Skip to main content

Study of brain function by local, reversible cooling

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 95

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 95))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adey WR (1974) Biophysical and metabolic bases of cooling effects on cortical membrane potentials in the cat. Exp Neurol 42:113–140

    Google Scholar 

  • Akert K (1964) Comparative anatomy of frontal cortex and thalamo-frontal connections. In: Warren JM, Akert K (eds) The frontal granular cortex and behavior. McGraw-Hill, New York, pp 372–396

    Google Scholar 

  • Albe-Fessard D (1965) Panel discussion on utilization of localized cooling in neurosurgery. Confin Neurol 26:41–44

    Google Scholar 

  • Albe-Fessard D, Dondey M, Bénita M, Besson J (1967) Remarks about physiological effects obtained by localized thermal modifications of the central nervous system. Confin Neurol 29:208–212

    Google Scholar 

  • Alexander GE, Fuster JM (1973) Effects of cooling prefrontal cortex on cell firing in the nucleus medialis dorsalis. Brain Res 61:93–105

    Google Scholar 

  • Amassian VE (1967) Discussion in: Yahr MD, Purpura DP (eds) Neurophysiological basis of normal and abnormal motor activities. Raven Press, New York, pp 288–292

    Google Scholar 

  • Amassian VE (1979) The use of contact placing in analytical and synthetic studies of the higher sensorimotor control system. In: Asanuma H, Wilson VJ (eds) Integration in the nervous system. Igaku-Shoin, New York, pp 279–304

    Google Scholar 

  • Amassian VE, Weiner H (1965) Monosynaptic and polysynaptic activation of pyramidal tract neurons by thalamic stimulation. In: Purpura DP, Yahr MD (eds) The thalamus. Columbia University Press, New York, pp 255–282

    Google Scholar 

  • Amassian VE, Weiner H, Rosenblum M (1972a) Neural systems subserving the tactile placing reaction: a model for the study of higher level control of movement. Brain Res 40:171–178

    Google Scholar 

  • Amassian VE, Ross R, Wertenbaker C, Weiner H (1972b) Cerebellothalamocortical interrelations in contact placing and other movements in cats. In: Frigyesi T, Rinvik E, Yahr MD (eds) Corticothalamic projections and sensorimotor activities. Raven Press, New York, pp 395–444

    Google Scholar 

  • Amassian VE, Eberle L, Rudell A (1978) Mode of cerebellar functioning in contact placing in kittens. J Physiol (Lond) 284:179–180

    Google Scholar 

  • Amato G, Trouche E, Beaubaton D, Grangetto A (1978) The role of internal pallidal segment on the initiation of a goal directed movement. Neurosci Lett 9:159–163

    Google Scholar 

  • Andersen P, Eccles JC, Oshima T, Schmidt RF (1964) Mechanisms of synaptic transmission in the cuneate nucleus. J Neurophysiol 27:1096–1116

    Google Scholar 

  • Andersen P, Andersson SA, Lomo T (1967) Some factors involved in the thalamic control of spontaenous barbiturate spindles. J Physiol (Lond) 192:257–281

    Google Scholar 

  • Andersen P, Gjerstad L, Pasztor E (1972a) Effect of cooling on synaptic transmission through the cuneate nucleus. Acta Physiol Scand 84:433–447

    Google Scholar 

  • Andersen P, Gjerstad L, Pasztor E (1972b) Effects of cooling on inhibitory processes in the cuneate nucleus. Acta Physiol Scand 84:448–461

    Google Scholar 

  • Appelberg B, Jeneskog T (1969) A dorso-lateral spinal pathway mediating information from the mesencephalon to dynamic fusimotor neurones. Acta Physiol Scand 66:159–171

    Google Scholar 

  • Asanuma H, Hunsperger RW (1975) Functional significance of projection from the cerebellar nuclei to the motor cortex in the cat. Brain Res 98:73–92

    Google Scholar 

  • Asanuma H, Hongo T, Jankowska E, Marcus S, Shinoda Y, Zarzecki P (1978) Pattern of projections of individual pyramidal tract neurons to the spinal cord of the monkey. J Physiol (Paris) 74:235–236

    Google Scholar 

  • Asanuma H, Larsen KD, Zarzecki P (1979) Peripheral input pathways projecting to the motor cortex in the cat. Brain Res 172:197–208

    Google Scholar 

  • Atkin A, Kozlovskaya IB (1976) Effects of cooling cerebellar nuclei on evoked forearm oscillations. Exp Neurol 50:766–776

    Google Scholar 

  • Baker MA, Tyner CF, Towe AL (1971) Observations on single neurons recorded in the sigmoid gyri of awake, nonparalyzed cats. Exp Neurol 32:388–403

    Google Scholar 

  • Bando T, Tsukuda K, Yamamoto N, Maeda J, Tsukahara N (1981) Cortical neurons in and around the Clare-Bishop area related with lens accommodation in the cat. Brain Res 225:195–199

    Google Scholar 

  • Barany R (1912) Lokalisation in der Rinde der Kleinhirnhemisphären des Menschen. Wien Klin Wochenschr 25:2033–2038

    Google Scholar 

  • Barany R (1913) Lokalisation in der Rinde der Kleinhirnhemisphären (Funktionsprüfung und Theorie). Dtsch Med Wochenschr 39:637–642

    Google Scholar 

  • Barany R (1967) Some new methods for functional testing of the vestibular apparatus and the cerebellum. Nobel lecture 1916. In: Nobel lectures. Physiology or medicine 1901–1921. Elsevier, Amsterdam, pp 500–511

    Google Scholar 

  • Barbour HG (1912) Die Wirkung unmittelbarer Erwärmung und Abkühlung der Wärmezentra auf die Körpertemperatur. Arch Exp Pathol Pharmakol 70:1–26

    Google Scholar 

  • Bard P (1933) Studies on the cerebral cortex. Localized control of placing and hopping reactions in the cat and their normal management by small cortical remnants. Arch Neurol Psychiatry 30:40–74

    Google Scholar 

  • Barker JL, Carpenter DO (1970) Thermosensitivity of neurons in the sensorimotor cortex of the cat. Science 169:597–598

    Google Scholar 

  • Barker JL, Carpenter DO (1971) Neuronal thermosensitivity. Science 172:1361–1362

    Google Scholar 

  • Barron DH, Matthews BHC (1938a) Dorsal root reflexes. J Physiol (Lond) 94:26–27P

    Google Scholar 

  • Barron DH, Matthews BHC (1938b) The interpretation of potential changes in the spinal cord. J Physiol (Lond) 92:276–321

    Google Scholar 

  • Bauer RH, Fuster JM (1976) Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys. J Comp Physiol Psychol 90:293–302

    Google Scholar 

  • Beaubaton D, Trouche E, Amato G, Grangetto A (1978) Dentate cooling in monkeys performing a visuo-motor pointing task. Neurosci Lett 8:225–229

    Google Scholar 

  • Beaubaton D, Amato G, Legallet E (1980) Effects of putamen cooling on the latency, speed and accuracy of pointing movement in the baboon. Brain Res 196:572–576

    Google Scholar 

  • Beck A, Bikeles G (1914) Über den Einfluß der Kühlung auf die Erregbarkeit der Großhirnrinde einerseits und der Kleinhirnrinde andererseits. Zentralbl Physiol 29:1–2

    Google Scholar 

  • Bénita M (1972) Nouveau despositif pour le refroidissement localisé des structures nerveuses. Electroencephalogr Clin Neurophysiol 32:90–94

    Google Scholar 

  • Bénita M, Condé H (1971) Etude des efferences du noyau centre median du thalamus du chat vers le cortex et les structures strio-pallidales. Exp Brain Res 12:204–222

    Google Scholar 

  • Bénita M, Condé H (1972a) Reversible blockage of specific synaptic transmission by localized and moderate cooling with a vacuum insulated probe connected to a closed circuit apparatus. Confin Neurol 34:218–223

    Google Scholar 

  • Bénita M, Condé H (1972b) Effects of local cooling upon conduction and synaptic transmission. Brain Res 36133–151

    Google Scholar 

  • Bénita M, Krauthamer G (1966) Blocage par le froid de l'action inhibitrice des corps striés. J Physiol (Paris) 58:205

    Google Scholar 

  • Bénita M, Condé H, Dormont JF, Schmied A (1979a) Effects of caudate nucleus cooling on the performance of conditioned movements in cats. Neurosci Lett 14:25–30

    Google Scholar 

  • Bénita M, Condé H, Dormont JF, Schmied A (1979b) Effects of ventrolateral thalamic cooling on initiation of forelimb ballistic flexion movements by conditioned cats. Exp Brain Res 34:435–452

    Google Scholar 

  • Berlucchi G, Maffei L, Moruzzi G, Strata P (1964) EEG and behavioral effects elicited by cooling of medulla and pons. Arch Ital Biol 102:372–392

    Google Scholar 

  • Bickford RG (1939) The fibre dissociation produced by cooling human nerves. Clin Sci 4:159–165

    Google Scholar 

  • Bindman J, Lippold J, Redfearn JVT (1963) Comparison of the effects on electrocortical activity of general body cooling and local cooling of the surface of the brain. Electroencephalogr Clin Neurophysiol 15:238–245

    Google Scholar 

  • Bland JH (1972) Structured water in biological systems. In: South FE, Hannon JP, Pengelley ET, Alpert NR (eds) Hibernation and hypothermia, perspectives and challenges. Elsevier, Amsterdam, pp 71–98

    Google Scholar 

  • Bligh J, Bacon M (1976) Interactions of spinal heating and cooling and intracerebroventricular injections of monoamines and carbachol in sheep. Isr J Med Sci 12:1047–1049

    Google Scholar 

  • Bowsher D, Mallart A, Petit D, Albe-Fessard D (1968) A bulbar relay to the centre median. J Neurophysiol 31:288–300

    Google Scholar 

  • Brooks CMcC, Koizumi K (1956) Origin of the dorsal root reflex. J Neurophysiol 19:61–74

    Google Scholar 

  • Brooks CMcC, Koizumi K, Malcolm JL (1955) Effects of changes in temperature on reactions of spinal cord. J Neurophysiol 18:205–216

    Google Scholar 

  • Brooks VB (1954) The action of botulinum toxin on motor nerve filaments. J Physiol (Lond) 123:501–515

    Google Scholar 

  • Brooks VB (1979) Control of intended limb movements by the lateral and intermediate cerebellum. In: Asanuma H, Wilson VJ (eds) Integration in the nervous system. Igako-Shoin, Tokyo, pp 321–357

    Google Scholar 

  • Brooks VB (1981) Task-related cell assemblies. In: Pompeiano O, Ajmone-Marsan C (eds) Brain mechanisms and perceptual awareness. Raven Press, New York, pp 295–309

    Google Scholar 

  • Brooks VB, Enger PS (1959) Spread of directly evoked responses in the cat's cerebral cortex. J Gen Physiol 42:761–777

    Google Scholar 

  • Brooks VB, Stoney SD Jr (1971) Motor mechanisms: the role of the pyramidal system in motor control. Annu Rev Physiol 33:337–392

    Google Scholar 

  • Brooks VB, Thach WT (1981) Cerebellar control of posture and movements. In: Brooks VB (ed) Motor control. The American Physiological Society, Bethesda. (Handbook of physiology, The nervous system, sect 1, vol II, pp 877–946)

    Google Scholar 

  • Brooks VB, Adrien J, Dykes RW (1972) Task-related discharge of neurons in motor cortex and effects of dentate cooling. Brain Res 40:85–88

    Google Scholar 

  • Brooks VB, Kozlovskaya IB, Atkin A, Horwath FE, Uno M (1973) Effects of cooling the dentate nucleus on tracking-task performance in monkeys. J Neurophysiol 36:974–995

    Google Scholar 

  • Brooks VB, Kennedy PR, Ross HG (1980) Does cooling monkey's inferior olive increase biceps stretch reflexes? In: Courville J, de Montiguy C, Lamarre Y (eds) The inferior olivary nucleus: anatomy and physiology. Raven Press, New York, pp 361–365

    Google Scholar 

  • Brown AG (1971) Effects of descending impulses on transmission through the spinocervical tract. J Physiol (Lond) 219:103–125

    Google Scholar 

  • Burchfiel JL, Duffy FH (1974) Corticofugal influence upon cat thalamic ventrobasal complex. Brain Res 70:395–411

    Google Scholar 

  • Burke RE (1968a) Group la synaptic input to fast and slow twitch motor units of cat triceps surae. J Physiol (Lond) 196:605–630

    Google Scholar 

  • Burke RE (1968b) Firing patterns of gastrocnemius motor units in the decerebrated cat. J Physiol (Lond) 196:631–654

    Google Scholar 

  • Burkhardt D (1959) Die Erregungsvorgänge sensibler Ganglienzellen in Abhängigkeit von der Temperatur. Biol Zentralbl 78:22–62

    Google Scholar 

  • Burns BD, Grafstein B (1952) The function and structure of some neurones in the cat's cerebral cortex. J Physiol (Lond) 118:412–433

    Google Scholar 

  • Buser A (1969) Etudes de certains comportements moteurs et de leur expression electrocorticographique chez le chat libre. Medical dissertation, University of Paris

    Google Scholar 

  • Buser P (1966) Subcortical controls of pyramidal activity. In: Purpura DP, Yahr MD (eds) The thalamus. Columbia University Press, New York, pp 323–247

    Google Scholar 

  • Buser P, Horvath FE (1972) Thalamo-caudate-cortical relationships in synchronized activity. II. Further differentiation between spindle systems by cooling and lesions in the mesencephalon. Brain Res 39:43–60

    Google Scholar 

  • Buser P, Encabo H, Lamarche M (1965) Action inhibitrice de certains noyaux thalamiques ‘non-spécifiques’ sur la mise en jeu réflexe du tractus pyramidal chez le chat. Arch ital biol 103:448–468

    Google Scholar 

  • Buser P, Saint-Laurent J, Menini CL (1966) Intervention du colliculus inférieur dans l'élaboration et le contrôle cortical specifique des decharges cloniques au son chez le chat sous chloralose. Exp Brain Res 1:102–126

    Google Scholar 

  • Buser P, Kitsikis A, Wiesendanger M (1968) Modulation of visual input to single neurones of the motor cortex by the primary visual area in the cat. Brain Res 10:262–265

    Google Scholar 

  • Byck R, Dirlik P (1963) Reversible section of the brain by a wall of cold. Science 139:1216–1218

    Google Scholar 

  • Byck R, Jennings CB Jr (1969) Methods for long-term local cooling of the brain in unanesthetized animals. J Appl Physiol 27:143–148

    Google Scholar 

  • Byck R, Goldfarb J, Schaumberg HH, Sharpless SK (1972) Reversible differential block of saphenous nerve by cold. J Physiol (Lond) 222:17–26

    Google Scholar 

  • Cairns H, Cole J, Epstein HG, Gardner M, Glees P (1953) Temporary depression of cortical function by local anesthetic and cooling. J Physiol (Lond) 119:44–45

    Google Scholar 

  • Calvin WH (1975) Generation of spike trains in CNS neurons. Brain Res 84:1–22

    Google Scholar 

  • Calvin WH, Schwindt P (1972) Steps in the production of motorneuron spikes during rhythmic firing. J Neurophysiol 35:277–310

    Google Scholar 

  • Cardin A (1946) Rigidita da decerebrazione negli arti posteriori deafferentati. Boll Soc Ital Biol Sper 22:81–83

    Google Scholar 

  • Carpenter DO, Alving BO (1968) A contribution of an electrogenic Na pump to membrane potential in APLYSIA neurons. J Gen Physiol 52:1–21

    Google Scholar 

  • Carpenter RHS (1972) Cerebellectomy and the transfer function of the vestibuloocular reflex in the decerebrate cat. Proc R Soc Lond (Biol) 181:353–374

    Google Scholar 

  • Cervero F, Iggo A, Molony V (1977) Responses of spinocervical tract neurones to noxious stimulation of the skin. J Physiol (Lond) 267:537–558

    Google Scholar 

  • Cervero F, Iggo A, Ogawa H (1976) Nociceptor-driven dorsal horn neurones in the lumbar spinal cord of the cat. Pain 2:5–24

    Google Scholar 

  • Chang HT (1951) Dentritic potential of cortical neurones as produced by direct electrical stimulation of the cerebral cortex. J Neurophysiol 14:1–21

    Google Scholar 

  • Chatfield PO (1959) Hypothermia and its effects on the sensory and periferal motor systems. Ann N York Acad Sci 80:285–550

    Google Scholar 

  • Chatonnet J, Tanche M, Cabanc JL (1960) Influence d'un abaissement de température localisé de la region diencephalique sur l'activité sculaire thermoregulatrice chez le chien éveillé. J Physiol (Paris) 52:48–49

    Google Scholar 

  • Chofflon H, Lachat JM, Ruegg DG (1982) A transcortical loop demonstrated by stimulation of low threshold muscle afferents in the awake monkey. J Physiol (Lond) 323:393–402

    Google Scholar 

  • Chowers I, Bligh J (eds) (1976) Symposium on temperature regulation. Isr J Med Sci 12:90–1135

    Google Scholar 

  • Chung S, Raymond SA, Lettvin JY (1970) Multiple meaning in single visual units. Brain Behav Evol 3:72–101

    Google Scholar 

  • Cianci SN (1965) Effects of cortical and subcortical stimulation on delayed response in monkeys. Exp Neurol 11:104–114

    Google Scholar 

  • Collewijn H, van Harreveld A (1966) Membrane potential of cerebral cortical cells during spreading depression and asphyxia. Exp Neurol 15:425–436

    Google Scholar 

  • Condé F, Condé H (1980) Demonstration of a rubrothalamic projection in the cat, with some comments on the origin of the rubrospinal tract. Neuroscience 5:789–802

    Google Scholar 

  • Conrad B, Brooks VB (1974) Effects of dentate cooling on rapid alternating arm movements. J Neurophysiol 37:792–804

    Google Scholar 

  • Conrad B, Matsunami K, Meyer-Lohmann J, Wiesendanger M, Brooks VB (1974) Cortical load compensation during voluntary elbow movements. Brain Res 71:507–514

    Google Scholar 

  • Conrad B, Meyer Lohmann J, Matsunami K, Brooks VB (1975) Precentral unit activity following torque pulse injections into elbow movements. Brain Res 94:219–236

    Google Scholar 

  • Cooke JD, Thomas JS (1976) Forearm oscillation during cooling of the dentate nucleus in the monkey. Can J Physiol Pharmacol 54:430–436

    Google Scholar 

  • Cooke JD, Okamoto K, Quastel DMJ (1973) The role of calcium in depolarization-secretion coupling at the motor nerve terminal. J Physiol (Lond) 228:459–497

    Google Scholar 

  • Cooke JD, Brown JD, Brooks VB (1978) Increased dependence on visual information for movement control in patients with Parkinson's disease. Can J Neurol Sci 5:413–415

    Google Scholar 

  • Cooper IS (1962) Cryogenic surgery of the basal ganglia. JAMA 181:600–604

    Google Scholar 

  • Cooper IS, Lee AS (1961a) Cryothalamectomy-hypothermic congelation: a technical advance in basal ganglia surgery. J Am Geriatr Soc 9:714–718

    Google Scholar 

  • Cooper IS, Lee AS (1961b) Cryostatic congelation: a system for producing a limited, controlled region of cooling or freezing of biologic tissues. J Nerv Ment Dis 133:259–263

    Google Scholar 

  • Cooper IS, Grissman F, Johnston R (1962) A complete system for cryogenic surgery. St Barnabas Hosp Med Bull 1:11–16

    Google Scholar 

  • Cooper IS, Gioino G, Terry R (1965a) Temperature gradients during cooling and freezing in the human brain. Cryobiology 1:341–344

    Google Scholar 

  • Cooper IS, Gioino G, Terry R (1965b) The cryogenic lesion. Confin Neurol 26:161–177

    Google Scholar 

  • Corda M, von Euler C, Lennerstrand G (1966) Reflex and cerebellar influences on alpha and on ‘rhythmic’ and ‘tonic’ gamma activity in the intercostal muscle. J Physiol (Lond) 184:898–923

    Google Scholar 

  • Darian-Smith I, Yokota T (1966) Cortically evoked depolarization of trigeminal cutaneous afferent fibers in the cat. J Neurophysiol 29:170–184

    Google Scholar 

  • Deganello U (1900) Action de la température sur le centre bulbaire inhibiteur du coeur et sur le centre bulbaire vaso-constricteur. Arch Ital Biol 33:186–188

    Google Scholar 

  • DeLong MR, Georgopoulos AP (1981) Motor functions of the basal ganglia. In: Brooks VB (ed) Motor control. The American Physiological Society, Bethesda. (Handbook of physiology, The nervous system, sect 1, vol II, pp 1017–1061)

    Google Scholar 

  • Denny-Brown D (1960) Motor mechanisms — Introduction: The general principles of motor integration. In: Magoun HW (ed) Neurophysiology. The American Physiological Society, Washington (Handbook of physiology, sect 1, vol 2, pp 781–796)

    Google Scholar 

  • Denny-Brown D, Adams RD, Brenner C, Doherty MM (1945) The pathology of injury to nerve induced by cold. J Neuropathol Exp Neurol 4:305–323

    Google Scholar 

  • De Rougemont J, Descotes J, George P, Courjon J, Piechon M, Peysson M (1962) L'hypothermie cérébrale sélective données experiméntales. Ann Chir 16:1403–1412

    Google Scholar 

  • Del Castillo J, Machne X (1953) Effect of temperature on the passive electrical properties of the muscle fibre membrane. J Physiol (Lond) 120:431–434

    Google Scholar 

  • Dondey M, Rey L, Lé Beau J (1960) Présentation d'un instrument permettant le froidissement contrôlé de structures cerebrales superficielles. Rev Neurol (Paris) 103:220

    Google Scholar 

  • Dondey M, Albe-Fessard D, Le Beau J (1962a) Premières applications neurophysiologiques d'un méthode permettant le blocage électif et reversible de structures centrales par réfrigeration localisée. Electroencephalogr Clin Neurophysiol 14:758–763

    Google Scholar 

  • Dondey M, Albe-Fessard D, Le Bau J (1962b) Refroidissement temporaire et localisé de structures cerebrales profondes. Résultats physiologiques préliminaires. Rev Neurol (Paris) 105:186–187

    Google Scholar 

  • Dostrovsky JO, Millar J, Wall PD (1976) The immediate shift of afferent drive of dorsal column nucleus cells following deafferentation: a comparison of acute and chronic deafferentation in gracile nucleus and spinal cord. Exp Neurol 52:480–495

    Google Scholar 

  • Dostrovsky JO, Sessle BJ, Hu JW (1981) Presynaptic excitability changes produced in brain stem endings of tooth pulp afferents by raphe and other central and peripheral influences. Brain Res 218:141–161

    Google Scholar 

  • Douglas WW, Malcolm JL (1955) The effect of localized cooling on conduction in cat nerves. J Physiol (Lond) 130:53–71

    Google Scholar 

  • Dow RS, Fernandez-Guardiola A, Manni E (1962a) The influence of the cerebellum on experimental epilepsy. Electroencephalogr Clin Neurophysiol 14:383–398

    Google Scholar 

  • Dow RS, Fernandez-Guardiola A, Manni E (1962b) The production of cobalt experimental epilepsy in the rat. Electroencephalogr Clin Neurophysiol 14:399–407

    Google Scholar 

  • Dusser de Barenne JG (1937) Physiologie der Großhirnrinde. In: Bumke O, Foerster O (Hrsg) Handbuch der Neurologie. Springer, Berlin, S 268–319

    Google Scholar 

  • Eccles JC (1953) The neurophysiological basis of mind. The principles of neurophysiology. The Waynflete Lectures. Clarendon Press, Oxford, p 314

    Google Scholar 

  • Eccles JC (1964) Presynaptic inhibition in the spinal cord. In: Eccles JC, Schade JP (eds) Physiology of spinal neurons. (Progress in brain research, vol 12, Elsevier, Amsterdam, pp 65–91)

    Google Scholar 

  • Eccles JC, Eccles RM, Magni F (1961a) Central inhibitory action attributable to presynaptic depolarization produced by muscle afferent volleys. J Physiol (Lond) 159:147–166

    Google Scholar 

  • Eccles JC, Kozak W, Magni F (1961b) Dorsal root reflexes of muscle group I afferent fibers. J Physiol (Lond) 159:128–146

    Google Scholar 

  • Eccles JC, Magni F, Willis WD (1962) Depolarization of central terminals of group I afferent fibers from muscle. J Physiol (Lond) 160:62–93

    Google Scholar 

  • Eccles JC, Schmidt RF, Willis WD (1963) Depolarization of the central terminals of cutaneous afferent fibers. J Neurophysiol 26:646–661

    Google Scholar 

  • Eccles JC, Rosén I, Scheid P, Taborikova H (1972) Cutaneous afferent respones in interpositus neurones of the cat. Brain Res 42:207–211

    Google Scholar 

  • Eccles JC, Rosén I, Scheid P, Taborikova H (1975) The differential effect of cooling on responses of cerebellar cortex. J Physiol (Lond) 249:119–138

    Google Scholar 

  • Edwards SB (1972) The ascending and descending projections of the red nucleus in the cat: an experimental study using an autoradiographic tracing method. Brain Res 48:45–63

    Google Scholar 

  • Eisenman JS (1972) Unit activity studies of thermoresponsive neurons. In: Bligh T, Moore R (eds) Essays on temperature regulation. North Holland, Amsterdam, pp 55–69

    Google Scholar 

  • Eisenman JS (1976) Sensory organs and thermogenesis. Isr J Med Sci 12:916–923

    Google Scholar 

  • Eisenman JS, Edinger HM (1971) Neuronal thermosensitivity. Science 172:1360–1361

    Google Scholar 

  • Evarts EV, Tanji J (1976) Reflex and intended responses in motor cortex pyramidal tract neurons of monkey. J Neurophysiol 39:1069–1080

    Google Scholar 

  • Fasano VA, Broggi G, de Nunno T, Baggiore P (1964) Cryotherapie et neuro-chirurgie. Neurochirurgie 10:172–179

    Google Scholar 

  • Fay T (1959) Early experiences with local and generalized refrigeration of the human brain. J Neurosurg 16:239–260

    Google Scholar 

  • Filion M, Lamarre Y, Cordeau JP (1971) Neuronal discharges of the ventrolateral nucleus of the thalamus during sleep and wakefulness in the cat. II. Evoked activity. Exp Brain Res 12:499–508

    Google Scholar 

  • Fischbarg J (1972) Ionic permeability changes as the basis of the thermal dependence of the resting potential in barnacle muscle fibers. J Physiol (Lond) 224:149–171

    Google Scholar 

  • Franz DN, Iggo A (1968) Conduction failure in myelinated and non-myelinated axons at low temperatures. J Physiol (Lond) 199:319–345

    Google Scholar 

  • Fredericq L (1883) Expériences sur l'innervation respiratoire. Arch P Physiol 51–68

    Google Scholar 

  • Fuster JM (1973) Unit activity in prefrontal cortex curing delayed-response performance: neuronal correlates of transient memory. J Neurophysiol 34:61–78

    Google Scholar 

  • Fuster JM, Alexander GE (1970) Delayed response deficit by cryogenic depression of frontal cortex. Brain Res 20:85–90

    Google Scholar 

  • Fuster JM, Alexander GE (1973) Firing changes in cells of the nucleus medialis dorsalis associated with delayed response behavior. Brain Res 61:79–91

    Google Scholar 

  • Fuster JM, Bauer RH (1974) Visual short-term memory deficit from hypothermia of frontal cortex. Brain Res 81:393–400

    Google Scholar 

  • Fuster JM, Bauer R, Jervey J (1981) Effects of cooling inferotemporal cortex on performance of visual memory tasks. Exp Neurol 71:398–409

    Google Scholar 

  • Gahwiler BH, Maron AM, Schlapfer WT, Tobias CA (1972) Effects of temperature on spontaenous bioelectric activity of cultured nerve cells. Brain Res 40:527–533

    Google Scholar 

  • Gartside IB, Lippold OC (1967) The production of persistent changes in the level of neuronal activity by brief local cooling of the cerebral cortex of the rat. J Physiol (Lond) 189:475–487

    Google Scholar 

  • Gasser HS (1950) Unmedullated fibers originating in dorsal root ganglia. J Gen Physiol 33:651–690

    Google Scholar 

  • Ghez C, Vicario D, Martin JH, Yumiya H (1982) Sensory motor processing in trageted movements: roles of the motor cortex. In: Desmedt JE (ed) Motor control in man: mechanisms and clinical applications. Raven Press, New York (in press)

    Google Scholar 

  • Giannazzo E, Raffaele R, Sapienza S (1967) Curve caratteristiche dell-azione refrigerante di sonde criogeniche sottili ad espansione di antidride carbonica. Boll Soc Ital Biol Sper 43:603–607

    Google Scholar 

  • Gilman S (1969) The mechanism of cerebellar hypotonia. An experimental study in the monkey. Brain 92:621–638

    Google Scholar 

  • Gilman S, Bloedel J, Lechtenberg R (1981) Disorders of the cerebellum. Davis, Philadelphia

    Google Scholar 

  • Gorman ALF (1967) Convergence of fast and slow synaptic systems on pyramidal tract neurons in motor cortex following surface stimulation. Exp Neurol 17:344–356

    Google Scholar 

  • Gorman ALF, Marmor MF (1970) Temperature dependence of the sodium-potassium permeability ratio of a molluscan neurone. J Physiol (Lond) 210:919–931

    Google Scholar 

  • Gorman ALF, Silfvenius H (1967) The effects of local cooling of the cortical surface on the motor cortex response following stimulation of the pyramidal tract. Electroencephalogr Clin Neurophysiol 23:360–370

    Google Scholar 

  • Grafstein B (1956a) Mechanisms of spreading cortical depression. J Neurophysiol 19:154–171

    Google Scholar 

  • Grafstein B (1956b) Locus of propagation of spreading cortical depression. J Neurophysiol 19:308–316

    Google Scholar 

  • Granit R (1968) The case for presynaptic inhibition by synapses on the terminals of motoneurons. In: Euler C von, Skoglund S, Soderberg U (eds) Structure and function of inhibitory neuronal mechanisms. Pergamon Press, London (Wenner-Gren center international symposium series, vol 10, pp 183–195)

    Google Scholar 

  • Granit R (1970) The basis of motor control: Integrating the activity of muscles, alpha and gamma motoneurones and their leading control systems. Academic Press, New York

    Google Scholar 

  • Granit R (1977) Reconsidering the “alpha-gamma” switch in cerebellar action. In: Rose FR (ed) Physiological aspects of clinical neurology. Blackwell, Oxford, pp 201–213

    Google Scholar 

  • Granit R, Holmgren B, Merton PA (1955) The two routes for excitation of muscle and their subservience to the cerebellum. J Physiol (Lond) 130:213–224

    Google Scholar 

  • Greenwood LF, Sessle BJ (1976) Inputs to trigeminal brain stem neurones from facial, oral, tooth pulp and pharyngolaryngeal tissues: II. Role of trigeminal nucleus caudalis in modulating responses to innocuous and noxious stimuli. Brain Res 117:227–238

    Google Scholar 

  • Grossman Y, Parnas I, Spira ME (1979a) Ionic mechanisms involved in differential conduction of action potentials at high frequency in a branching axon. J Physiol (Lond) 295:307–322

    Google Scholar 

  • Grossman Y, Parnas I, Spira ME (1979b) Differential conduction block in branches of a bifurcating axons. J Physiol (Lond) 295:283–305

    Google Scholar 

  • Grünbaum ASF, Sherrington CS (1903) Observations on the physiology of the cerebral cortex of the anthropoid apes. Proc R Soc (Biol) 72:152–155

    Google Scholar 

  • Grundfest H (1941) The augmentation of the motor reflex discharge in the cooled spinal cord of the cat. Am J Physiol 133:307

    Google Scholar 

  • Handwerker HO, Iggo A, Zimmermann M (1975) Segmental and supraspinal actions on dorsal horn neurons responding to noxious and non-noxious skin stimuli. Pain 1:147–165

    Google Scholar 

  • Hardy JD (1961) Physiology of temperature regulation. Physiol Rev 41:521–606

    Google Scholar 

  • Hart JS (ed) (1969) International symposium on altitude and cold. Fed Proc 28:933–1321

    Google Scholar 

  • Hayward JN, Baker MA (1968) Diuretic and thermoregulatory responses to preoptic cooling in the monkey. Am J Physiol 214:843–850

    Google Scholar 

  • Hayward JN, Ott LH, Stuart DG, Cheshire FC (1965) Peltier biothermodes. Am J Med Electronics 4:11–19

    Google Scholar 

  • Hensel H (1961) Recent advances in thermoreceptor physiology. In: Hannon JP, Viereck E (eds) Neural aspects of temperature regulation. Arctic Aeromedical Laboratory, Fairbanks

    Google Scholar 

  • Herman RM, Byck R (1964) Differential peripheral nerve blockade by procaine and local cold. Clin Pharmacol and Therapeutics 5:848–851

    Google Scholar 

  • Hille B (1977) Ionic basis of resting and action potentials. In: Kandel ER (ed) Handbook of physiology, sect 1, vol 1. American Physiological Society, Bethesda, pp 99–136

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117:500–544

    PubMed  Google Scholar 

  • Hodgkin AL, Katz B (1949) The effect of temperature on the electrical activity of the giant axon of the squid. J Physiol (Lond) 109:240–249

    Google Scholar 

  • Hoff H, Plötzl O (1931) Experimentelle Nachbildung von Anosognosie. Z Gesamte Neurol Psychiatr 137:722–734

    Google Scholar 

  • Holmes G (1938) The cerebellum of man. The Hughlings Jackson memorial lecture. Brain 62:1–30

    Google Scholar 

  • Holmqvist B, Lundberg A, Oscarsson O (1960) Supraspinal inhibitory control of transmission to three ascending spinal pathways influenced by the flexion reflex afferents. Arch Ital Biol 98:60–80

    Google Scholar 

  • Hopkins DA, Lawrence DG (1975) On the absence of a rubrothalamic projection in the monkey with observations on some ascending mesencephalic projections. J Comp Neurol 161:269–294

    Google Scholar 

  • Hore J, Vilis T (1980) Arm movement performance during reversible basal ganglia lesions in the monkey. Exp Brain Res 39:217–228

    Google Scholar 

  • Hore J, Meyer-Lohmann J, Brooks VB (1977) Basal ganglia cooling diables learned arm movements of monkeys in the absence of visual guidance. Science 195:584–586

    Google Scholar 

  • Horel JA, Pytko DE (1982) Behavioral effect of local cooling in temporal lobe of monkeys. J Neurophysiol 47:11–22

    Google Scholar 

  • Horowitz JM (1976) Concurrent neural control of shivering and nonshivering thermogenesis. Isr J Med Sci 12:1082–1085

    Google Scholar 

  • Horvath FE, Buser P (1972) Thalamo-caudate-cortical relationship in synchronized activity. 1. Differentiation between ventral and dorsal spindle systems. Brain Res 39:21–41

    Google Scholar 

  • Horvath FE, Atkin A, Kozlovskaya IB, Fuller DRG, Brooks VB (1970) Effects of cooling the dentate nucleus on alternating bar-pressing performance in monkey. Int J Neurol 7:252–270

    Google Scholar 

  • Hubbard JI, Willis WD (1968) The effects of depolarization of motor nerve terminals upon the release of transmitter by nerve impulses. J Physiol (Lond) 194:381–405

    Google Scholar 

  • Hubbard JI, Jones SF, Landau EM (1971) The effect of temperature change upon transmitter release, facilitation and post-tetanic potentiation. J Physiol (Lond) 216:591–609

    Google Scholar 

  • Hull E (1968) Corticofugal influence in the macaque lateral geniculate nucleus. Vision Res 8:1285–1298

    Google Scholar 

  • Humphrey GL, Orman SS (1979) Removable, conforming device for cooling the cortical surface. Brain Res Bull 4:871–872

    Google Scholar 

  • Ichijo M, Ochs S (1970) Spreading depression of negative wave of direct cortical response and pyramidal tract responses. Brain Res 23:41–56

    Google Scholar 

  • Ito M, Oshima T (1964) The extrusion of sodium from cat spinal motoneurons. Proc R Soc (Biol) 161:109–131

    Google Scholar 

  • Jacobsen CF (1936) Studies of cerebral function in primates. I. The functions of the frontal association areas in monkeys. Comp Psychol Monogr 13:3–60

    Google Scholar 

  • Jasper H, Lamarre Y, Joffroy A (1972) The effect of local cooling of the motor cortex upon experimental Parkinson-like tremor, shivering voluntary movements, and thalamic unit activity in the monkey. In: Frigyesi T, Renvik E, Yahr MD (eds) Corticothalamic projections and senorimotor activities. Raven Press, New York, pp 461–473

    Google Scholar 

  • Jasper H, Shacter DG, Montplaisir J (1970) The effects of local cooling upon spontaneous and evoked electrical activity of cerebral cortex. Can J Physiol Pharmacol 48:640–652

    Google Scholar 

  • Jasper HH (1958) Recent advances in our understanding of ascending activities of the reticular system. In: Jasper HH, Proctor LD, Knighton RS, Noshay WC, Castello RT (eds) Reticular formation of the brain. Little, Brown, Boston, pp 319–331

    Google Scholar 

  • Jeneskog T, Johansson H (1977) The rubro-bulbospinal path. A descending system known to influence dynamic fusimotor neurones and its interaction with distal cutaneous afferents in the control of flexor afferent pathways. Exp Brain Res 27:161–179

    Google Scholar 

  • Jung R, Hassler R (1960) The extrapyramidal motor system. In: Field J, Magoun HW, Hall VE (eds) Neurophysiology. American Physiological Society, Washington. (Handbook of physiology, sect 1, vol 2, pp 83–101)

    Google Scholar 

  • Kalil RE, Chase R (1970) Corticofugal influence on activity of lateral geniculate neurones in the cat. J Neurophysiol 33:459–474

    Google Scholar 

  • Katz B, Miledi R (1965) The effect of temperature on the synaptic delay at the neuromuscular junction. J Physiol (Lond) 181:656–670

    Google Scholar 

  • Katz B, Miledi R (1972) The statistical nature of the acetylcholine potential and its molecular components. J Physiol (Lond) 224:665–699

    Google Scholar 

  • Kennedy PR, Ross H-G (1980a) Chronic implantation of gas cryoprobes in monkeys' brain stem. J Neurosci Meth 2:1–7

    Google Scholar 

  • Kennedy PR, Ross H-G (1980b) X-ray controlled implantation of the brain stem. J Neurosci Methods 2:411–418

    Google Scholar 

  • Kennedy PR, Ross H-G, Brooks VB (1982) Participation of the principal olivary nucleus in neocerebellar motor control Exp Brain Res 47:95–104

    Google Scholar 

  • Kerkut GA, Ridge RMAP (1962) The effect of temperature changes on the activity of the neurones of the snail helix aspersa. Comp Biochem Physiol 5:283–295

    Google Scholar 

  • Kernell D (1966) Input resistance, electrical excitability, and size of ventral horn cells in the cat spinal cord. Science 152:1637–1640

    Google Scholar 

  • Klee M, Pierau F-K, Faber DS (1974) Temperature effects on resting potential and spike parameters of cat motoneurons. Exp Brain Res 19:478–492

    Google Scholar 

  • Klussmann FW (1969) deDer Einfluß der Temperatur auf die afferente und efferente motorische Innervation des Rückenmarks. I. Temperaturabhängigkeit der afferenten und efferenten Spontantätigkeit. Pfluegers Arch 305:295–315

    Google Scholar 

  • Klussmann FW, Henatsch HD (1969) Der Einfluß der Temperatur auf die afferente und efferente motorische Innervation des Rückenmarks. II. Temperaturabhängigkeit der Muskelspindelfunktion. Pfluegers Arch 305:316–339

    Google Scholar 

  • Klussmann FW, Stelter WJ, Spaan G (1969) Temperature sensitivity of spinal motoneurones of the cat. Fed Proc 28:992–995

    Google Scholar 

  • Koizumi K (1955) Tetanus and hyperresponsiveness of the mammalian spinal cord produced by strychnine, guanidine and cold. Am J Physiol 183:35–43

    Google Scholar 

  • Koizumi K, Malcolm JL, Brooks CMcC (1954) Effect of temperature on fascilitation and inhibition of reflex activity. Am J Physiol 179:507–512

    Google Scholar 

  • Koizumi K, Brooks CMcC, Ushiyama J (1959) Hypothermia and reaction patterns of the nervous system. Ann N Y Acad Sci 80:499–456

    Google Scholar 

  • Koizumi K, Ushiyama J, Brooks CMcC (1960) Effect of hypothermia of excitability of spinal neurons. J Neurophysiol 23:421–431

    Google Scholar 

  • Koll W, Haase J, Schutz RM, Mühlberg B (1961) Reflexentladungen der tiefspinalen Katze durch afferente Impulse aus hochschwelligen nociceptiven A-Fasern (post-Fasern) und aus nociceptiven C-Fasern cutaner Nerven. Pfluegers Arch 272:270–289

    Google Scholar 

  • Kraig RP, Nicholson C (1978) Extracellular ionic variations during spreading depression. Neuroscience 3:1045–1059

    Google Scholar 

  • Krauthamer G, Liebeskind J, Salmon-Legagneur A (1967) Reversible deficit on a delayed alternation task during subcortical cooling. J Physiol (Lond) 190:18p–19p

    Google Scholar 

  • Krnjevic K, Miledi R (1959) Presynaptic failure of neuromuscular propagation in rats. J Physiol (Lond) 149:1–22

    Google Scholar 

  • Krnjevic K, Mitchell JF (1961) The release of acetylcholine in the isolated rat diaphragm. J Physiol (Lond) 155:246–262

    Google Scholar 

  • Krnjevic K, Morris ME (1976) Input-output relation of transmission through cuneate nucleus. J Physiol (Lond) 257:791–815

    Google Scholar 

  • Kuffler SW, Nicholls JG, Orkand RK (1966) Physiological properties of glial cells in the nervous system of amphibia. J Neurophysiol 29:768–787

    Google Scholar 

  • Kwan HC, Mackay WA, Murphy JT Wong YC (1977) Simple probe for localized cryogenic blockade in the brain. Physiol Behav 19:429–431

    Google Scholar 

  • Lachat JM, Ruegg DG, Wiesendanger M (1977) Transcortical facilitation of the H-(monosynaptic)-reflex in monkeys. Experientia 33:7

    Google Scholar 

  • Laufer M, Svaetichin G, Mitari G, Fatechand R, Vallecalle E, Villegas J (1961) The effect of temperature, carbon dioxide and ammonia on the neuron-glia unit. In: Jung R, Kornhuber HH (eds) The visual system. Neurophysiology and psychophysics. Springer, Berlin Göttingen Heidelberg, pp 457–463

    Google Scholar 

  • Leão AAP (1944) Spreading depression of activity in the cerebral cortex. J Neurophysiol 7:359–390

    Google Scholar 

  • Leão AAP (1951) The slow voltage variation of cortical spreading depression of activity. Electroencephalogr Clin Neurophysiol 3:315–321

    Google Scholar 

  • Leão AAP (1972) Spreading depression. In: Purpura DP, Penry JK, Tower DB, Walter RD, Woodbury DM (eds) Experimental models of epilepsy. Raven Press, New York, pp 173–196

    Google Scholar 

  • Le Beau J, Dondey M (1964a) Premières observations humaines de repérase de structures cérébrales profondes par refroidissement localisé et réversible au cours des interventions stéréotaxiques. Neurochirurgia (Stuttg) 7:24–33

    Google Scholar 

  • Le Beau J, Dondey M (1964b) Réfrigérations et réchauffements localisés intracérébraux obtenus par effet Peltier. Rev Neurol (Paris) 111:83

    Google Scholar 

  • Le Beau J, Dondey M, Albe-Fessard D, Weil L, Aleonard P (1962a) Bolcage électif et réversible de structures cérébrales par refroidissement localisé. Rev Neurol (Paris) 106:184

    Google Scholar 

  • Le Beau J, Dondey M, Albe-Fessard D (1962b) Détermination de la fonction de certaines structures cérébrales profondes par refroidissmeent localisé et réversible. Rev Neurol (Paris) 107:485–499

    Google Scholar 

  • Le Beau J, Houdart R, Dondey M, Albe-Fessard D (1963) Répérage physiologique de certaines structures cérébrales par le blocage réversible de leurs fonctions au cours d'interventions neurochirurgicales stéréotaxiques. Rev Neurol (Paris) 108:179–180

    Google Scholar 

  • Lewis DV, Schuette WH (1975) Temperature dependence of potassium clearance in the central nervous system. Brain Res 99:175–178

    Google Scholar 

  • Leyton ASF, Sherrington CS (1917) Observations on the excitable cortex of the chimpanzee, orang-utan, and gorilla. Q J Exp Physiol 11:135–222

    Google Scholar 

  • Li C, Ohta T, Ojeman G, Parker L (1968) Hemicooling of the brain by carotid-carotid perfusion. Exp Nerol 20:533–543

    Google Scholar 

  • Llinas R (1979) The role of calcium in neuronal function. In: Schmitt FO, Worden FG (eds) The neurosciences: Fourth study program. MIT, Cambridge MA, pp 555–571

    Google Scholar 

  • Llinas R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol (Lond) 305:197–213

    Google Scholar 

  • Llinas R, Yarom Y (1980) Electrophysiological properties of mammalian inferior olivary cells in vitro. In: Courville J (ed) The inferior olivary nucleus: Anatomy and physiology. Raven Press, New York, pp 3779–388

    Google Scholar 

  • Llinas R, Walton K, Sugimori M (1978) Voltage-clamp study of the effects of temperature on synaptic transmission in the squid. Biol Bull 155:454

    Google Scholar 

  • Lloyd DPC (1943) Reflex action in relation to pattern and periferal source of afferent stimulation. J Neurophysiol 6:111–119

    Google Scholar 

  • Lloyd DPC, Hunt CC, McIntyre AK (1955) Transmission in fractionated monosynaptic spinal reflex systems. J Gen Physiol 38:307–317

    Google Scholar 

  • Lourie H, Holmes T, Weinstein W, Schwart H, O'Leary J (1969) Observations on selective brain cooling in dogs. Arch Neurol 3:163–176

    Google Scholar 

  • Lundberg A (1948) Potassium and the differential thermosensitivity of membrane potential, spike and negative afterpotential in mammalian A-C fibres. Acta Physiol Scand 50:1–67

    Google Scholar 

  • MacKay WA, Murphy JT (1973) Activation of anterior interpositus neurons by forelimb muscle stretch. Brain Res 56:335–339

    Google Scholar 

  • MacKay WA, Murphy JT (1974) Responses of interpositus neurons to passive muscle stretch. J Neurophysiol 37:1410–1423

    Google Scholar 

  • MacKay WA, Murphy JT (1979) Cerebellar modulation of reflex gain. Prog Neurobiol 13:361–417

    Google Scholar 

  • Magoun HW (1963) The waking brain. Thomas, Springfield, p 174

    Google Scholar 

  • Manni E, Mills LW, Dow RS (1963) Reversible cooling of cerebellum in awake, unrestrained rats. J Appl Physiol 18:597–599

    Google Scholar 

  • Mark VH, Chato JC, Eastman FG, Aronow S, Ervin FR (1961) Localized cooling in the brain. Science 134:1520–1521

    Google Scholar 

  • Marshall WH, Essig CF, Dubroff TJ (1951) Relation of temperature of cerebral cortex to spreading depression. J Neurophysiol 14:153–166

    Google Scholar 

  • Massarino R, Trouche E, Beaubaton D (1979) Self-contained dual chronic cryoprobe for deep neural structures. Physiol Behav 22:1021–1023

    Google Scholar 

  • Matthews PBC (1972) Mammalian muscle receptors and their central actions. Arnold, London

    Google Scholar 

  • Meurer K-A, Jesson C, Iriki M (1967) Lältezittern während isolierter Kühlung des Rückenmarks nach Durschneidung der Hinterwurzeln. Pfluegers Arch 293:236–255

    Google Scholar 

  • Meyer-Lohmann J, Conrad B, Matsunami K, Brooks VB (1975) Effects of dentate cooling on precentral unit activity following torque pulse injections into elbow movements. Brain Res 94:237–251

    Google Scholar 

  • Meyer-Lohmann J, Hore J, Brooks VB (1977) Cerebellar participation in generation of prompt arm movements. J Neurophysiol 40:1038–1050

    Google Scholar 

  • Michael CR (1972) Functional organization of cells in superior colliculus of the ground squirrel. J Neurophysiol 35:833–846

    Google Scholar 

  • Miller AD, Brooks VB (1981) Late muscle responses to arm perturbations persist during supraspinal dysfunctions in monkeys. Exp Brain Res 41:146–158

    Google Scholar 

  • Miller AD, Brooks VB (1982) Parallel pathways for movement initiation in monkeys. Exp Brain Res 45:328–332

    Google Scholar 

  • Miller FR (1926) The physiology of the cerebellum. Physiol Rev 6:124–159

    Google Scholar 

  • Mitchell JF, Silver A (1963) The spontaneous release of acetylcholine from the denervated hemidiaphragm of the rat. J Physiol (Lond) 165:117–129

    Google Scholar 

  • Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: Functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97

    Google Scholar 

  • Moseley JI, Ojemann GA, Ward AA Jr (1972a) Unit activity during focal cortical hypothermia in the normal cortex. Exp Neurol 37:152–163

    Google Scholar 

  • Moseley JI, Ojemann GA, Ward AA Jr (1972b) Unit activity in experimental epileptic foci during focal cortical hypothermia. Exp Neurol 37:164–178

    Google Scholar 

  • Mott FW, Sherrington CS (1895) Experiments upon the influence of sensory nerves upon movement and nutrition of the limbs. Proc R Soc Lond (Biol) 57:481–488

    Google Scholar 

  • Munoz-Martinez EJ (1970) Facilitation of cortical cell activity during spreading depression. J Neurobiol 2:47–60

    Google Scholar 

  • Murphy JT, Wong YC, Kwan HC (1974) Distributed feedback systems for muscle control. Brain Res 71:495–505

    PubMed  Google Scholar 

  • Murphy JT, Wong YC, Kwan HC (1975) Afferent-efferent linkages in motor cortex for single forelimb muscles. J Neurophysiol 38:990–1014

    Google Scholar 

  • Naquet R, Denavit M, Lanoir J, Albe-Fessard D (1965) Altérations temporaries ou définitives de zones diencéphaliques chez le chat. Leurs relations avec l'activité EEG corticale et le sommeil. In: Jouvet M (ed) Aspects anatomo-fonctionnels de la physiologie du sommeil. CNRS, Paris, pp 107–131

    Google Scholar 

  • Naquet R, Denavit M, Albe-Fessard D (1966) Comparison entre le rôle du subthalamus et celui des différentes structures bulbomesencéphaliques dans le maintient de la vigilance. Electroencephalogr Clin Neurophysiol 20:149–164

    Google Scholar 

  • Nauta WJH (1964) Some efferent connections of the prefrontal cortex in the monkey. In: Warren JM, Akert K (eds) The frontal granular cortex and behaviour. McGraw-Hill, New York, pp 397–409

    Google Scholar 

  • Negrin J Jr (1971) Hpothermia of the central nervous system. Trans NY Acad Sci 33:557–563

    Google Scholar 

  • Newman EA, Raymond SA (1971) Activity dependent shifts in excitability of frog peripheral nerve axons. Mass Inst Technol Res Lab Electron Tech Rep 102:165–189

    Google Scholar 

  • O'Brien JH, Phillips DS (1976) Recovery of cortical responses following localized cooling in the thalamus. Physiol Behav 17:631–633

    Google Scholar 

  • O'Brien JH, Rosenblum SM (1974) Contribution of nonspecific thalamus to sensory evoked activity in cat postcruciate cortex. J Neurophysiol 3:430–442

    Google Scholar 

  • O'Brien JH, Rosenblum (1979) Influence of thalamic cooling on sensory responses in association cortex. Brain Res Bull 4:91–98

    Google Scholar 

  • Ochs S, Suzuki H (1965) Transmission of direct cortical responses. Electroencephalogr Clin Neurophysiol 19:230–236

    Google Scholar 

  • Ojemann GA, Calvin WH, Ward AA Jr (1978) Intrinsic neural membrane abnormalities in human epileptic foci as inferred from effects of focal cooling. Soc Neurosci Abstr 4:145

    Google Scholar 

  • Olds ME (1966) Effects of electrical stimulation and electrocoagulation in cortex and thalamus on delayed response in monkeys. Exp Neurol 15:37–53

    Google Scholar 

  • Ommaya AK, Baldwin M (1962) Direct extravascular brain cooling in the normothermic animal. Neurology (Minneap) 12:882–895

    Google Scholar 

  • Ommaya AK, Baldwin M (1963) Extravascular local cooling of the brain in man. J Neurosurg 20:8–20

    Google Scholar 

  • Oscarsson O (1980) Functional organization of olivary projection to the cerebellar anterior lobe. In: Courville J, de Montigny C, Lamarre Y (eds) The inferior olivary nucleus, anatomy and physiology. Raven Press, New York, pp 279–289

    Google Scholar 

  • Ozorio de Almeida M (1943) Investigation of epileptiform attacks produced by sudden cooling of frog spinal cord. J Neurophysiol 6:225–232

    Google Scholar 

  • Paintal AS (1965a) Block of conduction in mammalian myelinated nerve fibres by low temperatures. J Physiol (Lond) 180:1–19

    Google Scholar 

  • Paintal AS (1965b) Effects of temperature on conduction in single vagal and saphenous myelinated nerve fibres of the cat. J Physiol (Lond) 180:20–49

    Google Scholar 

  • Paintal AS (1967) A comparison of the nerve impulses of mammalian non-medullated nerve fibres with those of the smallest diameter medullated fibres. J Physiol (Lond) 193:523–533

    Google Scholar 

  • Pasztor E, Kukorelli T (1967) Effect on cortical evoked potentials of local cooling of the cerebral surface. Acta Physiol Acad Sci Hung 31:41–50

    Google Scholar 

  • Patton HD, Amassian VE (1954) Single-and multiple-unit analysis of cortical stage of pyramidal tract activation. J Neurophysiol 17:345–363

    Google Scholar 

  • Phillips CG, Porter R (1977) Corticospinal neurones: Their role in movement. Academic Press, New York

    Google Scholar 

  • Phillis JW, Ochs S (1971) Excitation and depression of cortical neurones during spreading depression. Exp Brain Res 12:132–149

    Google Scholar 

  • Pierau FK, Spaan G (1970) Renshaw inhibition during local spinal cord cooling and warming. Experientia 26:978–979

    Google Scholar 

  • Pierau FK, Klee MR, Klussman FW (1969) Effects of local hypo-and hyperthermia of mammalian spinal motoneurons (Abstr.) Fed Proc 28:1006–1010

    Google Scholar 

  • Pierau FK, Klee MR, Klussman FW (1976) Effect of temperature on postsynaptic potentials of cat spinal motoneurones. Brain Res 114:21–34

    Google Scholar 

  • Proctor F, Landsbergen H (1965) Cryogenic probe for small subcortical lesions. Electroencephalogr Clin Neurophysiol 18:91–92

    Google Scholar 

  • Purpura DP, Grundfest H (1956) Nature of dendritic potentials and synaptic mechanisms in cerebral cortex of cat. J Neurophysiol 19:573–595

    Google Scholar 

  • Quinn KJ, O'Brien JH (1979) Isotherm of alcohol-cooled cryoprobe. Brain Res Bull 4:119–121

    Google Scholar 

  • Raymond SA (1979) Effects of nerve impulses on threshold of frog sciatic nerve fibres. J Physiol (Lond) 290:273–303

    Google Scholar 

  • Raymond SA, Lettvin JY (1978) Aftereffects of activity in peripheral axons as a clue to nervous coding. In: Waxman SG (ed) Physiology and pathobiology of axons. Raven Press, New York, pp 203–225

    Google Scholar 

  • Reed DJ, Miller AD (1978) Thermoelectric peltier device for local cortical cooling. Physiol Behav 20:209–211

    Google Scholar 

  • Rein H (1949) Einführung in die Physiologie des Menschen, 10. Aufl. Springer, Berlin Göttingen Heidelberg, 560 S

    Google Scholar 

  • Renshaw B (1940) Activity in the simplest spinal reflex pathways. J Neurophysiol 3:373–387

    Google Scholar 

  • Reynolds AF Jr, Ojemann GA, Ward AA Jr (1975a) Intracellular recording during focal hypothermia in cat pericruciate cortex. Exp Neurol 46:566–582

    Google Scholar 

  • Reynolds AF Jr, Ojemann GA, Ward AA Jr (1975b) Intracellular recording during focal hypothermia of penicillin and alumina experimental epileptic foci. Exp Neurol 46:583–604

    Google Scholar 

  • Ritchie JM, Straub RW (1956) The effect of cooling in the size of the action potential of mammalian non-medulated fibres. J Physiol (Lond) 134:712–717

    Google Scholar 

  • Rolls ET (1981) Processing beyond the inferior temporal visual cortex related to feeding memory, and striatal function. In: Katsuki, Norgren, Sato (eds) Brain mechanisms of sensation. Wiley, New York, pp 241–269

    Google Scholar 

  • Rosén I, Scheid P (1972) Cerebellar surface cooling influencing evoked activity in cortex and interpositus nucleus. Brain Res 45:580–584

    Google Scholar 

  • Rosenblum SM, O'Brien JH (1977) A cryogenic study of cortical conditioning changes. J Neurophysiol 40:957–967

    Google Scholar 

  • Rosenthal M, Somjen G (1973) Spreading depression, sustained potential shifts, and metabolic activity of cerebral cortex of cats. J Neurophysiol 36:739–749

    Google Scholar 

  • Rougeul A, Buser P (1962) Abolition élective d'une réponse conditionée a la lumière par élimination transitoire de l'aire visuelle chez le chat. Rev Neurol (Paris) 106:188–189

    Google Scholar 

  • Rowe MJ, Sessle BJ (1968) Somatic afferent input to posterior thalamic neurones and their axon projection to the cerebral cortex in the cat. J Physiol (Lond) 196:19–35

    Google Scholar 

  • Salmon-Lagagneur A, Bénita M, Delacour J (1967) Effets de refroidissements localisés de structures cérébrales sur des réponses conditionnées chez le macaque. J Physiol (Paris) 59:293–294

    Google Scholar 

  • Sans A, Raymond J, Marty R (1976) A vestibulothalamic pathway: electrophysiological demonstration in the cat by localized cooling. J Neurosci Res 2:167–174.

    Google Scholar 

  • Schaumberg H, Byck R, Herman R, Rosengart C (1967) Peripheral nerve damage by cold. Arch Neurol 16:103–109

    Google Scholar 

  • Scheibel ME, Scheibel AB (1967) Structural organization of nonspecific thalamic nuclei and their projection toward cortex. Brain Res 6:60–94

    Google Scholar 

  • Schiller PH, Malpeli JG (1977) The effect of striate cortex cooling on area 18 cells in the monkey. Brain Res 126:366–369

    Google Scholar 

  • Schiller PH, Stryker M, Cynader M, Berman N (1974) Response characteristics of single cells in the monkey superior colliculus following ablation or cooling of visual cortex. J Neurophysiol 37:181–194

    Google Scholar 

  • Schiller PH, Malpeli JG, Schein SJ (1979) Composition of geniculostriate input to superior colliculus of the rhesus monkey. J Neurophysiol 42:1124–1133

    Google Scholar 

  • Schmidt RF (1971) Presynaptic inhibition in the vertebrate central nervous system. Rev Physiol Biochem Exp Pharmakol 63:20–101

    Google Scholar 

  • Schmied A, Bénita M, Condé H, Dormont JF (1979) Activity of ventrolateral thalamic neurons in relation to a simple reaction time task in the monkey. Exp Brain Res 36:285–300

    Google Scholar 

  • Schoepfle GM, Erlanger J (1941) The action of temperature on the excitability, spike height and configuration, and the refractory period observed in the responses of single medullated nerve fibers. Am J Physiol 134:694–704

    Google Scholar 

  • Sessle BJ, Hu JW (1981) Raphe-induced suppression of the jaw-opening reflex and single neurons in trigeminal subnucleus oralis, and influence of naloxone and subnucleus caudalis. Pain 10:19–36

    Google Scholar 

  • Seyffarth H, Denny-Brown D (1948) The grasp reflex and the instinctive grasp reaction. Brain 71:109–183

    Google Scholar 

  • Shacter D, Schuckman H (1967) Effect of localized cortical cooling on delayed response performance in the monkey. J Comp Physiol Psychol 63:477–479

    Google Scholar 

  • Sharpless SK, Byck R, Goldfarb J, Steinhertz P (1966) Reversible block of thalamic nuclei by cold in unrestrained animals (Abstr.). 2nd Int Congress Biophysics, Vienna, vol 437

    Google Scholar 

  • Sherk H (1978) Area 18 cell responses in cat during reversible inactivation of area 17. J Neurophysiol 41:204–215

    Google Scholar 

  • Sherrington CS (1924) Notes on temperature after spinal transection, with some observations on shivering. J Physiol (Lond) 53:405–424

    Google Scholar 

  • Siegfried J (1965) Panel discussion on utilisation of localized cooling in neurosurgery. Confin Neurol 26:41–44

    Google Scholar 

  • Siegfried J, Ervin FR, Miyazaki Y, Mark VH (1962) Localized cooling of the central nervous system. I. Neurophysiological studies in experimental animals. J Neurosurg 19:840–852

    Google Scholar 

  • Simon E, Rautenberg W, Thauer R, Iriki M (1963) Die Auslösung von Kältezittern durch lokale Kühlung im Wirbelkanal. Pfluegers Arch 281:309–331

    Google Scholar 

  • Sinclair DC, Hinshaw JR (1951) Sensory changes in nerve blocks induced by cooling. Brain 74:318–335

    Google Scholar 

  • Skinner JE, Lindsley DB (1967) Electrophysiological and behavioral effects of blockade of the nonspecific thalamo-cortical system. Brain Res 6:95–118

    Google Scholar 

  • Skinner JE, Lindsley DB (1968) Reversible cryogenic blockade of neural function in the brain of unrestrained animals. Science 161:595–597

    Google Scholar 

  • Skinner JE, Lindsley DB (1971) Enhancement of visual and auditory evoked potentials during blockade of the non-specific thalamo-cortical system. Electroencephalogr Clin Neurophysiol 31:1–6

    Google Scholar 

  • Skinner JE, Yingling CD (1977) Reconsideration of the cerebral mechanisms underlying selective attention and slow potential shifts. In: Desmedt JE (ed) Attention, voluntary contraction and event related cerebral potentials. Karger, Basel (Progress in clinical neurophysiology, vol 1, pp 30–69)

    Google Scholar 

  • Somjen GG (1979) Extracellular potassium in the mammalian central nervous system. Annu Rev Physiol 41:159–177

    Google Scholar 

  • Sosenkov VA, Chirkov VD (1970) Electrical activity of neurons in the cat cortex during cooling. Neurofiziologiya 2:59–63

    Google Scholar 

  • Spector NH (1969) Thermodes and theories. Med Coll Virginia Quarterly 5:20–26

    Google Scholar 

  • Stefani A (1895) De l'action de la température sur les centres bulbaires du coeur et des vaisseaux. Arch Ital Biol 24:424–437

    Google Scholar 

  • Stein BE, Arigbede MO (1972) Unimodal and multimodal response properties of neurones in the cat's superior colliculus. Exp Neurol 36:179–196

    Google Scholar 

  • Stein JF (1976) The effect of cooling parietal lobe areas 5 and 7 upon voluntary movement in awake rhesus monkeys. J Physiol (Lond) 258:62–63P

    Google Scholar 

  • Stein JF (1977) Neural mechanisms in visually controled arm movements. In: Chivers DJ, Herbert J (eds) Behavior. Academic Press, London (Recent advances in primatology, vol 1, pp 687–696)

    Google Scholar 

  • Stein JF (1978) The effects of transient cooling of parietal cortex and cerebellar nuclei during tracking tasks. In: Desmedt J (ed) Cerebral motor control in man: long loop mechanisms. Karger, Basel (Progress in clinical neurophysiology, vol 1, pp 107–122)

    Google Scholar 

  • Stein JF, Wattam-Bell J (1975) The effect of cooling nucleus interpositus of the cerebellum in rhesus monkeys on the tracking of a visual target. J Physiol (Lond) 252:47–48P

    Google Scholar 

  • Stella G (1944a) Sul meccanismo della rigidita de decerebrazione in arti deafferentati. Atti Soc Med Chir 22:5–16

    Google Scholar 

  • Stella G (1944b) Influenza del cerveletto sulla rigidita da decerebrazione. Atti Soc Med Chir 22:17–21

    Google Scholar 

  • Stelter WJ, Klussmann FW (1969) Der Einfluß der Rückenmarkstemperatur auf die Dehnungsantwort tonischer und phasischer α-Motoneurone. Pfluegers Arch 309:310–327

    Google Scholar 

  • Steriade M (1978) Cortical long-axoned cells and putative interneurones during the sleep-waking cycle. Behav Brain Sci 3:465–514

    Google Scholar 

  • Stuart DG, Ott LH, Cheshire FC (1962) Thermal electrodes based on “Peltier” effect. Electroencephalogr Clin Neurophysiol 14:132

    Google Scholar 

  • Suda I, Koizumi K, Brooks CMcM (1957) Analysis of effects of hypothermia on central nervous system responses. Am J Physiol 189:373–380

    Google Scholar 

  • Swadlow HA, Kocsis JD, Waxman SG (1980) Modulation of impulse conduction along the axonal tree. Annu Rev Biophys Bioeng 9:143–179

    Google Scholar 

  • Tanche M, Chatonnet J, Cabanac M (1961) Description et utilisation d'un nouvel appareil a refroidissement cérebral localisé. J Med Lyon 980:13–15

    Google Scholar 

  • Taylor AC (ed) (1959) Hypothermia. Ann NY Acad Sci 80:285–550

    Google Scholar 

  • Thach WT, Perry G, Schieber M (1981) Cerebellar output: body map and muscle spindles. In: Palay S, Chan-Palay V (eds) The cerebellum: New vistas. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Thomas R (1969) Membrane current and intracellular sodium changes in a snail neurone during extrusion of injected sodium. J Physiol (Lond) 201:495–514

    Google Scholar 

  • Thompson WD, Stoney SD Jr, Asanuma H (1970) Characteristics of projections from primary sensory cortex to motorsensory cortex in cats. Brain Res 22:15–27

    Google Scholar 

  • Tönnies JF (1938) Reflex discharge from the spinal cord over the dorsal roots. J Neurophysiol 1:378–390

    Google Scholar 

  • Tönnies JF (1939) Conditioning of afferent impulses by reflex discharge over the dorsal roots. J Neurophysiol 2:515–525

    Google Scholar 

  • Tönnies JF, Jung R (1948) Über rasch wiederholte Entladungen der Motoneurone und die Hemmungsphase des Beugereflexes. Pfluegers Arch 250:667–693

    Google Scholar 

  • Towe AL (1973) Somatosensory cortex: descending influences on ascending systems. In: Iggo A (ed) Somatosensory system. Springer, Berlin Heidelberg New York (Handbook of sensory physiology, vol II, pp 701–718)

    Google Scholar 

  • Trendelenburg W (1910a) Untersuchungen über reizlose vorübergehende Ausschaltung am Zentralnervensystem. I. Vorläufiger Bericht. Pfluegers Arch 133:305–312

    Google Scholar 

  • Trendelenburg W (1910b) Ausschaltung am Zentralnervensystem. II. Zur Lehre von den bulbären und spinalen Atmungs-und Gefäßzentren. Pfluegers Arch 135:469–505

    Google Scholar 

  • Trendelenburg W (1910c) Der Einfluß der höheren Hirnteile auf die Reflextätigkeit des Rückenmarks. Pfluegers Arch 136:429–442

    Google Scholar 

  • Trendelenburg W (1911) Untersuchungen über reizlose vorübergehende Ausschaltung am Zentralnervensystem. III. Die Extremitätenregion der Großhirnrinde. Pfluegers Arch 137:515–544

    Google Scholar 

  • Trouche E, Beaubaton D (1980) Initiation of a goal-directed movement in the monkey. Role of the cerebellar dentate nucleus. Exp Brain Res 40:311–321

    Google Scholar 

  • Trouche E, Beaubaton D, Amato G, Legallet E, Zenatti A (1979) The role of the internal pallidal segment on the execution of a goal directed movement. Brain Res 175:362–365

    Google Scholar 

  • Udo M, Oda Y, Tanaka K, Horikawa J (1976) Cerebellar control of locomotion investigated in cats: Discharge from deiters' neurones, EMG and limb movements during local cooling of the cerebellar cortex. Prog Brain Res 44:445–459

    Google Scholar 

  • Udo M, Matsukawa K, Kamei H (1979) Effects of partial cooling of cerebellar cortex at lobules V and IV of the intermediate part in the decerebrate walking cats under monitoring vertical floor reaction forces. Brain Res 160:559–564

    Google Scholar 

  • Udo M, Matsukawa K, Kamei H, Oda Y (1980) Cerebellar control of locomotion: Effects of cooling cerebellar intermediate cortex in high decerebrate and awake walking cats. J Neurophysiol 44:119–134

    Google Scholar 

  • Uno M, Kozlovskaya IB, Brooks VB (1973) Effects of cooling the interposed nuclei on tracking-task performance in monkeys. J Neurophysiol 36:996–1003

    Google Scholar 

  • Uyeda AA, Fuster JM (1967) Effects of cooling “association cortex” on visual evoked potentials. Psychol Rep 20:377–378

    Google Scholar 

  • Van Harreveld A (1959) Components in brain extracts causing spreading depression of cerebral cortical activity and contraction of crustacean muscle. J Neurochem 3:300–315

    Google Scholar 

  • Van Harreveld A (1966) Brain tissue electrolytes. Butterworth, Washington

    Google Scholar 

  • Vilis T, Hore J (1977) Effects of changes in mechanical state of limb on cerebellar intention tremor. J Neurophysiol 40:1214–1224

    Google Scholar 

  • Vilis T, Hore J (1980) Central neural mechanisms contributing to cerebellar tremor produced by limb perturbations. J Neurophysiol 43:279–291

    Google Scholar 

  • Vilis T, Hore J (1981a) Characteristics of nystagmus produced by reversible lesions of the medial cerebellar nuclei in the alert monkey. Acta Otolaryngol (Stockh) 91:267–274

    Google Scholar 

  • Vilis T, Hore J (1981b) Characteristics of saccadic dysmetria in monkeys during reversible lesions of the medial cerebellar nuclei. J Neurophysiol 46:828–838

    Google Scholar 

  • Vilis T, Hore J, Meyer-Lohmann J, Brooks VB (1976) Dual nature of the precentral responses to limb perturbations revealed by cerebellar cooling. Brain Res 117:336–340

    Google Scholar 

  • von Monakow C (1914) Die Lokalisation im Großhirn (und der Abbau der Funktion durch kortikale Herde). Bergmann, Wiesbaden

    Google Scholar 

  • Walker EA (1940) The medial thalamic nucleus. A comparative anatomical, physiological and clinical study of the nucleus medialis dorsalis thalami. J Comp Neurol 73:87–115

    Google Scholar 

  • Wall PD (1958) Excitability changes in afferent fiber terminations and their relation to slow potentials. J Physiol (Lond) 142:1–21

    Google Scholar 

  • Wall PD (1967) The laminar organization of dorsal horn and effects of descending impulses. J Physiol (Lond) 188:403–423

    Google Scholar 

  • Wall PD (1977) The presence of ineffective synapses and the circumstances which unmask them. Phil Trans Roy Soc Lond B 278:361–372

    Google Scholar 

  • Wall PD, Lettvin JY, McCulloch WS, Pitts WS (1956) Factors limiting the maximal impulse transmitting ability of an afferent system of nerve fibers. In: Cherry C (ed) Information theory. 3rd London symposium. Butterworth, London, pp 329–344

    Google Scholar 

  • Waller HJ, Feldman SM (1967) Somatosensory thalamic neurons: effects of cortical depression. Science 157:1074–1077

    Google Scholar 

  • Weight FF, Erulkar SD (1976) Synaptic transmission and effects of temperature at the squid giant synapse. Nature 261:720–722

    Google Scholar 

  • Weil L, Chanteur J, Dondey M (1961) Dispositif pour le refroidissement contrôlé de certaines structures cérébrales profondes. CR Acad Sci (Paris) 252:2947–2949

    Google Scholar 

  • Wendt R, Albe-Fessard D (1962) Sensory responses of the amygdala with special reference to somatic afferent pathways. Colloq Int CNRS 107:171–200

    Google Scholar 

  • Westerfield M, Joyner RW, Moore JW (1978) Temperature-sensitive conduction failure at axonal branch points. J Neurophysiol 41:1–10

    Google Scholar 

  • Wickelgren BG, Sterlin P (1969) Influence of visual cortex on receptive fields in the superior colliculus of the cat. J Neurophysiol 32:16–23

    Google Scholar 

  • Wiesendanger M (1978) Comments on the problem of transcortical reflexes. J Physiol (Paris) 74:325–330

    Google Scholar 

  • Willis WD (1979a) Supraspinal control of ascending pathways. In: Granit R, Pompeiano O (eds) Reflex control of posture and movement. Elsevier/North-Holland, Amsterdam, pp 163–174

    Google Scholar 

  • Willis WD (1979b) Physiology of dorsal horn and spinal cord pathways related to pain. In: Beers RF Jr, Bassett EG (eds) Mechanisms of pain and analgesic ocmpounds. Raven Press, New York, pp 143–156

    Google Scholar 

  • Yu J (1972) The pathway mediating ipsilateral limb hyperflexion after cerebellar paravermal cortical ablation or cooling in cats. Exp Neurol 36:549–562

    Google Scholar 

  • Yu J, Tarnecki R, Chambers WW, Liu CN, Konorski J (1973) Mechanisms mediating ipsilateral limb hyperflexion after cerebellar paravermal cortical ablation or cooling. Exp Neurol 38:144–156

    Google Scholar 

  • Zacharova D, Zachar J (1961) Initiation of spreading cortical depression by local cooling of the cerebral cortex. Physiol Bohemoslov 10:332–320

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag

About this chapter

Cite this chapter

Brooks, V.B. (1983). Study of brain function by local, reversible cooling. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 95. Reviews of Physiology, Biochemistry and Pharmacology, vol 95. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0034097

Download citation

  • DOI: https://doi.org/10.1007/BFb0034097

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11736-0

  • Online ISBN: 978-3-540-39476-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics