Skip to main content

The use of hydrostatic pressure and alloying to introduce deep levels in the forbidden gap of InSb and GaAS

  • Conference paper
  • First Online:
New Developments in Semiconductor Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 301))

  • 847 Accesses

Abstract

In both GaAs and InSb common residual contaminants introduce both shallow donor states and other levels normally resonant with the conduction band but taking their predominant character from higher conduction band minima. These states can be made to emerge into the forbidden gap by applying hydrostatic pressure. Judged by the measured pressure coefficients two sets of levels are closely tied to the L- and X-conduction band minima. At low temperatures the X-associated states show local relaxation effects and metastability (i.e., D(X) behaviour). Following on these experiments with bulk material, pressure experiments were extended to spike-doped GaAs both in single layer and in superlattice form. These experiments were in collaboration with A. Zrenner and F. Koch of the Technical University at Munich. Shubnikov-de Haas peaks can be observed above 3T. Fourier analysis of these shows that up to six sub-bands can be occupied. The application of hydrostatic pressure of up to 20kbar dramatically increases the mobility of the electrons in the lowest sub-band by as much as an order of magnitude with smaller increases occurring the higher sub-bands. The increases in mobility arise from the diffusion of the silicon donors during growth. Localised donor states associated with the L-conduction band drop below the Fermi energy in the centre of diffused distribution of donors on the application of pressure and become neutralised. This reduction of ionised scattering centres affects the most confined electron states and thus the mobility of the lowest sub-band increases very substantially.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.D. Barnett, S. Block, and G.J. Piermarini. Rev. Sci. Inst. 44 1 (1973) and B. Welber, Rev. Sci. Inst. 47, 183 (1976).

    Google Scholar 

  2. Z. Wasilewski, S. Porowski, and R.A. Stradling. J. Phys. E, 19, 480 (1986), also Solid State Comm. 57, 123 (1986).

    Google Scholar 

  3. L. Konczewicz, E. Litwin-Staszewska, and S. Porowski, Proc. 3rd Conf. on Narrow Gap Semiconductros (Warsaw 1977), p. 211.

    Google Scholar 

  4. S. Porowski, Proc. of the 4th Int. Conf. on Narrow Gap Semiconductors (Linz 1980), p. 420.

    Google Scholar 

  5. S. Porowski, L. Konczewicz, M. Konczykowski, R. Aulombard and J.L. Robert, in: Proc. Int. Conf. on Phys. of Semiconductors (Kyoto 1980), p. 271.

    Google Scholar 

  6. E. Litwin-Staszewska, W. Szymonska, and R. Piotrzkowski. Springer Lecture Notes in Physics (Narrow Gap Semiconductors) 152. 397 (1981).

    Google Scholar 

  7. Z. Wasilewski, A.M. Davidson, R.A. Stradling, and S. Porowski, Lecture Notes in Physics 177, p. 233. “Applications of High Magnetic Fields to Semiconductor Physics” (Grenoble 1982).

    Google Scholar 

  8. M. Baj, L.C. Brunel, S. Huant, W. Trzeciakowski, Z.Wasilewski, and R.A. Stradling, Proc. Int. Conf. on Physics of Semiconductors (San Francisco 1984); C.J. Armistead, F. Kuchar, S.P. Najda, S. Porowski, C. Sotomayor-Torres, R.A. Stradling and Z. Wasilewski, Proc. Int. Conf. on Physics of Semiconductors (San Francisco 1984).

    Google Scholar 

  9. Z.Wasilewski, and R.A. Stradling. Semicond. Sci. and Tech. 1, 264 (1986).

    Google Scholar 

  10. G.E. Stillman, D.M. Larsen, C.M. Wolfe, and J.O. Dimmock. Solid State Comm. 9, 2245 (1971).

    Google Scholar 

  11. M. Kobayashi, T. Yokoyama, and S. Narita, Jap. J. App. Phys. 22, 2612 (1983).

    Google Scholar 

  12. M. Leroux, G. Pelous, F. Raymond, and C. Verie. App. Phys. Lett. 46, 288 (1985).

    Google Scholar 

  13. D.J. Wolford, and J.A. Bradley, Solid State Comm. 53, 1069 (1985).

    Google Scholar 

  14. D.K. Maude, J.C. Portal, L. Dmowski, L. Eaves, M. Nathan, M. Heiblum, J.J. Harris, and R.R. Beall. To be published.

    Google Scholar 

  15. M. Tachikawa, T. Fujisawa, M. Kukimoto, A. Shibata, G. Oomi, and S. Minomura. Jap. J. Appl. Phys. 24, L893 (1985).

    Google Scholar 

  16. F. Koch, A. Zrenner, and M. Zachau. Springer Series in Solid State Sciences Two Dimensional Systems 67, p175 (1986).

    Google Scholar 

  17. A. Zrenner, H. Reisinger, F. Koch, K. Ploog, J.C. Maan. Phys. Rev. B33, 5607 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. Ferenczi F. Beleznay

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag

About this paper

Cite this paper

Stradling, R.A. (1988). The use of hydrostatic pressure and alloying to introduce deep levels in the forbidden gap of InSb and GaAS. In: Ferenczi, G., Beleznay, F. (eds) New Developments in Semiconductor Physics. Lecture Notes in Physics, vol 301. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0034417

Download citation

  • DOI: https://doi.org/10.1007/BFb0034417

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19215-2

  • Online ISBN: 978-3-540-39145-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics