wilson, V. J.: Recurrent facilitation of spinal reflexes. J. gen. Physiol. 42, 703–713 (1959).Google Scholar
  296. Wilson, V. J.: Regulation and function of Renshaw cell discharge. In: Muscular afferents and motor control. Nobel Symposium I, p. 317–329, ed. R. Granit. Stockholm: Almquist u. Wiksell 1966.Google Scholar
  297. Wilson, V. J., Burgess, P. R.: Intracellular study of recurrent facilitation. Science 134, 337–338 (1961).Google Scholar
  298. Wilson, V. J., Burgess, P. R.: Disinhibition in the cat spinal cord. J. Neurophysiol. 25, 392–404 (1962a).Google Scholar
  299. Wilson, V. J., Burgess, P. R.: Effects of antidromic conditioning on some motoneurons and interneurons. J. Neurophysiol. 25, 636–650 (1962 b).Google Scholar
  300. Wilson, V. J., Talbot, W. H.: Recurrent conditioning in the cat spinal cord. Differential effect of meprobamate on recurrent facilitation and inhibition. J. gen. Physiol. 43, 495–502 (1960).Google Scholar
  301. Wilson, V. J., Talbot, W. H.: Integration at an inhibitory interneurone: Inhibition of Renshaw cells. Nature (Lond.) 200, 1325–1327 (1963).Google Scholar
  302. Wilson, V. J., Talbot, W. H., Diecke, F. P. J.: Distribution of recurrent facilitation and inhibition in cat spinal cord. J. Neurophysiol. 23, 144–153 (1960).Google Scholar
  303. Wilson, V. J., Talbot, W. H., Kato, M.: Inhibitory convergence upon Renshaw cells. J. Neurophysiol. 27, 1063–1079 (1964).Google Scholar
  304. Wohlfart, G., Henriksson, K. G.: Observations on the distribution, number and innervation of Golgi musculo-tendinous organs. Acta anat. (Basel) 41, 192–204 (1960).Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  1. 1.Physiologisches Institut der UniversitätDüsseldorfFederal Republic of Germany

Personalised recommendations