Neural organisation and control of the baroreceptor reflex
Chapter
First Online:
- 161 Citations
- 132 Downloads
Keywords
Carotid Sinus Fastigial Nucleus Nucleus Ambiguus Carotid Sinus Nerve Neural Organisation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Abbreviations
- AN
Aortic nerve
- BVM
Preganglionic bronchomotor neurone
- C
Cervical spinal cord
- CVM
Preganglionic cardiac vagal motoneurone
- DLF
Dorsolateral funiculus
- DLH
Di-homocysteic acid
- DNV
Dorsal motor nucleus of the vagus
- ECG
Electrocardiogram
- 5HT
5-hydroxytryptamine
- IC
Intercostal
- IML
Intermediolateral cell column
- IMM
Intermediomedial cell column
- LRN
Lateral reticular nucleus
- NA
Nucleus ambiguus
- NPR
Paramedian reticular nucleus
- NTS
Nucleus of the tractus solitarius
- SN
Sinus nerve
- T
Thoracic spinal cord
- TS
Tractus solitarius
Preview
Unable to display preview. Download preview PDF.
References
- Abrahams VC, Hilton SM, Zbrozyna A (1960) Active muscle vasodilatation. Produced by stimulation of the brainstem: its significance in the defence reaction. J Physiol (Lond) 154:491–513PubMedGoogle Scholar
- Achari NK, Downman CBB (1969) Autonomic responses evoked by stimulation of fastigial nuclei in the anaesthetized cat. J Physiol (Lond) 204:130Google Scholar
- Achari NK, Downman CBB (1970) Autonomic effector responses to stimulation of nucleus fastigius. J Physiol (Lond) 210:637–650PubMedGoogle Scholar
- Achari NK, Downman CBB (1978) Inhibition of reflex bradycardia by stimulation of cerebral motor cortex. Brain Res 150:198–200CrossRefPubMedGoogle Scholar
- Achari NK, Al-Ubaidy SS, Downman CBB (1973) Cardiovascular responses elicited by fastigial and hypothalamic stimulation in conscious cats. Brain Res 60:439–447CrossRefPubMedGoogle Scholar
- Achari NK, Al-Ubaidy SS, Downman CBB (1978) Spinal sympathoexcitatory pathways activated by stimulating fastigial nuclei, hypothalamus and lower brain stem in cats. Exp Neurol 62:230–240CrossRefPubMedGoogle Scholar
- Adair JR, Manning JW (1975) Hypothalamic modulation of baroreceptor afferent unit activity. Am J Physiol 229:1357–1364PubMedGoogle Scholar
- Adrian ED, Bronk DW, Phillips G (1932) Discharges in mammalian sympathetic nerves. J Physiol (Lond) 74:115–133Google Scholar
- Agostoni E, Chinnock JE, Daly M de B, Murray JG (1957) Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J Physiol (Lond) 135:182–205PubMedGoogle Scholar
- Akimoto H, Saito Y (1966) Synchronizing and desynchronizing influences and their interactions on cortical and thalamic neurones. Prog Brain Res 21A:323–351Google Scholar
- Alanis J, Mascher D, Miyamoto J (1966) Hypothalamic stimulation and the inhibition of the activity of cardiac sympathetic and parasympathetic nerves. Arch Int Physiol Biochim 74:766–784PubMedGoogle Scholar
- Alexander RS (1945) The effects of blood flow and anoxia on spinal cardiovascular centers. Am J Physiol 143:698–708Google Scholar
- Alexander RS (1946) Tonic and reflex functions of medullary sympathetic centers. J Neurophysiol 9:205–217Google Scholar
- Amendt K, Czachurski J, Dembowsky K, Seller H (1978) Localisation of brainstem neurons projecting to the intermediolateral nucleus in the cat. Pfluegers Arch 373:76Google Scholar
- Anderson FD, Berry OM (1956) An oscillographic study of the central pathways of the vagus nerve in the cat. J Com Neurol 106:163–181CrossRefGoogle Scholar
- Angell-James JE (1971a) The effects of altering mean pressure, pulse pressure and pulse-frequency on the impulse activity in baroreceptor fibres from the aortic arch and right subclavian artery in the rabbit. J Physiol (Lond) 214:65–88PubMedGoogle Scholar
- Angell-James JE (1971b) The responses of aortic arch and right subclavian baroreceptors to changes in non-pulsatile pressure and their modification by hypothermia. J Physiol (Lond) 214:201–223PubMedGoogle Scholar
- Angell-James JE, Daly M de B (1969) Cardiovascular responses in apnoeic asphyxia; role of arterial chemoreceptors and the modification of their effects by a pulmonary inflation reflex. J Physiol (Lond) 201:87–104PubMedGoogle Scholar
- Angell-James JE, Daly M de B (1970) Comparison of the reflex vasomotor responses to separate and combined stimulation of the carotid sinus and aortic arch baroreceptors by pulsatile and non-pulsatile pressures in the dog. J Physiol (Lond) 209:257–293PubMedGoogle Scholar
- Angell-James JE, Daly M de B (1973) The interaction of reflexes elicited by stimulation of carotid body chemoreceptors and receptors, in the nasal mucosa affecting respiration and pulse interval in the dog. J Physiol (Lond) 229:113–149Google Scholar
- Angell-James JE, Daly M de B (1975a) Some aspects of upper respiratory tract reflexes. Acta Otolaryngol (Stockh) 79:242–251PubMedGoogle Scholar
- Angell-James JE, Daly M de B (1975b) Role of the arterial chemoreceptors in the control of the cardiovascular responses to breath-hold diving. In: Purves MJ (ed) The peripheral arterial chemoreceptors. Cambridge University Press, London, pp 387–405Google Scholar
- Angell-James JE, Daly M de B (1978) The effects of artificial lung inflation on reflexly induced bradycardia associated with apnoea in the dog. J Physiol (Lond) 274:349–366PubMedGoogle Scholar
- Angell-James JE, Daly M de B, Elsner R (1978) Arterial baroreceptor reflexes in the seal and their modification during experimental dives. Am J Physiol 234:730–739Google Scholar
- Anrep GV, Pascual W, Rössler R (1936a) Respiratory variations of heart rate. I. The reflex mechanism of the respiratory arrhythmia. Proc R Soc Lond (Biol) 119:191–217Google Scholar
- Anrep GV, Pascual W, Rössler R (1936b) Respiratory variations of the heart-rate. II. The central mechanism of respiratory arrhythmia and the inter-relationships between central and reflex mechanisms. Proc R Soc Lond (Biol) 119:218–230Google Scholar
- Åström KE (1952) On the central course of afferent fibres in the trigeminal, glossopharyngeal and vagal nerves and their nuclei in the mouse. Acta Physiol Scand (Suppl 106) 29:209–320Google Scholar
- Bach LMN (1952) Relationships between bulbar respiratory, vasomotor and somatic facilitatory and inhibiting areas. Am J Physiol 171:417–435PubMedGoogle Scholar
- Baertschi AJ, Munzer RF, Ward DG, Johnson RN, Gann DS (1975) Right and left arterial B-fibre input to the medulla of the cat. Brain Res 98:189–193CrossRefPubMedGoogle Scholar
- Bagshaw RJ, Iizuka M, Peterson LH (1971) Effect of interaction of the hypothalamus and the carotic sinus mechanoreceptors system on the renal haemodynamics in the anaesthetized dog. Circ Res 29:569–585PubMedGoogle Scholar
- Barker JL, Crayton JW, Nicoll RA (1971) Supraoptic neurosecretory cells: autonomic modulation. Science 171:206–207PubMedGoogle Scholar
- Barman SM, Gebber GL (1978a) Tonic sympathoinhibition in the baroreceptor denervated cat. Proc Soc Exp Biol Med 157:648–655PubMedGoogle Scholar
- Barman SM, Gebber GL (1978b) Site of recurrent inhibition of preganglionic sympathetic unit discharges. Fed Proc 37:744Google Scholar
- Barman SM, Wurster RD (1975) Visceromotor organization within descending spinal sympathetic pathways in the dog. Circ Res 37:209–214PubMedGoogle Scholar
- Barman SM, McCaffrey TV, Wurster RD (1976) Cardiovascular and electrophysiological responses to sympathetic pathway stimulation. Am J Physiol 230:1095–1100PubMedGoogle Scholar
- Bartorelli C, Bizzi E, Libretti A, Zanchetti A (1960) Inhibitory control of sinocarotid pressoceptive afferents on hypothalamic autonomic activity and sham-rage behavior. Arch Ital Biol 98:308–326Google Scholar
- Baumgarten R von, Aranda Coddou L (1959) Distribución de las aferencias cardiovasculares y respiratorias en las raices bulbares del nervio vago. Acta Neurol Lat Am 5:267–278Google Scholar
- Baumgarten R von, Kanzow E (1958) The interaction of two types of inspiratory neurones in the region of the tractus solitarious of the cat. Arch Ital Biol 96:361–373Google Scholar
- Baust W, Heinemann H (1967) The role of the baroreceptors and blood pressure in the regulation of sleep and wakefulness. Exp Brain Res 3:12–24CrossRefGoogle Scholar
- Baust W, Niemczyk H (1968) The influence of mesencephalic structures on phasic regulation of blood pressure. Pfluegers Arch 301:31–42CrossRefGoogle Scholar
- Baust W, Niemczyk H, Schaeffer H, Vieth J (1963) Über ein pressosensibles Areal im hinteren Hypothalamus der Katze. Pfluegers Arch 174:374–384Google Scholar
- Bayliss WM (1923) The vasomotor system. Longman, LondonGoogle Scholar
- Beattie J, Brow GR, Long CNH (1930) Physiological and anatomical evidence for the existence of nerve tracts connecting hypothalamus with spinal sympathetic centres. Proc R Soc Lond (Biol) 105:253–275Google Scholar
- Bennett JA, Kidd C, Lafit AB, McWilliams PN (to be published) The brainstem locations of cell bodies of vagal efferent fibres in cardiac and pulmonary branches in the cat. J Physiol (Lond)Google Scholar
- Berger AJ (1979) Distribution of carotid sinus nerve afferent fibers to solitary tract nuclei of the cat using transganglionic transport of horseradish peroxidase. Neurosci Lett 14:153–158CrossRefPubMedGoogle Scholar
- Bianchi AL (1971) Localisation et étude des neurones respiratoires embaires. Mise en jeu antidromique par stimulation spinale ou vagale. J Physiol (Paris) 63:5–40Google Scholar
- Biscoe JJ, Sampson SR (1968) Rhythmical and non-rhythmical spontaneous activity recorded from the central cut end of the sinus nerve. J Physiol (Lond) 196:327–338PubMedGoogle Scholar
- Biscoe TJ, Sampson SR (1970a) Field potentials evoked in the brain stem of the cat by stimulation of the carotid sinus, glossopharyngeal, aortic and superior laryngeal nerves. J Physiol (Lond) 209:341–358PubMedGoogle Scholar
- Biscoe TJ, Sampson SR (1970b) Responses of cells in the brainstem of the cat to stimulation of the sinus, glossopharyngeal, aortic and superior laryngeal nerves. J Physiol (Lond) 209:359–373PubMedGoogle Scholar
- Bok T (1928) Das Rückenmark. In: Mollendorf W (ed) Handbuch der mikroskopischen Anatomie des Menschen. Srpinger, BerlinGoogle Scholar
- Bolme P, Ngai SH, Rosen S (1967) Influence of vasoconstrictor nerve activity on the cholinergic vasodilator response in skeletal muscle in the dog. Acta Physiol Scand 71:323–333PubMedGoogle Scholar
- Bonvallet M, Sigg B (1958) Etude electrophysiologique des afferences vagales au niveau de leur penetration dans le bulbe. J Physiol (Paris) 50:63–74Google Scholar
- Bonvallet M Dell P, Hiebel G (1953) Sinus carotidien et activé électrique cérébrale. C.R. Soc Biol (Paris) 147:1166–1169Google Scholar
- Borison HL, Domjan D (1970) Persistence of the cardioinhibitory response to brainstem ischaemia after destruction of the area postrema and the dorsal vagal nuclei. J Physiol (Lond) 211:263–277PubMedGoogle Scholar
- Brickman AL, Kaufman MP, Petrik GK, Schneiderman N (1977) Responses of anterior hypothalamic neurons to stimulation of aortic nerve and caudate nucleus in the rabbit. Exp Neurol 56:622–627CrossRefPubMedGoogle Scholar
- Brodal A (1969) Neurological anatomy in relation to clinical medicine, 2nd ed. Oxford University Press, LondonGoogle Scholar
- Bronk DW, Tower SS, Solandt DY (1938) The transmission of trains of impulses through sympathetic ganglion and its postganglionic nerves. Am J Physiol 122:1–15Google Scholar
- Bronk DW, Pitts RF, Larrabee MG (1940) Role of the hypothalamus in cardiovascular regulation. Res Publ Assoc Res Nerv Ment Dis 20:323–341Google Scholar
- Brown GL, Eccles JC (1934a) The action of a single vagal volley on the rhythm of the heart beat. J Physiol (Lond) 81:211–240Google Scholar
- Brown GL, Eccles JC (1934b) Further experiments on vagal inhibition of the heart beat. J Physiol 81:241–257Google Scholar
- Burkhart SM, Ledsome JR (1977) The response to distension of the pulmonary vein-left atrial junctions in anaesthetised dogs after section of the rostral medulla. J Physiol (Lond) 273:57–68PubMedGoogle Scholar
- Burkhart SM, Furnell L, Ledsome JR (1977) Effects of medullary lesions on arterial baroreceptor reflexes and responses to distension of pulmonary vein-left atrial junctions in anaesthetized dogs. J Physiol (Lond) 273:69–82PubMedGoogle Scholar
- Cajal S, Ramon Y (1909) Histologie du systeme nerveux de l'homme et des vertebres. Maloine, ParisGoogle Scholar
- Calaresu FR, Cottle MK (1965) Origin of cardiomotor fibres in the dorsal nucleus of the vagus in the cat: A histological study. J Physiol (Lond) 176:252–260PubMedGoogle Scholar
- Calaresu FR, Henry JL (1970) The mechanism of cardio-acceleration elicited by electrical stimulation of the parahypoglossal area in the cat. J Physiol (Lond) 210:107–120PubMedGoogle Scholar
- Calaresu FR, Pearce JW (1965a) Electrical activity of efferent vagal fibres and dorsal nucleus of the vagus during reflex bradycardia in the cat. J Physiol (Lond) 176:228–240PubMedGoogle Scholar
- Calaresu FR, Pearce JW (1965b) Effects on heart rate of electrical stimulation of medullary vagal structures in the cat. J Physiol (Lond) 176:241–251PubMedGoogle Scholar
- Camerer H, Stroh-Werz M, Krienke B, Langhorst P (1977) Postganglionic sympathetic activity with correlation to heart-rate and central cortical rhythms. Pfluegers Arch 370:221–226CrossRefGoogle Scholar
- Cannon WB (1929) Sympathetic division of the autonomic system in relation to homeostasis. Arch Neurol Psychiatry 22:282–294Google Scholar
- Cannon WB (1930) The autonomic nervous system: an interpretation. Lancet I:1109–1115Google Scholar
- Cannon WB (1932) The wisdom of the body. Norton, New YorkGoogle Scholar
- Cedarbaum JM, Aghajanian GK (1978) Afferent projections to the rat locus coeruleus as determined by a retrograde tracing technique. J Comp Neurol 178:1–16CrossRefPubMedGoogle Scholar
- Chai CY, Wang SC (1962) Localisation of central cardiovascular control mechanism in lower brainstem of the cat. Am J Physiol 202:25–30PubMedGoogle Scholar
- Chai CY, Wang SC (1968) Integration of sympathetic cardiovascular mechanisms in medulla oblongata of the cat. Am J Physiol 215:1310–1315PubMedGoogle Scholar
- Chen HI, Cahi CY (1976) Integration of the cardiovagal mechanism in the medulla oblongata of the cat. Am J Physiol 231:454–461PubMedGoogle Scholar
- Chess GF, Tam RMK, Calaresu FR (1975) Influence of cardiac neural inputs on rhythmic variations of heart period in the cat. Am J Physiol 228:775–780PubMedGoogle Scholar
- Chiurugi E, Mollica A (1954) Contributo alla localizzazione del centro vagale cardio-inhibitore. Arch Fisiol 54:249–267Google Scholar
- Chung JM, Chung K, Wurster RD (1975) Sympathetic preganglionic neurons of the cat spinal cord. Horseradish peroxidase study. Brain Res 91:126–131CrossRefPubMedGoogle Scholar
- Ciriello J, Calaresu FR (1977) Do some cardioinhibitory axons originate in the external cuneate nucleus? Neuroscience Abstract 3:19Google Scholar
- Cohen DH, Schnall AM, MacDonald RL, Pitts LH (1970) Medullary cells of origin of vagal cardioinhibitory fibres in the pigeon. I. Anatomical structure of peripheral vagus nerves and the dorsal motor nucleus. J Comp Neurol 140:299–320CrossRefPubMedGoogle Scholar
- Cohen, MI, Gootman PM (1969) Spontaneous and evoked oscillations in respiratory and sympathetic discharge. Brain Res 16:265–268CrossRefPubMedGoogle Scholar
- Cohen MI, Gootman PM (1970) Periodicities in efferent discharge of splanchnic nerve of the cat. Am J Physiol 218:1092–1101PubMedGoogle Scholar
- Coleridge HM, Coleridge JCG, Rosenthal F (1976) Prolonged inactivation of cortical pyramidal tract neurones in cats by distension of the carotid sinus. J Physiol (Lond) 256:635–650PubMedGoogle Scholar
- Coote JH (1978) Afferent input as factors in aberrant autonomic, sensory and motor function. In: Korr IM (ed) The neurobiologic mechanisms in manipulative therapy. Plenum, New York, pp 91–127Google Scholar
- Coote JH, Downman CBB (1966) Central pathways of some autonomic reflex discharges. J Physiol (Lond) 183:714–729PubMedGoogle Scholar
- Coote JH, Downman CBB (1969) Supraspinal control of reflex activity in renal nerves. J Physiol (Lond) 202:161–170PubMedGoogle Scholar
- Coote JH, Macleod VH (1974a) The influence of bulbospinal monoaminergic pathways on sympathetic nerve activity. J Physiol (Lond) 241:453–457PubMedGoogle Scholar
- Coote JH, Macleod VH (1974b) Evidence for the involvement in the baroreceptor reflex of a descending inhibitory pathway. J Physiol (Lond) 241:477–496PubMedGoogle Scholar
- Coote JH, Macleod VH (1975) The spinal route of sympatho-inhibitory pathways descending from the medulla oblongata. Pfluegers Arch 359:335–347CrossRefGoogle Scholar
- Coote JH, Macleod VH (1977) The effect of intraspinal microinjections of 6-hydroxydopamine on the inhibitory influence exerted on spinal sympathetic activity by the baroreceptors. Pfluegers Arch 371:271–277Google Scholar
- Coote JH, Perez-Gonzalez JF (1972) The baroreceptor reflex during stimulation of the hypothalamic defence region. J Physiol (Lond) 224:74–75Google Scholar
- Coote JH, Sato A (1978) Supraspinal regulation of spinal reflex discharge into cardiac sympathetic nerves. Brain Res 142:425–437CrossRefPubMedGoogle Scholar
- Coote JH, Westbury DR (1974) The influence of the carotid sinus baroreceptors on activity in single sympathetic preganglionic neurones. J Physiol (Lond) 241:22–23Google Scholar
- Coote JH, Westbury DR (1979a) Functional grouping of sympathetic preganglionic neurones in the third thoracic segment of the spinal cord. Brain Res 179:367–372CrossRefPubMedGoogle Scholar
- Coote JH, Westbury DR (1979b) Intracellular recordings from sympathetic preganglionic neurones. Neurosci Lett 15:171–175CrossRefPubMedGoogle Scholar
- Coote JH, Downman CBB, Weber WV (1969) Reflex discharges into thoracic white rami elicited by somatic and visceral afferent excitation. J Physiol (Lond) 202:147–155PubMedGoogle Scholar
- Coote JH, Hilton SM, Zbrozyna AW (1973) The ponto-medullary area integrating the defence reaction in the cat and its influence on muscle blood flow. J Physiol (Lond) 229:257–274PubMedGoogle Scholar
- Coote JH, Macleod VH, Martin TL (1978) Bulbospinal tryptaminergic neurones. A search for the role of bulbospinal tryptaminergic neurones in the control of sympathetic activity. Pfluegers Arch 377:109–116CrossRefGoogle Scholar
- Coote JH, Hilton SM, Perez-Gonzalez JF (1979) Inhibition of the baroreceptor reflex on stimulation in the brainstem defence centre. J Physiol (Lond) 288:549–560PubMedGoogle Scholar
- Cottle MK (1964) Degeneration studies of primary afferents of IXth and Xth cranial nerves in the cat. J Comp Neurol 122:329–343CrossRefPubMedGoogle Scholar
- Cottle MKW, Calaresu FR (1975) Projections from the nucleus and tractus solitarius in the cat. J Comp Neurol 161:143–158CrossRefPubMedGoogle Scholar
- Crill WE, Reis DJ (1968) Distribution of carotid sinus and depressor nerves in the cat brain stem. Am J Physiol 214:269–276PubMedGoogle Scholar
- Culberson JL, Kimmel DL (1972) Central distribution of primary afferent fibres of the glossopharynegeal and vagal nerves in the opossum didelphis virginiana. Brain Res 44:325–335CrossRefPubMedGoogle Scholar
- Dahlström A, Fuxe K (1965) Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels in the bulbospinal neuron systems. Acta Physiol Scand (Suppl 247) 64:7–85Google Scholar
- Daly M de B, Elsner R, Angell-James JE (1977) Cardiorespiratory control by the carotid chemoreceptors during experimental dives in the seal. Am J Physiol 232:H508–516PubMedGoogle Scholar
- Daly M de B, Korner PI, Angell-James JE, Oliver JR (1978) Cardiovascular-respiratory reflex interactions between carotid bodies and upper-airways resistance in the monkey. Am J Physiol 234:H293–299PubMedGoogle Scholar
- Davidson NS, Goldner S, McCloskey DI (1976) Respiratory modulation of baroreceptor and chemoreceptor reflexes affecting heart-rate and cardiac vagal efferent nerve activity. J Physiol (Lond) 259:523–530PubMedGoogle Scholar
- Davies RO, Edwards MW (1973) Distribution of carotid body chemoreceptors afferents in the medulla of the cat. Brain Res 64:451–454CrossRefPubMedGoogle Scholar
- Davies RO, Edwards MW (1975) Medullary relay neurons in the carotid body chemoreceptor pathways of cats. Respir Physiol 24:69–79CrossRefPubMedGoogle Scholar
- Davis AL, McCloskey DI, Potter EK (1977) Respiratory modulation of baroreceptor and chemoreceptor reflexes affecting heart rate through the sympathetic nervous system. J Physiol 272:691–703PubMedGoogle Scholar
- Day MD, Roach AG (1974) Central adrenoreceptors and the control of arterial blood pressure. Clin Exp Pharmacol Physiol 1:347–360PubMedGoogle Scholar
- De Castro F (1928) Sur la structure et l'innervation du sinus carotidien de l'homme et des mammiferes. Nouveau faits sur l'innervation et la function du glomus caroticum. Etudes anatomiques et physiologiques. Trab Insv Cajal Invest Biol 25:331–350Google Scholar
- De Groat WC, Lalley PM (1974) Reflex sympathetic firing in response to electrical stimulation of the carotid sinus nerve in the cat. Brain Res 80:17–40CrossRefPubMedGoogle Scholar
- De Jong W, Nijkamp P, Bohus B (1975a) Role of noradrenaline and serotonin in the central control of blood pressure in normotensive and spontaneously hypertensive rats. Arch Int Pharmacodyn Ther 213:272–284PubMedGoogle Scholar
- De Jong W, Zandberg P, Bohus B (1975b) Central inhibitory noradrenergic cardiovascular control. Brain Res 42:285–298Google Scholar
- De Jong W, Palkovits M (1976) Hypertension after localised transection of brainstem fibres. Life Sci 18:61–64CrossRefPubMedGoogle Scholar
- De Jong W, Zandberg P, Palkovits M, Bohus B (1977) Acute and chronic hypertension after lesions and transections of the rat brainstem. Prog Brain Res 47:189–198PubMedGoogle Scholar
- Dell P, Bonvallet M (1966) Influénces d'origine cardio-vasculaire et réspiratoire sur l'activité somatique. Acta Neuroveg 28:148–168CrossRefGoogle Scholar
- Dembowsky K, Czachurski J, Amendt K, Seller H (1978) Tonic, supraspinal monoaminergic inhibition on spinal somato-sympathetic reflexes. Pfluegers Arch 373:76Google Scholar
- De Vito JL, Clausing KW, Smith OA (1974) Uptake and transport of horseradish peroxidase by cut ends of the vagus nerve. Brain Res 82:269–271CrossRefPubMedGoogle Scholar
- Djojosugito A, Folkow B, Lisander B, Sparks H (1965) Mechanism of escape of skeletal muscle resistance vessels from the influence of sympathetic cholinergic vasodilator fibre activity. Acta Physiol Scand 72:148–156Google Scholar
- Djojosugito AM, Folkow B, Kylstra PH, Lisander B, Tuttle RS (1970) Differentiated interaction between hypothalamic defence reaction and baroreceptor reflexes. Acta Physiol Scand 78:376–385PubMedGoogle Scholar
- Doba N, Reis DJ (1973) Acute fulminating neurogenic hypertension produced by brainstem lesions in the rat. Circ Res 32:584–593PubMedGoogle Scholar
- Doba N, Reis DJ (1974a) Role of cerebellum and the vestibular apparatus in regulation of orthostatic reflexes in cats. Circ Res 34:9–18Google Scholar
- Doba N, Reis DJ (1974b) Role of central and peripheral adrenergic mechanisms in neurogenic hypertension produced by brainstem lesions in the rat. Circ Res 34:293–301PubMedGoogle Scholar
- Donoghue S (1978) An electrophysiological study of the connections of aortic and cardiac vagal nerves in the brainstem of the cat. Ph.D. thesis, University of LeedsGoogle Scholar
- Donoghue S, Fox RE, Kidd C (1977) The distribution of aortic nerve afferent fibres in the brainstem of the cat. J Physiol (Lond) 273:80–81PGoogle Scholar
- Donoghue S, Kidd C, McWilliam PN (1978) The distribution of neurones in the brain stem of the cat activated by A and C fibres of the aortic nerve. J Physiol (Lond) 285:56–57PGoogle Scholar
- Douglas WW, Ritchie JM (1956) Cardiovascular reflexes produced by electrical excitation of non-medullated afferents in the vagus, carotid sinus and aortic nerves. J Physiol (Lond) 134:167–178PubMedGoogle Scholar
- Douglas WW, Schaumann W (1956) A study of depressor and pressor components of the cat's carotid sinus and aortic nerves using electrical stimulus of different intensities and frequency. J Physiol (Lond) 132:173–186PubMedGoogle Scholar
- Douglas WW, Ritchie JM, Schaumann W (1956) Depressor reflexes from medullated and non-medullated fibres in the rabbit's aortic nerve. J Physiol (Lond) 132:187–198PubMedGoogle Scholar
- Downman CBB (1972) The vasomotor centre. In: Downman CBB (ed) Modern trends in physiology. Butterworths, London, pp 292–308Google Scholar
- Dugin SF, Zakharow ST, Samonina GE, Udelnov MG (1976) The effect of electrical stimulation of the vagal nuclei in anaesthetized and unanaesthetized cats. Sechenov Physiol J USSR 62:382–386Google Scholar
- Elliason S, Folkow B, Lindgren P, Üvnas B (1951) Activation of sympathetic vasodilator nerves to skeletal muscles in the cat by hypothalamic stimulation. Acta Physiol Scand 23:333–351PubMedGoogle Scholar
- Elsner N, Angell-James JE, Daly M de B (1977) Carotid body chemoreceptor reflexes and their interactions in the seal. Am J Physiol 232:H517–H526PubMedGoogle Scholar
- Euler C von, Hayward JN, Marttila I, Wyman RJ (1973a) Respiratory neurones of the ventrolateral nucleus of the solitary tract of cat. Vagal inputs, spinal connections and morphological identification. Brain Res 61:1–22CrossRefPubMedGoogle Scholar
- Euler C von, Hayward JN, Marttila I, Wyman R (1973b) The spinal connections of the inspiratory neurones of the ventrolateral nucleus of the cat's solitary tract. Brain Res 61:23–33CrossRefPubMedGoogle Scholar
- Evans MH (1977) Facilitation of reflex bradycardia by hypothalamic stimulation in the anaesthetised rabbit. J Physiol (Lond) 265:33–34PGoogle Scholar
- Feigl E, Johansson B, Lofving B (1964) Renal vasoconstriction and the defence reaction. Acta Physiol Scand 62:429–435PubMedGoogle Scholar
- Fernandez de Molina A, Kuno M, Perl E (1965) Antidromically evoked responses from sympathetic preganglionic neurones. J Physiol (Lond) 180:321–335PubMedGoogle Scholar
- Fidone SJ, Sato A (1969) A study of chemoreceptor and baroreceptor A and C fibres in the cat carotid nerve. J Physiol (Lond) 205:527–548PubMedGoogle Scholar
- Foley JO, Dubois FS (1934) An experimental study of the rootlets of the vagus nerve in the cat. J Comp Neurol 60:137–159CrossRefGoogle Scholar
- Folkow B, Öberg B, Rubinstein EH (1964) A proposed differentiated neuro-effector organisation in muscle resistance vessels. Angiologica 1:197–208Google Scholar
- Folkow B, Lisander B, Tuttle RS, Wang SC (1968) Changes in cardiac output upon stimulation of the hypothalamic defence area and the medullary depressor area in the cat. Acta Physiol Scand 72:220–233PubMedGoogle Scholar
- Foreman RD, Wurster RD (1973) Localization and functional characteristics of descending sympathetic spinal pathways. Am J Physiol 225:212–217PubMedGoogle Scholar
- Fussey IF, Kidd C, Whitwam JG (1973a) The effects of baroreceptors on the latency of evoked responses in sympathetic nerves during the cardiac cycle. J Physiol (Lond) 229:601–616PubMedGoogle Scholar
- Fussey IF, Kidd C, Whitwam JG (1973b) Activity evoked in the brainstem by stimulation of C-fibres in the cervical vagus nerve in the dog. Brain Res 49:436–440CrossRefPubMedGoogle Scholar
- Gabriel M, Seller H (1970) Interaction of baroreceptor afferents from carotid sinus and aorta at the nucleus tractus solitarii. Pfluegers Arch 318:7–20CrossRefGoogle Scholar
- Gahery Y, Ancri D (1967) Projections vago-aortiques et corticales au niveau de la region due noyeau du faisceau solitaire. J Physiol (Paris) 59:408Google Scholar
- Gandevia SC, McCloskey DI, Potter EK (1978) Inhibition of baroreceptor and chemoreceptor reflexes on heart rate by afferents from the lungs. J Physiol (Lond) 276:369–381PubMedGoogle Scholar
- Garcia M, Jordan D, Spyer KM (1978) Studies on the properties of cardiac vagal neurones. Neurosci Lett (Suppl) 1:S16Google Scholar
- Garcia M, Jordan D, Spyer KM (1979a) The central projections of single vagal afferent neurones in the rabbit. J Physiol (Lond) 289:42–43Google Scholar
- Garcia M, Jordan D, Spyer KM (1979b) Identification of aortic nerve cell bodies in the nodose ganglion of the rabbit and their central connections. J Physiol 290:23–24PubMedGoogle Scholar
- Garcia M, Jordan D, Schneiderman N, Spyer KM (to be published) Vagal cardiomotor neurones identified by the anterograde transport of horseradish peroxidaseGoogle Scholar
- Gebber GL (1976) Basis for phase relations between baroreceptor and sympathetic nervous discharge. Am J Physiol 230:263–270PubMedGoogle Scholar
- Gebber GL, Barman SM (1977) Brainstem vasomotor circuits involved in genesis and entrainment of sympathetic nervous rhythms. Prog Brain Res 47:61–76PubMedGoogle Scholar
- Gebber GL, Barman SM (1979) Inhibitory interaction between preganglionic sympathetic neurons. In: Meyer P, Schmitt H (eds) Nervous system and hypertension. Willey-Flammarion, Paris, pp 131–145Google Scholar
- Gebber GL, Barman SM (to be published) The cardiac-related rhythm in sympathetic nerve discharge (SND): Baroreceptor, brain stem or cortical in origin. In: Sleight P (ed) Baroreceptor and hypertension. Oxford University Press, OxfordGoogle Scholar
- Gebber GL, Klevans, LR (1972) Central nervous system modulation of cardiovascular reflexes. Fed Prod 31:1245–1252Google Scholar
- Gebber GL, McCall RS (1976) Identification and discharge patterns of spinal sympathetic interneurons. Am J Physiol 231:722–733PubMedGoogle Scholar
- Gebber GL, Snyder DW (1970) Hypothalamic control of baroreceptor reflexes. Am J Physiol 218:124–131PubMedGoogle Scholar
- Gebber GL, Taylor DG, Weaver LC (1973) Electrophysiological studies on organization of central vasopressor pathways. Am J Physiol 224:470–481PubMedGoogle Scholar
- Gebber GL, Barman SM, McCall RB (1978) Recurrent inhibition of preganglionic sympathetic unit discharges. Fed Proc 37:743Google Scholar
- Geis GS, Wurster RD (1978) Localisation of cardiac vagal preganglionic soma. Neurosciences Abstract 4:20Google Scholar
- Geis GS, Barratt G, Wurster RD (1978) Role of descending pressor pathway in conscious and pentobarbital-anaesthetized dog. Am J Physiol 234:H152–156PubMedGoogle Scholar
- Gellhorn E (1957) Autonomic imbalance and the hypothalamus. University of Minnesota Press, MinneapolisGoogle Scholar
- Gellhorn E, Nakao H, Redgate ES (1956) The influence of lesions in the anterior and posterior hypothalamus on tonic and phasic autonomic reactions. J Physiol (Lond) 131:402–423PubMedGoogle Scholar
- Ghelarducci B, Pompeiano O, Spyer KM (1974a) Activity of precerebellar reticular neurones as a function of head position. Arch Ital Biol 112:98–125PubMedGoogle Scholar
- Ghelarducci B, Pompeiano O, Spyer KM (1974b) Distribution of the neuronal responses to static tilts within the cerebellar fastigial nucleus. Arch Ital Biol 112:126–141PubMedGoogle Scholar
- Gimpl MP, Brickman AL, Kaufman MP, Schneiderman N (1976) Temporal relationships during barosensory attenuation in the conscious rabbit. Am J Physiol 230:1480–1484PubMedGoogle Scholar
- Glees P, Nauta WJH (1955) A critical review of studies on axonal and terminal degeneration. Monatsschr Psychiatr Neurol 129:74–91PubMedGoogle Scholar
- Gootman PM, Cohen MI (1970) Efferent splanchnic activity and systemic arterial blood pressure. Am J Physiol 219:897–903PubMedGoogle Scholar
- Gootman PM, Cohen MI (1971) Evoked splanchnic potentials produced by electrical stimulation of medullary vasomotor regions. Exp Brain Res 13:1–14CrossRefGoogle Scholar
- Gootman PM, Cohen MI (1973) Periodic modulation (cardiac and respiratory) of spontaneous and evoked sympathetic discharge. Acta Physiol Pol 24:97–109PubMedGoogle Scholar
- Gootman PM, Cohen MI, Piercey MP, Wolotsky P (1975) A search for medullary neurones with activity patterns similar to those in sympathetic nerves. Brain Res 87:395–406CrossRefPubMedGoogle Scholar
- Green JH (1959) Cardiac vagal efferent activity in the cat. J Physiol (Lond) 149:47–49Google Scholar
- Green JH (1965) Physiology of baroreceptor function. Mechanism of receptor stimulation. In: Kezdi P (ed) Baroreceptors and hypertension. Pergamon, Oxford London, pp3–16Google Scholar
- Green JH, Heffron PF (1968) Studies upon the relationship between baroreceptor and sympathetic activity. Q J Exp Physiol 53:406–418Google Scholar
- Gregor M, Janig W, Wiprich L (1977) Cardiac and respiratory rhythmicities in cutaneous and muscle vasoconstrictor neurones to the cat's hindlimb. Pfluegers Arch 370:299–302CrossRefGoogle Scholar
- Grösse M, Janig W (1976) Vasoconstrictor and pilomotor fibres in skin nerves to cat's tail. Pfluegers Arch 361:221–229CrossRefGoogle Scholar
- Grundfest H (1939) The properties of mammalian B fibres. Am J Physiol 127:252–262Google Scholar
- Guazzi M, Zanchetti A (1965) Blood pressure and heart rate during natural sleep of the cat and their regulation by carotid sinus and aortic reflexes. Arch Ital Biol 103:789–817PubMedGoogle Scholar
- Gunn CG, Sevelius G, Puiggari MS, Myers FK (1968) Vagal cardiomotor mechanisms in the hindbrain of the dog and cat. Am J Physiol 214:258–262PubMedGoogle Scholar
- Gurevitch MI, Vyshatina AI (1973) Cardiovascular responses to electrical stimulation of the fastigial nuclei. Sechenov Physiol J USSR 59:1715–1722Google Scholar
- Haeusler G (1976) Central adrenergic neurons in experimental hypertension. In: Onesti G, Fernandez M, Kim KE (eds) Regulation of blood pressure by the central nervous system. The Fourth Hahnemann International Symposium on Hypertension (1975). Grune & Stratton, New York, pp 53–64Google Scholar
- Haeusler G (1977) Neuronal mechanisms influencing transmission in the baroreceptor reflex arc. Prog Brain Res 47:95–109PubMedGoogle Scholar
- Hagbarth RE, Vallbo AB (1968) Pulse and respiratory groupings of sympathetic impulses in human muscle nerves. Acta Physiol Scand 74:96–108PubMedGoogle Scholar
- Hamilton RB, Wallach JH, Petrik GK, Schneiderman N (1978) Putative short-latency barosensory circuit linking the baroreceptors, caudal diencephalon, and dorsal vagal nucleus in the rabbit. Neurosciences Abstracts 4:20Google Scholar
- Haymett BT, McCloskey DI (1975) Baroreceptor and chemoreceptor influences on heart-rate during the respiratory cycle in the dog. J Physiol (Lond) 245:699–712PubMedGoogle Scholar
- Heinbecker P (1930) The potential analysis of the turtle and cat sympathetic and vagus nerve trunks. Am J Physiol 93:284–306Google Scholar
- Heinbecker P, O'Leary J (1933) The mammalian vagus nerve — functional and histological study. Am J Physiol 106:623–646Google Scholar
- Hellner K, Baumgarten R von (1961) Über ein Endigungsgebiet afferenter, kardiovaskulärer Fasern des Nervus vagus im Rautenhirn der Katze. Pfluegers Arch 273:223–234CrossRefGoogle Scholar
- Henry JL, Calaresu FR (1972) Topography and numerical distribution of neurons of the thoraco-lumbar intermediolateral nucleus in the cat. J Comp Neurol 144:205–214CrossRefPubMedGoogle Scholar
- Henry JL, Calaresu FR (1974a) Excitatory and inhibitory inputs from medullary nuclei projecting to spinal cardioacceleratory neurons in the cat. Exp Brain Res 20:485–504PubMedGoogle Scholar
- Henry JL, Calaresu FR (1974b) Pathways from medullary nuclei to spinal cardioacceleratory neurons in the cat. Exp Brain Res 20:505–514PubMedGoogle Scholar
- Henry JL, Calaresu FR (1974c) Origin and course of crossed medullary pathways to spinal sympathetic neurons in the cat. Exp Brain Res 20:515–526PubMedGoogle Scholar
- Henry JL, Calarsu FR (1974d) Responses of single units in the intermediolateral nucleus to stimulation of cardioregulatory medullary nuclei in the cat. Brain Res 77:314–319CrossRefPubMedGoogle Scholar
- Heymans C, Neil E (1958) Reflexogenic areas of the cardiovascular system. Churchill, LondonGoogle Scholar
- Hildebrandt JR (1974) Central connections of the aortic depressor and carotid sinus nerves. Exp Neurol 45:590–605CrossRefPubMedGoogle Scholar
- Hilton SM (1963) Inhibition of baroreceptor reflexes on hypothalamic stimulation. J Physiol (Lond) 165:56–67Google Scholar
- Hilton SM (1965) Hypothalamic control of the cardiovascular responses in fear and rage. Sci Basis Med 217–233Google Scholar
- Hilton SM (1966) Hypothalamic regulation of the cardiovascular system. Br Med Bull 22:243–248PubMedGoogle Scholar
- Hilton SM (1974) The role of the hypothalamus in the organisation of patterns of cardiovascular response in recent studies of hypothalamic function. In: Lederis K, Cooper KE (eds) Int Symp Calgary 1973. Karger, Basel, pp 306–314Google Scholar
- Hilton SM (1975) Ways of viewing the central nervous control of circulation — old and new. Brain Res 87:213–219CrossRefPubMedGoogle Scholar
- Hilton SM (1977) Supramedullary organization of vasomotor control. Brain Res 47:77–84Google Scholar
- Hilton SM, Spyer KM (1969) The hypothalamic depressor area and the baroreceptor reflex. J Physiol (Lond) 165:56–57Google Scholar
- Hilton SM, Spyer KM (1971) Participation of the anterior hypothalamus in the baroreceptor reflex. J Physiol (Lond) 218:271–293PubMedGoogle Scholar
- Hilton SM, McAllen RM, Spyer KM (1974) Area postrema and blood pressure. Nature 250:354CrossRefPubMedGoogle Scholar
- Hilton SM, Spyer KM, Timms RJ (1975) Hindlimb vasodilatation evoked by stimulation of the motor cortex. J Physiol (Lond) 252:22–23Google Scholar
- Hilton SM, Spyer KM, Timms RJ (1979) The origin of the hindlimb vasodilatation evoked by stimulation of the motor cortex in the cat. J Physiol 287:545–558PubMedGoogle Scholar
- Hirose K (1916) Über eine bulbo-spinale Bahn. Folia Neurobiol Biol (LP2) 10:371–382Google Scholar
- Hockman CH, Talesnik J, Livingstone KE (1969) Central nervous system modulation of baroreceptor reflexes. Am J Physiol 217:1681–1689PubMedGoogle Scholar
- Hockman CH, Livingstone KE, Talesnik J (1970) Cerebellar modulation of reflex vagal bradycardia. Brain Res 23:101–104CrossRefPubMedGoogle Scholar
- Hoffer BJ, Ratcheson R, Snider RS (1966) The effects of stimulation of the cerebellum on the circulatory system. Fed Proc 25:701Google Scholar
- Homma S, Miura M, Reis DJ (1970) Intracellular recordings from paramedian reticular neurons monosynaptically excited by stimulation of the carotid sinus nerve. Brain Res 18:185–188CrossRefPubMedGoogle Scholar
- Hongo T, Ryall RW (1966) Electrophysiological and micro-electrophoretic studies on sympathetic preganglionic neurones in the spinal cord. Acta Physiol Scand 68:96–104Google Scholar
- Horeyseck G, Janig W, Kirchner F, Thamer V (1976) Activation and inhibition of muscle and cutaneous postganglionic neurones to the hindlimb during hypothalamically induced vasoconstriction and atropine-sensitive vasodilation. Pfluegers Arch 361:231–240CrossRefGoogle Scholar
- Humphrey DR (1967) Neuronal activity in the medulla oblongata of the cat evoked by stimulation of the carotid sinus nerve. In: Kezdi P (ed) Baroreceptors and hypertension. Pergamon Press, Oxford, pp 131–168Google Scholar
- Humphreys PW, Joels N, McAllen RM (1971) Modification of the reflex response to stimulation of carotid sinus baroreceptors during and following stimulation of the hypothalamic defence area in the cat. J Physiol (Lond) 216:461–482PubMedGoogle Scholar
- Illert M, Gabriel M (1972) Descending pathways in the cervical cord of cats affecting blood pressure and sympathetic activity. Pfluegers Arch 335:109–124CrossRefGoogle Scholar
- Illert M, Seller H (1969) A descending sympatho-inhibitory tract in the ventrolateral column of the cat. Pfluegers Arch 313:343–360CrossRefGoogle Scholar
- Ingram WR, Dawkins EA (1945) The intramedullary course of afferent fibres of the vagus in the cat. J Comp Neurol 82:157–168CrossRefGoogle Scholar
- Iriuchijima J, Kumada M (1963) Efferent cardiac vagal discharge of the dog in response to electrical stimulation of sensory nerves. Jpn J Physiol 13:599–605PubMedGoogle Scholar
- Iriuchijima J, Kumada M (1965) Activity in single vagal efferent fibres to the heart. Jpn J Physiol 14:479–487Google Scholar
- Janig W, Kümmel H (1977) Functional discrimination of postganglionic neurones to the cat's hindpaw with respect to skin potentials recorded from hairless skin. Pfluegers Arch 371:217–225Google Scholar
- Jankowska E, Roberts WJ (1972) An electro-physiological demonstration of the axonal projections of single spinal interneurones in the cat. J Physiol (Lond) 222:597–622PubMedGoogle Scholar
- Jansen J, Brodal A (eds) (1954) Aspects of cerebellar anatomy. Grundt Tanum, Oslo, 423 ppGoogle Scholar
- Jewett DL (1962) Activity of single vagal efferent cardiac fibres in the dog. J Physiol (Lond) 142:110–126Google Scholar
- Jewett DL (1964) Activity of single efferent fibres in the cervical vagus nerve of the dog with special reference to possible cardioinhibitory fibres. J Physiol (Lond) 175:321–357PubMedGoogle Scholar
- Jordan D (1977) Studies on the distribution and excitability of sinus and aortic nerve afferent terminals. Ph.D. thesis, University of BirminghamGoogle Scholar
- Jordan D, Khalid MEM, Schneiderman N, Spyer KM (1979) Preganglionic vagal cardiomotor neurones in the rabbit; location and properties. J Physiol (Lond) 296:20–21Google Scholar
- Jordan D, Spyer, KM (1977a) Studies on the termination of sinus nerve afferents. Pfluegers Arch 369:65–73CrossRefGoogle Scholar
- Jordan D, Spyer KM (1977b) Is presynaptic inhibition responsible for suppression of the baroreceptor reflex during the defence reaction? J Physiol (Lond) 258:58Google Scholar
- Jordan D, Spyer KM (1978a) The excitability of sinus nerve afferent terminals during the respiratory cycle. J Physiol (Lond) 277:66Google Scholar
- Jordan D, Spyer KM (1978b) The distribution and excitability of myelinated aortic nerve afferent terminals. Neurosci Lett 8:113–117CrossRefGoogle Scholar
- Jordan D, Spyer KM (1979) Studies on the excitability of sinus nerve afferent terminals. J Physiol (Lond) 297:123–134PubMedGoogle Scholar
- Kahn N, Mills E (1967) Centrally evoked sympathetic discharge: A functional study of medullary vasomotor areas. J Physiol (Lond) 191:339–352PubMedGoogle Scholar
- Kalia M (1977) Neuroanatomical organisation of the respiratory centers. Fed Proc 36:2405–2411PubMedGoogle Scholar
- Kannan H, Yagi K (1978) Supraoptic neurosecretory neurones: evidence for the existence of converging inputs both from carotid baroreceptors and osmoreceptors. Brain Res 145:385–390CrossRefPubMedGoogle Scholar
- Katona PG, Jih F (1975) Respiratory sinus arrhythmia. Non-invasive measure of para-sympathetic cardiac control. J Appl Physiol 39:801–805PubMedGoogle Scholar
- Katona PG, Tan KS (1975) Interaction of aortic and carotid sinus baroreceptors; effect of activation times. Am J Physiol 228:238–248PubMedGoogle Scholar
- Katona P, Poitras J, Barnett U, Terry B (1970) Cardiac vagal efferent activity and heart period in the carotid sinus reflex. Am J Physiol 218:1030–1037PubMedGoogle Scholar
- Katona PG, Lipson D, Dauchot PJ (1977) Opposing central and peripheral effects of atropine on parasympathetic cardiovascular control. Am J Physiol 232:146–151Google Scholar
- Katz DM, Karten HJ (1979) The discrete anatomical localization of vagal aortic afferents within a catecholamine-containing cell group in the nucleus solitarius. Brain Res 191:187–195CrossRefGoogle Scholar
- Katz RL, Kahn N, Wang SC (1967) Brainstem mechanisms subserving baroreceptor reflexes, factors affecting the carotid occlusion response. In: Kezdi P (ed) Baroreceptors and hypertension. Pergamon Press, Oxford, pp 169–180Google Scholar
- Kaufman MP, Hamilton RB, Wallach JH, Petrik GK, Schneiderman N (to be published) Lateral subthalamic area as a mediator of bradycardia responses in rabbits. Am J PhysiolGoogle Scholar
- Keith IC, Kidd C, Linden RJ, Snow HM (1975a) Modification of neuronal activity in the dog medulla oblongata by stimulation of the left atrial receptors. J Physiol (Lond) 245:80–81Google Scholar
- Keith IC, Kidd C, Penna PE (1975b) Modification of sympathetic chronotropic carotid sinus reflex responses by hypothalamic stimulation. J Physiol 232:77Google Scholar
- Kent BB, Drane JW, Manning JW (1971) Suprapontine contributions to the carotid sinus reflex in the cat. Circ Res 29:534–541PubMedGoogle Scholar
- Kerr FWL (1962) Facial, vagal and glossopharyngeal nerves in the cat. Arch Neurol 6:264–281PubMedGoogle Scholar
- Kerr FWL (1967) Function of the dorsal motor nucleus of the vagus. Science 157:451–452PubMedGoogle Scholar
- Kerr FWL (1969) Preserved vagal visceromotor function following destruction of the dorsal motor nucleus. J Physiol 202:755–769PubMedGoogle Scholar
- Kerr FWL, Alexander S (1964) Descending autonomic pathways in the spinal cord. Arch Neurol 10:249–261PubMedGoogle Scholar
- Kezdi P (ed) (1967) Baroreceptors and hypertension. Proceedings of the International Symposium Dayton, Ohio, 16–17th November 1965. Pergman Press, OxfordGoogle Scholar
- Kezdi P, Geller E (1968) Baroreceptor control of postganglionic sympathetic nerve discharge. Am J Physiol 214:427–435PubMedGoogle Scholar
- Kimmel DL (1965) The termination of vagal and glossopharyngeal afferent nerve fibers in the region of the cat, rat and guinea pig. Anat Rec 151:371Google Scholar
- Kimmel DL, Kimmel DB (1964) Spinal distribution of glossopharyngeal and vagal afferent fibers in the cat, rat and guinea pig. Anat Rec 148:299–300Google Scholar
- Kirchheim HR (1976) Systemic arterial baroreceptor reflexes. Physiol Rev 56:100–176PubMedGoogle Scholar
- Kirchner F, Kirchner D, Polosa C (1975a) Spinal organisation of sympathetic inhibition by spinal afferent volleys. Brain Res 87:161–170CrossRefPubMedGoogle Scholar
- Kirchner F, Wyszogrodski I, Polosa C (1975b) Some properties of sympathetic neuron inhibition by depressor area and intraspinal stimulation. Pfluegers Arch 357:349–360CrossRefGoogle Scholar
- Klee MR (1966) Different effects on the membrane potential of motor cortex units after thalamic and reticular stimulation. In: Purpura DP, Yahr MD (eds) The thalamus. Columbia University Press, New York London, pp 287–322Google Scholar
- Klevans LR, Gebber GL (1970) Facilitatory forebrain influence on cardiac component of baroreceptor reflexes. Am J Physiol 219:1235–1241PubMedGoogle Scholar
- Koch E (1932) Die Irradiation der pressoreceptorischen Krislaufreflexe. Klin Wochenschr 11:225–227CrossRefGoogle Scholar
- Koepchen HP, Lux HD, Wagner PH (1961a) Untersuchungen über Zeitbedarf und zentrale Verarbeitung des pressoreceptischen Herzreflexes. Pfluegers Arch 273:413–430CrossRefGoogle Scholar
- Koepchen HP, Wagner PH, Lux HD (1961b) Über die Zusammenhänge zwischen zentraler Erregbarkeit reflektorischen Atemrhythmus bei der nervösen Steuerung der Herzfrequenz. Pfluegers Arch 273:443–465CrossRefGoogle Scholar
- Koepchen HP, Langhorst P, Seller H, Polster J, Wagner D (1967) Neuronale Aktivität im unteren Hirnstamm mit Beziehung zum Kreislauf. Pfluegers Arch 294:40–64CrossRefGoogle Scholar
- Koepchen HP, Langhorst P, Seller H (1975) The problem of identification of autonomic neurons in the lower brainstem. Brain Res 87:375–393CrossRefPubMedGoogle Scholar
- Kötter V, Zerbst E, Schulze A (1970) Untersuchungen zur Bahnung und Konvergenz pressorezeptorischer Afferenzen mit Hilfe der Konditionstestreiztechnik. Pfluegers Arch 320:210–232CrossRefGoogle Scholar
- Koizumi K, Sato A (1969) Influence on sympathetic innervation on carotid sinus baroreceptor activity. Am J Physiol 216:321–329PubMedGoogle Scholar
- Koizumi K, Seller H, Kaufman A, Brooks C McC (1971) Pattern of sympathetic discharges and their relation to baroreceptor and respiratory activities. Brain Res 27:281–294CrossRefPubMedGoogle Scholar
- Korner PI (1971) Integrative neural cardiovascular control Physiol Rev 51:312–367PubMedGoogle Scholar
- Kosaka K (1909) Über die Vaguskerne des Hundes. Neurol CBL 28:406–416Google Scholar
- Kosaka K, Yagita K (1905) Experimentelle Untersuchungen über den Ursprung des N. vagus und die zentralen Endigungen der dem Plexus nodosus entstammenden sensiblen Vagusfasern sowie über den Verlauf ihrer sekundären Bahn. Neurol Med Chir (Tokyo) 4:29–49Google Scholar
- Kumada M, Nakajima H (1972) Field potentials evoked in rabbit brainstem by stimulation of the aortic nerve. Am J Physiol 223:575–582PubMedGoogle Scholar
- Kumada M, Sagawa K (1974) Modulation of the baroreceptor reflex by central gray stimulation. J Physiol Soc Jpn 36:147–148Google Scholar
- Kumada M, Nogami K, Sagawa K (1975a) Modulation of carotid sinus baroreceptor reflex by sciatic nerve stimulation. Am J Physiol 228:1535–1541PubMedGoogle Scholar
- Kumada M, Schramm LP, Altansberger RA, Sagawa K (1975b) Modulation of carotid sinus baroreceptor reflex by hypothalamic defence response. Am J Physiol 228:34–45PubMedGoogle Scholar
- Kunze DL (1972) Reflex discharge patterns of cardiac vagal efferent fibres. J Physiol (Lond) 222:1–15PubMedGoogle Scholar
- Kuypers HGJM, Maisky VA (1975) Retrograde axonal transport of horseradish peroxidase from spinal cord to brainstem cell groups in the cat. Neurosci Lett 1:9–14CrossRefGoogle Scholar
- Kylstra PH, Lisander B (1970) Differentiated interaction between hypothalamic defence reaction and baroreceptor reflexes. Acta Physiol Scand 78:386–392PubMedGoogle Scholar
- Lam RL, Tyler HR (1952) Electrical responses in visceral afferent nucleus of the rabbit by vagal stimulation. J Comp Neurol 97:21–36CrossRefPubMedGoogle Scholar
- Landgren S (1952) On the excitation mechanism of the carotid baroreceptors. Acta Physiol Scand 26:1–34PubMedGoogle Scholar
- Langhorst P, Werz M (1974) Concept of functional organization of brainstem “cardiovascular center”. In: Umbach W, Koepchen HP (eds) Central rhythmic and regulation. Hippokrates, Stuttgart, pp 238–255Google Scholar
- Langhorst P, Stroh-Werz M, Dittmar K, Camerer H (1975) Facultative coupling of reticular neuronal activity with peripheral cardiovascular and central cortical rhythms. Brain Res 87:407–418CrossRefPubMedGoogle Scholar
- Lawn AM (1964) The localisation by means of electrical stimulation of the origin and path in the medulla oblongata of the motor nerve fibres of the rabbit oesophagus. J Physiol (Lond) 174:323–344PubMedGoogle Scholar
- Lawn AM (1966) The nucleus ambiguous of the rabbit. J Comp Neurol 127:307–320CrossRefPubMedGoogle Scholar
- Lebedev VP, Petrov VI, Skobelev VA (1980) Do sympathetic preganglionic neurones have a recurrent inhibitory mechanism. Pfluegers Arch 385:91–97CrossRefGoogle Scholar
- Lee TM, Kuo JS, Chai CY (1972) Central integrative mechanism of the Bezold-Jarisch and baroreceptor reflexes. Am J Physiol 222:713–720PubMedGoogle Scholar
- Levy MN (1977) Parasympathetic control of the heart. In: Randal WC (ed) Neural regulation of the heart. Oxford University Press, New York, pp 95–130Google Scholar
- Levy MN, Zieske H (1969) Autonomic control of cardiac pacemaker activity and atrioventricular transmission. J Appl Physiol 27:465–470PubMedGoogle Scholar
- Levy MN, Degeest H, Zieske H (1966) Effects of respiratory centre activity on the heart. Circ Res 18:67–78PubMedGoogle Scholar
- Lipski J, Trzebski A (1975) Bulbospinal neurones activated by baroreceptor afferents and their possible role in inhibition of preganglionic sympathetic neurons. Pfluegers Arch 356:181–192CrossRefGoogle Scholar
- Lipski J, McAllen RM, Spyer, KM (1972) Localisation of sinus nerve afferent endings in the brainstem. J Physiol (Lond) 225:30–31PGoogle Scholar
- Lipski J, McAllen RM, Spyer KM (1975) The sinus nerve and baroreceptor input to the medulla of the cat. J Physiol (Lond) 251:61–78PubMedGoogle Scholar
- Lipski J, McAllen RM, Spyer KM (1976a) Synaptic activation of cardiac vagal motoneurones. J Physiol (Lond) 256:68Google Scholar
- Lipski J, McAllen RM, Spyer KM (1976b) The carotid body chemoreceptor input to the inspiratory neurones of the nucleus of the tractus solitarious. J Physiol (Lond) 258:115–116Google Scholar
- Lipski J, McAllen RM, Trzebski A (1976c) Carotid baroreceptor and chemoreceptor inputs onto single medullary neurones. Brain Res 107:132–136CrossRefPubMedGoogle Scholar
- Lipski J, Coote JH, Trzebski A (1977a) Temporal patterns of antidromic invasion latencies of sympathetic preganglionic neurons related to central inspiratory activity and pulmonary stretch receptor reflex. Brain Res 135:162–166CrossRefPubMedGoogle Scholar
- Lipski J, McAllen RM, Spyer KM (1977b) The carotid chemoreceptor input to the respiratory neurones of the nucleus of the tractus solitarious. J Physiol (Lond) 269:797–810PubMedGoogle Scholar
- Lisander B, Martner J (1971a) Cerebellar suppression of the autonomic components of the defence reaction. Acta Physiol Scand 81:84–95PubMedGoogle Scholar
- Lisander B, Martner J (1971b) Interaction between the fastigial pressor response and the baroreceptor reflex. Acta Physiol Scand 83:505–514PubMedGoogle Scholar
- Lisander B, Martner J (1973) Interaction between the fastigial pressor response and the defence reaction. Acta Physiol Scand 87:359–367PubMedGoogle Scholar
- Little R, Wennergren G, Öberg B (1975) Aspects of the central interaction of arterial baroreceptor and cardiac ventricular receptor reflexes in the cat. Acta Physiol (Scand) 93:85–96Google Scholar
- Löfving B (1961) Cardiovascular adjustments induced from the rostral cingulate gyrus. Acta Physiol Scand (Suppl) 184:1–82Google Scholar
- Loewy AD, Burton H (1978) Nuclei of the solitary tract. Efferent projections to the lower brainstem and spinal cord of the cat. J Comp Neurol 181:421–450CrossRefPubMedGoogle Scholar
- Loizou LA (1969) Projections of the locus coerulus in the albino rat. Brain Res 15:563–566CrossRefPubMedGoogle Scholar
- Lopes OU, Palmer JF (1976a) Proposed respiratory ‘gating’ mechanism for cardiac slowing. Nature 264:454–456CrossRefPubMedGoogle Scholar
- Lopes OU, Palmer JF (1976b) Hypothalamic inhibiton of vagal component of the sinus nerve cardiac reflex. J Physiol (Lond) 260:50Google Scholar
- Lopes OU, Palmer JF (1978) Mechanism of hypothalamic control of cardiac component of sinus nerve reflex. Q J Exp Physiol 63:231–254Google Scholar
- Magnes J, Moruzzi G, Pompeiano O (1961) Synchronization of the EEG produced by low frequency electrical stimulation of the region of the solitary tract. Arch Ital Biol 99:33–67Google Scholar
- Mannard A, Polosa C (1973) Analysis of background firing of single sympathetic preganglionic neurons of cat cervical nerve. J Neurophysiol 36:398–408PubMedGoogle Scholar
- Manning JW (1962) Lesions of the medullary reticular formation and cardiovascular reflexes. Fed Proc 21:107Google Scholar
- Manning JW (1965a) Intracranial representation of cardiac control In: Randall WC (ed) Nervous control of the heart. Williams & Wilkins, Baltimore, pp 16–33Google Scholar
- Manning JW (1965b) Cardiovascular reflexes following lesions in the medullary reticular formation. Am J Physiol 208:283–288PubMedGoogle Scholar
- Marguth H, Raule W, Schaeffer H (1951) Aktionsströme in zentrifugale Herznerven. Pfluegers Arch 254:224–245CrossRefGoogle Scholar
- Marshall JM (1977) The cardiovascular response to stimulation of carotid chemoreceptors. J Physiol 266:48–49Google Scholar
- Martin GF, Humbertson AO, Laxson C, Parreton WM (1979) Evidence for direct bulbospinal projections to lamina IX, X and the intermediolateral cell column. Studies using axonal transport techniques in the North American opposum. Brain Res 170:165–171CrossRefPubMedGoogle Scholar
- McAllen RM (1973) Projections of the carotid sinus baroreceptors to the medulla of the cat. Ph D thesis, University of BirminghamGoogle Scholar
- McAllen RM (1976) The inhibition of the baroreceptor input to the medulla by stimulation of the hypothalamic defence area. J Physiol (Lond) 257:45–46PubMedGoogle Scholar
- McAllen RM, Spyer KM (1972) 'Baroreceptor’ neurones in the medulla of the cat. J Physiol (Lond) 222:68–69Google Scholar
- McAllen RM, Spyer KM (1975) The origin of cardiac vagal neurones in the medulla of the cat. J Physiol 244:82–83Google Scholar
- McAllen RM, Spyer KM (1976) The location of cardiac vagal preganglionic motoneurones in the medulla of the cat. J Physiol (Lond) 258:187–204PubMedGoogle Scholar
- McAllen RM, Spyer KM (1977) Bradycardia produced by iontophoretic activation of preganglionic vagal motoneurones. J Physiol (Lond) 269:49Google Scholar
- McAllen RM, Spyer KM (1978a) Two types of vagal preganglionic motoneurones projecting to the heart and lungs. J Physiol 282:353–364PubMedGoogle Scholar
- McAllen RM, Spyer KM (1978b) The baroreceptor input to cardiac vagal motoneurones. J Physiol (Lond) 282:365–374PubMedGoogle Scholar
- McAllen RM, Jordan D, Spyer KM (1979) The carotid baroreceptor input to the brain. In: Koepchen HP, Hiltom SM, Trzebski A (eds) Central interactions between respiratory and cardiovascular control systems. Springer, Berlin Heidelberg New York pp 87–92Google Scholar
- McCall RS, Gebber GL, Barman SM (1977) Spinal interneurones in the baroreceptor reflex arc. Am J Physiol 232:H657–665PubMedGoogle Scholar
- Merrill EG (1974) Finding a respiratory function for the medullary respiratory neurons. In: Bellairs R, Gray EG (eds) Essays on the nervous system. Clarendon Press, Oxford, pp 451–486Google Scholar
- Mesulam MM (1978) Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: A non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26:106–117PubMedGoogle Scholar
- Middleton S, Middleton HH, Grundfest H (1950) Spike potentials and cardiac effects of mammalian vagus nerve. Am J Physiol 162:553–559PubMedGoogle Scholar
- Middleton S, Woolsley CN, Burton H, Rose JE (1973) Neural activity with cardiac periodicity in the medulla oblongata of the cat. Brain Res 50:297–314CrossRefPubMedGoogle Scholar
- Miller FR, Bowman JT (1915) The cardio-inhibitory center. Am J Physiol 39:149–153Google Scholar
- Miller R (1976) Identification of vagal efferent neurones; a horseradish peroxidase study. J Physiol (Lond) 256:69–70Google Scholar
- Mitchell GAG, Warwick R (1955) The dorsal vagal nucleus. Acta Anat 25:371–395PubMedGoogle Scholar
- Miura M (1975) Postsynaptic potentials recorded from the nucleus of the solitary tract and its subadjacent reticular formation elicited by stimulation of the carotid sinus nerve. Brain Res 100:437–440CrossRefPubMedGoogle Scholar
- Miura M, Kitamura T (1979) Postsynaptic potentials recorded from medullary neurones following stimulation of carotid sinus nerve. Brain Res 162:261–272CrossRefPubMedGoogle Scholar
- Miura M, Reis DJ (1968) Electrophysiological evidence that the carotid sinus nerve fibers terminate in the bulbar reticular formation. Brain Res 9:394–397CrossRefPubMedGoogle Scholar
- Miura M, Reis DJ (1969a) Termination and secondary projections of the carotid sinus nerve in the cat brainstem. Am J Physiol 217:142–153PubMedGoogle Scholar
- Miura M, Reis DJ (1969b) Cerebellum: A pressor response elicited from the fastigial nucleus and its efferent pathway in the brainstem. Brain Res 13:595–599CrossRefPubMedGoogle Scholar
- Miura M, Reis DJ (1970) A blood pressure response from the fastigial nucleus and its relay pathway in the brainstem. Am J Physiol 219:1330–1336PubMedGoogle Scholar
- Miura M, Reis DJ (1972a) The paramedian reticular nucleus: A site of inhibitory interaction between projections from fastigial nucleus and carotid sinus nerve acting on blood pressure. J Physiol (Lond) 216:441–460Google Scholar
- Miura M, Reis DJ (1972b) The role of the solitary and paramedian reticular nuclei in mediating cardiovascular reflex responses from carotid baro-and chemoreceptors. J Physiol (Lond) 225:525–548Google Scholar
- Mohlant M (1910) Le nerv vagus: Les connexions anatomiques et la valeur functioneue en noyar en vagus. Nevraxe 11:131Google Scholar
- Morest PK (1967) Experimental study of the projections of the nucleus of the tractus solitarius and the area postrema in the cat. J Comp Neurol 130:277–293CrossRefPubMedGoogle Scholar
- Moruzzi G (1938) Azione del paleocerebellum sui riflessi vasomotori. Arch Fisiol 38:36–78Google Scholar
- Moruzzi G (1940) Paleocerebellum inhibition of vasomotor and carotid sinus reflexes. J Neurophysiol 3:20–32Google Scholar
- Moruzzi G (1947) Sham rage and localised autonomic responses elicited by cerebellar stimulation in the acute thalamic cat. Proc. IVII Internat Congress Physiol Oxford, pp 114–115Google Scholar
- Moruzzi G (1950) Problems in cerebellar physiology. Thomas, Springfield, IllGoogle Scholar
- Nathan M (1972) Pathways in the medulla oblongata of monkeys mediating splanchnic nerve activity. Electrophysiological and anatomical evidence. Brain Res 45:115–126CrossRefPubMedGoogle Scholar
- Nathan MA, Reis DJ (1975) Fulminating arterial hypertension with pulmonary edema from release of adrenomedullary catecholamines after lesions of the anterior hypothalamus in the rat. Circ Res 37:226–235PubMedGoogle Scholar
- Neil E, Palmer JF (1975) Effects of spontaneous respiration on the latency of reflex cardiac chronotropic responses to baroreceptor stimulation. J Physiol (Lond) 247:16Google Scholar
- Norgren R (1978) Projections from the nucleus of the solitary tract in the rat. Neuroscience 3:207–218CrossRefPubMedGoogle Scholar
- Norgren R, Leonard CM (1973) Ascending central gustatory pathways. J Comp Neurol 150:217–238CrossRefPubMedGoogle Scholar
- Nosaka S (1976) Responses of rat brainstem neurons to carotid distension. Am J Physiol 231:20–27PubMedGoogle Scholar
- Nosaka S, Yamamoto T, Yasunaga K (1979) Localization of vagal cardioinhibitory preganglionic neurons within the rat brain stem. J Comp Neurol 186:79–82CrossRefPubMedGoogle Scholar
- Oberholzer RJH (1960) Circulatory centres in medulla and midbrain. Physiol Rev (Suppl 4) 40:179–195PubMedGoogle Scholar
- Öberg B, Thoren P (1973a) Circulatory responses to stimulation of medullated and non-medullated vagal afferents in the cardiac nerve of the cat. Acta Physiol Scand 87:121–132PubMedGoogle Scholar
- Öberg B, Thoren P (1973b) Circulatory responses to stimulation of left ventricular receptors in the cat. Acta Physiol Scand 88:8–22PubMedGoogle Scholar
- Okada H, Okamoto K, Nishida I (1961a) The activity of the cardioregulatory and abdominal sympathetic nerves during swallowing. Jpn J Physiol 11:44–53PubMedGoogle Scholar
- Okada H, Okamoto K, Nishida I (1961b) The activity of the cardioregulatory and abdominal sympathetic nerves in the cat in the Bainbridge reflex. Jpn J Physiol 11:520:529PubMedGoogle Scholar
- Owsjannikow P (1871) Die tonischen und reflektorischen Zentren der Gefäßnerven. K. sächs. Ges der Wiss. Mathematischen-physische Klasse. Ber 23:135–147Google Scholar
- Paintal AS (1972) Cardiovascular receptors. In: Neil E (ed) Enteroreceptors. Springer, Berlin Heidelberg New York (Handbook of sensory physiology, vol III/1, pp 1–46)Google Scholar
- Paintal AS (1973) Vagal sensory receptors and their reflex effects. Physiol Rev 53:159–227PubMedGoogle Scholar
- Palkovits M, Zaborsky L (1977) Neuroanatomy of central cardiovascular control. Prog Brain Res 47:9–34PubMedGoogle Scholar
- Peiss CN (1965) Concepts of cardiovascular regulation; past, present, future. In: Randall WC (ed) Nervous control of the heart. Williams & Wilkins, Baltimore, pp 154–197Google Scholar
- Pelletier CL, Clement DL, Shepherd JT (1972) Comparison of afferent activity of canine aortic and sinus nerves. Circ Res 31:557–568PubMedGoogle Scholar
- Perez-Gonzalez JF, Rojas JR (1976) Inhibition of the baroreceptor input to cardiac vagal preganglionic neurones by stimulation of the medullary reticular formation. J Physiol (Lond) 263:152Google Scholar
- Petras JM, Cummings JF (1972) Autonomic neurons in the spinal cord of the rhesus monkey: a correlation of the findings of cytoarchitectonics and sympathectomy with fiber degeneration following dorsal rhizotomy. J Comp Neurol 146:189–218CrossRefPubMedGoogle Scholar
- Pitts RF, Bronk DW (1942) Excitability cycle of the hypothalamus-sympathetic neuron system. Am J Physiol 135:504–522Google Scholar
- Pitts RF, Larrabee MG, Bronk DN (1941) An analysis of hypothalamic cardiovascular control Am J Physiol 134:359–383Google Scholar
- Polosa C (1967) The silent period of sympathetic preganglionic neurons. Can J Physiol Pharmacol 45:1033–1045PubMedGoogle Scholar
- Polosa C (1968) Spontaneous activity of sympathetic preganglionic neurons. Can J Physiol Biochem 46:587–896Google Scholar
- Porszasz J, Proszasz-Gibischer K (1968) Effect of blood pressure on single unit activity in bulbar reticular formation. Acta Physiol Acad Sci Hung 34:249–258PubMedGoogle Scholar
- Porter R (1963) Unit responses evoked in the medulla oblongata by vagus nerve stimulation. J Physiol (Lond) 168:717–735PubMedGoogle Scholar
- Preiss G, Polosa C (1977) The relation between end-tidal CO2 and discharge patterns of sympathetic preganglionic neurons. Brain Res 122:255–267CrossRefPubMedGoogle Scholar
- Preiss G, Kirchner, F, Polosa C (1975) Patterning of sympathetic preganglionic firing by the central respiratory drive. Brain Res 87:363–374CrossRefPubMedGoogle Scholar
- Preobrazhenski NN (1966) Microelectrode recordings of activity from neurons in vasomotor center. Fed Proc 25:T18–22Google Scholar
- Prichard BNC (1978) β-adrenergic receptor blockade in hypertension, past, present and future. Br J Clin Pharmacol 5:379–399PubMedGoogle Scholar
- Przybyla AC, Wang SC (1967) Neurophysiological characteristics of cardiovascular neurons in the medulla oblongata of the cat. J Neurophysiol 30:645–660PubMedGoogle Scholar
- Quest JA, Gebber GL (1972) Modulation of baroreceptor reflexes by somatic afferent stimulation. Am J Physiol 222:1251–1259PubMedGoogle Scholar
- Reis DJ, Cuenod M (1965) Central neural regulation of carotid baroreceptor reflexes in the cat. Am J Physiol 209:1267–1277PubMedGoogle Scholar
- Reis DJ, Doba N, Snyder DW, Nathan MA (1977) Brain lesions and hypertension; chronic lability and elevaton of arterial pressure produced by electrolytic lesions and 6-hydroxydopamine treatment of nucleus tractus solitari (NTS) in rat and cat. Prog Brain Res 47:169–188PubMedGoogle Scholar
- Rethelyi M (1972) Cell and neurophil architecture of the intermediolateral (sympathetic) nucleus of the cat spinal cord. Brain Res 46:203–213CrossRefPubMedGoogle Scholar
- Rhoton AL, O'Leary JL, Ferguson JP (1966) The trigeminal, facial and glossopharyngeal nerves in the monkey. Arch Neurol 14:530–540PubMedGoogle Scholar
- Ricardo JA, Koh ET (1978) Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res 153:1–26CrossRefPubMedGoogle Scholar
- Richter DW, Seller H (1975) Baroreceptor effects on medullary respiratory neurones of the cat. Brain Res 86:168–171CrossRefPubMedGoogle Scholar
- Richter DW, Keck W, Seller H (1970) The course of inhibiton of sympathetic activity during various patterns of carotid sinus nerve stimulation. Pfluegers Arch 317:110–123CrossRefGoogle Scholar
- Richter DW, Heyde F, Gabriel M (1975) Intracellular recordings from different types of medullary respiratory neurons of the cat. J Neurophysiol 38:1162–1171PubMedGoogle Scholar
- Rijlant P (1936a) Le controle extrinsique de la frequence du battement cardiaque. CR Soc Biol (Paris) 123:99–101Google Scholar
- Rijlant P (1936b) L'arhythmie cardiaque respiratoire. CR Soc Biol (Paris) 123:997–1001Google Scholar
- Robertson TW, Wallach J, Schneiderman N, Neumann P (1976) Fiber origins of cervical vagus nerve in rabbits, cats and rhesus monkeys investigated by injection of horseradish peroxidase. Neurosci Abstr 2:175Google Scholar
- Rudomin P (1966) Pharmacolocial evidence for the existence of interneurones mediating primary afferent depolarisation in the solitary tract nucleus of the cat. Brain Res 2:181–183CrossRefPubMedGoogle Scholar
- Rudomin P (1967a) Primary afferent depolarisation produced by vagal visceral afferents. Experientia 23:117–119CrossRefPubMedGoogle Scholar
- Rudomin P (1967b) Presynaptic inhibiton induced by vagal afferent volleys. J Neurophysiol 30:964–981PubMedGoogle Scholar
- Rudomin P (1968) Excitability changes of superior laryngeal, vagal and depressor afferent terminals produced by stimulation of the solitary tract nucleus. Exp Brain Res 6:156–170CrossRefPubMedGoogle Scholar
- Sakai K, Touret M, Salvert D, Leger L, Jouvet M (1977) Afferent projections to the cat locus coeruleus as visualized by the horseradish peroxidase technique. Brain Res 119:21–41CrossRefPubMedGoogle Scholar
- Salmoiraghi GC (1962) “Cardiovascular” neurones in the brainstem of cat. J Neurophysiol 25:182–197PubMedGoogle Scholar
- Samodelov LF, Godehard E, Arndt JO (to be published) A comparison of the stimulus response curves of aortic and carotid sinus baroreceptors in decerebrate cats. Pfluegers ArchGoogle Scholar
- Saper C, Loewy AD, Swanson LW, Cowan WN (1976) Direct hypothalamo-autonomic connections. Brain Res 117:305–312CrossRefPubMedGoogle Scholar
- Sato A, Schmidt RF (1973) Somato sympathetic reflexes: afferent fibers, central pathways, discharge characteristics. Physiol Rev 53:916–947Google Scholar
- Schaeffer H (1960) Central control of cardiac function. Physiol Rev (Suppl 4) 40: 213–231PubMedGoogle Scholar
- Scheibel ME, Scheibel AB, Mollica A, Moruzzi G (1955) Convergence and interaction of afferent impulses on single units of reticular formation. J Neurophysiol 18:309–331PubMedGoogle Scholar
- Scherrer H (1966) Inhibition of sympathetic discharge by stimulation of the medulla oblongata in the rat. Acta Neuroveg 29:56–74CrossRefGoogle Scholar
- Schmidt RF, Schönfuss K (1970) An analysis of the reflex activity in the cervical sympathetic trunk induced by myelinated somatic afferents. Pfluegers Arch 314:175–198CrossRefGoogle Scholar
- Schramm LP Bignall KE (1971) Central neural pathways mediating active sympathetic muscle vasodilation in the cat. Am J Physiol 221:754–767PubMedGoogle Scholar
- Schulte FJ, Henatsch HD, Busch G (1959) Über den Einfluß der Carotissinus-Sensibilität auf die spinal motorischen Systeme. Pfluegers Arch 269:248–263CrossRefGoogle Scholar
- Schwaber JS, Cohen DH (1978a) Electrophysiological and electron microscopic analysis of the vagus nerve of the pigeon, with particular reference to the cardiac innervation. Brain Res 147:65–78CrossRefPubMedGoogle Scholar
- Schwaber JS, Cohen DH (1978b) Field potential and single unit analyses of the avian dorsal motor nucleus of the vagus and criteria for identifying vagal cardiac cells of origin. Brain Res 147:79–90CrossRefPubMedGoogle Scholar
- Schwaber J, Schneiderman N (1975) Aortic nerve-activated cardioinhibitory neurons and interneurons. Am J Physiol 229:783–785PubMedGoogle Scholar
- Schweitzer A (1935) Zur Frage der respiratorischen Arrhythmie. Verh Dtsch Ges Kreislaufforsch 8:148–153Google Scholar
- Schweitzer A, Wrights S (1937) Effects on the knee jerk of stimulation of the central end of the vagus and of various changes in the circulation and respiration. J Physiol (Lond) 88:459–475Google Scholar
- Sears T (1964) Efferent discharges in alpha and fusimotor fibres of intercostal nerves of the cat. J Physiol (Lond) 174:295–315PubMedGoogle Scholar
- Seller H (1973) The discharge pattern of single units in thoracic and lumbar white rami in relation to cardiovascular events. Pfluegers Arch 343:317–330CrossRefGoogle Scholar
- Seller H, Illert M (1969) The localisation of the first synapse in the carotid sinus baroreceptor reflex pathway and its alteration of the afferent input. Pfluegers Arch 306:1–19CrossRefGoogle Scholar
- Seller H, Richter DW (1971) Some quantitative aspects of the central transmission of the baroreceptor activity. In: Kao FF, Koizumi K, Vasalle M (eds) Research in physiology, Gaggi, Bologna, pp 541–545Google Scholar
- Seller H, Langhorst P, Richter D, Koepchen HP (1968) Über die Abhängigkeit der pressorezeptorischen Hummung des Sympathicus von der Atemphase und ihre Auswirkung in der Vasomotorik. Pfluegers Arch 302:300–314CrossRefGoogle Scholar
- Shepherd JT (1973) Intrathoracic baroreflexes. Mayo Clin Proc 48:426–436PubMedGoogle Scholar
- Smith OA (1965) Anatomy of central neural pathways mediating cardiovascular functions. In: Randall WC (ed) Nervous control of the heart. Williams & Wilkins, Baltimore, pp 34–53Google Scholar
- Smith OA (1974) Reflex and central mechanisms involved in the control of the heart and circulation. Ann Rev Physiol 36:93–123CrossRefGoogle Scholar
- Smith OA, Nathan MA (1966) Inhibition of carotid sinus reflex by inferior olive. Science 154:674–675PubMedGoogle Scholar
- Smith RS, Pearce JW (1961) Microelectrode recordings from the region of the nucleus solitarius in the cat. Can J Biochem 39:933–939Google Scholar
- Smolen AJ, Truex RC (1977) The dorsal motor nucleus of the vagus nerve of the cat; localisation of preganglionic neurons by quantitative histological methods. Anat Rec 189:555–566CrossRefPubMedGoogle Scholar
- Snyder DW, Gebber GL (1973) Relationships between medullary depressor region and central vasopressor pathways. Am J Physiol 225:1129–1137PubMedGoogle Scholar
- Snyder DW, Nathan MA, Reis DJ (1978) Chronic lability of arterial pressure produced by selective destruction of the catecholamine innervation of the nucleus tractus solitarii in the rat. Circ Res 43:662–671PubMedGoogle Scholar
- Spyer KM (1969) The central nervous organisation of the carotid sinus baroreceptor reflex. Ph.D. thesis, University of BirminghamGoogle Scholar
- Spyer KM (1972) Baroreceptor sensitive neurones in the anterior hypothalamus of the cat. J Physiol (Lond) 224:245–257PubMedGoogle Scholar
- Spyer KM (1975) Organisation of baroreceptor pathways in the brainstem. Brain Res 87:221–276CrossRefPubMedGoogle Scholar
- Spyer KM (1979) The baroreceptor control of vagal preganglionic activity. In: Brooks C Mc, Koizumi K, Sato A (eds) Integrative functions of the autonomic nervous system. University of Tokyo Press, Tokyo, pp 283–292Google Scholar
- Spyer KM, McAllen RM (1979) The interaction of central and peripheral inputs onto vagal cardiomotor neurones. In: Koepchen HP, Hilton SM, Trzebski A (eds) Central interactions between respiratory and cardiovascular systems. Springer, Berlin Heidelberg New York, pp 8–14Google Scholar
- Spyer KM, Wolstencroft JH (1971) Problems of the afferent input to the paramedial reticular nucleus, and the central connections of the sinus nerve. Brain Res 26: 411–414CrossRefPubMedGoogle Scholar
- Stegemann J, Müller-Büton H (1966) Zur regeltheoretischen Analyse des Blutkreislaufs. I. Die zentrale Verrechnung der Signale aus den einzelnen Pressorezeptorenfeldern. Pfluegers Arch 287:247–256CrossRefGoogle Scholar
- Stroh-Werz M, Langhorst P, Camerer H (1976) Neuronal activity with relation to cardiac rhythm in the lower brainstem of the dog. Brain Res 106:293–305CrossRefPubMedGoogle Scholar
- Stroh-Werz M, Langhorst P, Camerer H (1977a) Neuronal activity with cardiac rhythm in the nucleus of the solitary tract in cats and dogs. 1. Different discharge patterns related to the cardiac cycle. Brain Res 133:65–80CrossRefPubMedGoogle Scholar
- Stroh-Werz M, Langhorst P, Camerer H (1977b) Neuronal activity with cardiac rhythm in the nucleus of the solitary tract in cats and dogs. II. Activity modulation in relationship to the respiratory cycle. Brain Res 133:81–93CrossRefPubMedGoogle Scholar
- Swanson LW (1977) Immunohistochemical evidence for a neurophysin-containing autonomic pathway arising in the paraventricular nucleus of the hypothalamus. Brain Res 128:346–353CrossRefPubMedGoogle Scholar
- Szentagothai J (1952) The general visceral efferent column of the brain stem. Acta Morphol Acad Sci Hung 2:313–328Google Scholar
- Szulczyk P (1976) Descending spinal sympathetic pathway utilized by somato-sympathetic reflex and carotid chemoreflex. Brain Res 112:190–193CrossRefPubMedGoogle Scholar
- Szulczyk P, Trzebski A (1977) Effects of carotid chemoreceptor and baroreceptor stimulation upon the sympathetic preganglionic and postganglionic cardiac nerve and single fiber activity in cats. Acta Neurbiol Exp (warsz) 37:15–26Google Scholar
- Taylor DG, Gebber GL (1973) Sympathetic unit responses to stimulation of cat medulla. Am J Physiol 225:1138–1146PubMedGoogle Scholar
- Taylor DG, Gebber GL (1975) Baroreceptor mechanisms controlling sympathetic nervous rhythms of central origin. Am J Physiol 228:1002–1013PubMedGoogle Scholar
- Thomas MR, Calaresu FR (1972) Responses of single units in the medial hypothalamus to electrical stimulation of the carotid sinus nerve in the cat. Brain Res 44:49–62CrossRefPubMedGoogle Scholar
- Thomas MR, Calaresu FR (1973) Hypothalamic inhibition of chemoreceptor-induced brady cardia in the cat. Am J Physiol 225:201–208PubMedGoogle Scholar
- Thomas MR, Calaresu FR (1974a) Localization and function of medullary sites mediating vagus bradycardia. Am J Physiol 226:1344–1349PubMedGoogle Scholar
- Thomas MR, Calaresu FR (1974b) Medullary sites involved in hypothalamic inhibition of reflex vagal bradycardia in the cat. Brain Res 80:1–16CrossRefPubMedGoogle Scholar
- Thomas MR, Ulrichsen RF, Calaresu FR (1977) Function of lateral reticular nucleus in central cardiovascular regulation in the cat. Am J Physiol 232:157–166Google Scholar
- Timms RJ (1977) Cortical inhibition and facilitation of the defence reaction. J Physiol (Lond) 266:98–99Google Scholar
- Todo K, Yamamoto T, Satomi H, Ise H, Takata H, Takahashi I (1977) Origins of vagal preganglionic fibers to the sino-atrial and atrio-ventricular node regions in the cat heart as studied by the horseradish peroxidase method. Brain Res 130:545–550CrossRefPubMedGoogle Scholar
- Torvik A (1956) Afferent connections to the sensory trigeminal nuclei, the nucleus of the solitary tract and adjacent structures. J Comp Neurol 106:51–141CrossRefPubMedGoogle Scholar
- Torvik A (1957) The spinal projection from the nucleus of the solitary tract. An experimental study in the cat. J Anat 91:314–332PubMedGoogle Scholar
- Trzebski A, Peterson LH (1964) The patterns of activity of the medullary respiratory neurones related to stimulation of the carotid body and carotid sinus receptors. In: Aviado DM (ed) Drugs and respiration. Pergamon Press, New York, pp 59–70Google Scholar
- Trzebski A, Peterson LH, Attinger F, Jones A, Tempest R (1962) Unitary responses in the medulla oblongata related to carotid sinus baroreceptor functions. Physiologist 5:222Google Scholar
- Wang SC, Borison HL (1974a) An analysis of the carotid sinus cardiovascular reflex mechanism. Am J Physiol 150:712–721Google Scholar
- Wang SC, Borison HL (1974b) Decussation of the pathways in the carotid sinus cardiovascular reflex. An example of the principle of convergence. Am J Physiol 150:722–728Google Scholar
- Wang SC, Chai CY (1962) Central control of sympathetic cardioacceleration in the medulla oblongata of the cat. Am J Physiol 202:31–34PubMedGoogle Scholar
- Wang SC, Chai CY (1967) Central control of baroreceptor reflex mechanism. In: Kezdi P (ed) Baroreceptors and hypertension. Pergamon Press, Oxford, pp 117–130Google Scholar
- Ward DG, Baertschi AJ, Gann DS (1977) Neurones in medullary areas controlling ACTH: Atrial input and rostral projections. Am J Physiol 233:R116–126PubMedGoogle Scholar
- Warner HR, Cox A (1962) A mathematical model of heart rate control of sympathetic and vagus efferent information. J Appl Physiol 17:349–355PubMedGoogle Scholar
- Warzel H, Brattström A (1972) The effect of time of electrical stimulation of the carotid sinus on the amount of reduction in arterial pressure. Pfluegers Arch 337:39–44CrossRefGoogle Scholar
- Weidinger H, Hetzel R, Schaeffer H (1962) Aktionsströme in zentrifugalen vagalen Herznerven und deren Bedeutung für den Kreislauf. Pfluegers Arch 276:262–279CrossRefGoogle Scholar
- Weiss GK, Crill WE (1969) Carotid sinus nerve; primary afferent depolarisation evoked by hypothalamic stimulation. Brain Res 16:269–272CrossRefPubMedGoogle Scholar
- Weiss GK, Kastella KG (1972) Medullary single unit activity: response to periodic pressure changes in the carotid sinus. Proc Soc Exp Biol 141:314–317Google Scholar
- Werz M, Mengel E, Langhorst P (1974) Extracellular recordings of single neurons in the nucleus of the solitary tract. In: Umbach H, Koepchen HP (eds) Centralrhythmic and regulation. Hippokrates, Stuttgart, pp 259–265Google Scholar
- Widdicombe JG (1961) Action potentials in parasympathetic efferent fibres to the lungs of the cat. Arch exp Pathol Pharm 241:415–432Google Scholar
- Widdicombe JG (1966) Action potentials in parasympathetic and sympathetic fibres to trachea and lungs of dogs and cats. J Physiol (Lond) 186:56–88PubMedGoogle Scholar
- Wilson MF, Ninomiya I, Franz GN, Judy WV (1971) Hypothalamic stimulation and baroreceptor reflex interaction on renal nerve activity. Am J Physiol 221:1768–1773PubMedGoogle Scholar
- Wurster RD (1977) Spinal sympathetic control of the heart. In: Randall WC (ed) Neural regulation of the heart. Oxford University Press, New York, pp 211–246Google Scholar
- Wurster RD, Trobiani S (1973) Effects of cervical sympathetic stimulation on carotid occlusion reflexes in cats. Am J Physiol 225:978–981PubMedGoogle Scholar
- Wyszogrodski I, Polosa C (1973) The inhibition of sympathetic preganglionic neurons by somatic afferents. Can J Physiol Pharmacol 51:29–38PubMedGoogle Scholar
- Yamashita H (1977) Effect of baro-and chemoreceptor activation on supraoptic nuclei neurons in the hypothalamus. Brain Res 126:551–556CrossRefPubMedGoogle Scholar
- Ylitalo P, Karppanen H, Paasonen MK (1974) Is the area postrema a control centre of blood pressure? Nature 247:58–59CrossRefPubMedGoogle Scholar
- Zanchetti A, Zoccolini A (1954) Autonomic hypothalamic outbursts excited by cerebellar stimulation. J Neurophysiol 17:475–483PubMedGoogle Scholar
- Zandberg P, Palkovits M, Jong W de (1977) The area postrema and control of arterial blood pressure; absence of hypertension after excision of the area postrema in rats. Pfluegers Arch 372:169–174CrossRefGoogle Scholar
Copyright information
© Springer-Verlag 1981