Advertisement

New optoelectronic devices

  • Emmanuel Rosencher
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 419)

Abstract

Enhancement of quantum effects in semiconductor quantum wells has led to a new generation of electro-optic devices. This enhancement is largely due to the small effective masses of the electrons in these materials and to the possibility to tune the optical resonances by band engineering. The field of application of these devices is mainly the optical computing and data processing (switching,...) as well as smart detectors. These properties should be even more pronounced when quantization will occur in other directions, in quantum wires and quantum boxes. Once technology will be mature, these latter will be real giant atoms exhibiting unprecedented electro-optic properties.

Keywords

Second Harmonic Generation Quantum Well Interband Transition Stark Effect Intersubband Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Bastard, Wave mechanics applied to semiconductor heterostructures (Les Editions de Physique CNRS, Paris, 1988).Google Scholar
  2. 2.
    R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1983).Google Scholar
  3. 3.
    C. Weisbuch and B. Vinter, Quantized Semiconductor Structures: Physics and Applications 1-252 (Academic Press, Boston, 1991).Google Scholar
  4. 4.
    A. Yariv, Quantum electronics (John Wiley & sons, New York, 1989).Google Scholar
  5. 5.
    K. L. Wang, S. K. Chun, and R. P. G. Karunasiri, in Intersubband Transitions in Quantum Wells E. Rosencher, B. Vinter, and B. Levine, eds. (Plenum, London, 1992) p. 227.Google Scholar
  6. 6.
    B. F. Levine, in Intersubband Transitions in Quantum Wells E. Rosencher, B. Vinter, and B. Levine, eds. (Plenum, London, 1992) p. 43.Google Scholar
  7. 7.
    S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, Advances in Physics 38, 89 (1989).CrossRefGoogle Scholar
  8. 8.
    C. Cohen-Tannoudji, B. Diu, and F. Laloë, Mêcanique Quantique (Hermann, Paris, 1973).Google Scholar
  9. 9.
    C. Mead and L. Conway, Introduction to VLSI sytems (Addison Wesley, Reading,Massachusetts, 1980).Google Scholar
  10. 10.
    D. A. B. Miller, Optical and Quantum Electronics (1990).Google Scholar
  11. 11.
    L. C. West and S. J. Eglash, Appl. Phys. Lett. 46, 1156 (1985).CrossRefGoogle Scholar
  12. 12.
    B. F. Levine, C. G. Bethea, G. Hasnain, J. Walker, and R. J. Malik, Appl. Phys. Lett. 53, 296 (1988).CrossRefGoogle Scholar
  13. 13.
    E. Rosencher, E. Martinet, F. Luc, P. Bois, and E. Böckenhoff, Appl. Phys. Lett. 25, 3255 (1991).CrossRefGoogle Scholar
  14. 14.
    M. A. Kinch and A. Yariv, Appl. Phys. Lett. 55, 2093 (1989).CrossRefGoogle Scholar
  15. 15.
    E. Rosencher and P. Bois, Phys. Rev.B 44, 11315 (1991).CrossRefGoogle Scholar
  16. 16.
    F. Capasso, C. Sirtori, D. Sivco, and A. Y. Cho, in Intersubband Transitions in Quantum Wells E. Rosencher, B. Vinter, and B. Levine, eds. (Plenum, London, 1992) p. 141.Google Scholar
  17. 17.
    E. Martinet, F. Luc, E. Rosencher, P. Bois, and S. Delaitre, Appl. Phys. Lett. 60, 895 (1992).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Emmanuel Rosencher
    • 1
  1. 1.Central Research Laboratory THOMSON-CSFORSAY Cedex

Personalised recommendations