Skip to main content

Central chemosensitivity: A respiratory drive

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 90

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 90))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addington WW, Pfeffer SH, Gaensler EA (1969) Obesity and alveolar hypoventilation. Respiration 26:214–225

    Google Scholar 

  • Adolph EF, Naberschnig A, Orchard DP (1961) Ventilation of lung in deeply hypothermic rats. J Appl Physiol 16:819–826

    Google Scholar 

  • Ahmad HR (1976) Nicht-respiratorische Mechanismen der Säure-Basen-Homoiostase der extracellulären Flüssigkeit des Gehirns. Ph D Dissertation (Biology). Ruhr-Universität Bochum

    Google Scholar 

  • Ahmad HR, Berndt J, Loeschcke HH (1976) Bicarbonate exchange between blood, brain extracellular fluid and brain cells at maintained pCO2. In: Loeschcke HH (ed) Acid base homeostasis of the brain extracellular fluid and the respiratory control system. Thieme, Stuttgart, pp 19–27

    Google Scholar 

  • Ahmad HR, Loeschcke HH, Woidtke HH (1978) Three compartments model for the bicarbonate exchange of the brain extracellular fluid with blood and cells. In: Fitzgerald RS, Gautier H, Lahiri S (eds) Regulation of respiration during sleep and anaesthesia. Plenum Press, New York, London, pp 195–209

    Google Scholar 

  • Alexander JK, West JR, Wood JA, Richards DW (1955) Analysis of respiratory response to carbon dioxide inhalation in varying clinical states of hypercapnia, anoxia, and acid-base derangement. J Clin Invest 34:511–532

    Google Scholar 

  • Amendt K, Czachurski J, Dembowski K, Seller H (1978) Neurones within the ‘chemosensitive area’ on the ventral surface of the brainstem which project to the intermediolateral column. Pfluegers Arch 375:289–292

    Google Scholar 

  • Anitschkow SV (1936) Atemreflexe bei intravenöser Einführung von Ammoniumchlorid. Arch Int Pharmacodyn Ther 54:193–200

    Google Scholar 

  • Asmussen E, Nielsen M (1948) Studies on the initial changes in respiration at the transition from rest to work and from work to rest. Acta Physiol Scand 16:270–285

    Google Scholar 

  • Åström A (1952) On the action of combined carbon dioxide excess and oxygen deficiency in the regulation of breathing. Acta Physiol Scand (Suppl) 27:98

    Google Scholar 

  • Augustinsson KB (1948) Cholinesterase. A study in comparative enzymology. Acta Physiol Scand (Suppl) 17:52

    Google Scholar 

  • Banus MG, Cormann HH, Perto VP, Popkin GL (1944) The sensitivity of the respiration center to hydrogen ion concentration. Am J Physiol 142:121

    Google Scholar 

  • Bellville JW, Howland WS, Seed JC, Houde RW (1959) Effect of sleep on the respiratory response to CO2. Anesthesiology 20:628–634

    Google Scholar 

  • Benzinger Th, Opitz E, Schoedel W (1938) Atmungserregung durch Sauerstoffmangel. Pfluegers Arch 241:71–77

    Google Scholar 

  • Berger AJ, Krasney JA, Dutton RE (1973) Respiratory recovery from CO2 breathing in intact and chemodenervated awake dogs. J Appl Physiol 35:35–41

    Google Scholar 

  • Berger AJ, Mitchell RA, Severinghaus JW (1977a) Regulation of respiration (First of three parts). N Engl J Med 297:92–97

    Google Scholar 

  • Berger AJ, Mitchell RA, Severinghaus JW (1977b) Regulation of respiration (Second of three parts). N Engl J Med 297:138–143

    Google Scholar 

  • Berger AJ, Mitchell RA, Severinghaus JW (1977c) Regulation of respiration (Third of three parts). N Engl J Med 297:194–201

    Google Scholar 

  • Berger W, Berndt J, Berger K (1971) Die Antwort der Atmung auf isolierte Änderung des Liquor-pH: Untersuchungen an anaesthesierten und decerebrierten Katzen vor und während Vagusblockade. Pfluegers Arch 325:287–304

    Google Scholar 

  • Berman AL (1968) The brain stem of the cat. A cytoarchitectonic atlas with coordinates. University of Wisconsin Press, Madison

    Google Scholar 

  • Berndt J, Fenner A, Berger K (1969) Influence of calcium and magnesium on the respiratory response to changes in CSF pH. Respir Physiol 7:216–229

    Google Scholar 

  • Berndt J, Berger W, Trouth CO (1970) Respiratory and circulatory effects of 100 meq/l potassium or 2% procaine in the cerebrospinal fluid of cats. Pfluegers Arch 321:346:363

    Google Scholar 

  • Berndt J, Berger W, Mückenhoff K (1972a) Untersuchungen zum zentralen chemosensiblen Mechanismus der Atmung. I. Die Bestimmung des extracellulären pH im Gehirngewebe. Pfluegers Arch 332:127–145

    Google Scholar 

  • Berndt J, Berger W, Berger K, Schmidt M (1972b) Untersuchungen zum zentralen chemosensiblen Mechanismus der Atmung. II. Die Steuerung der Atmung durch das extracelluläre pH im Gewebe der Medulla oblongata. Pfluegers Arch 332:146–170

    Google Scholar 

  • Berndt J, Berger W, Berger K, Schmidt M (1972c) Untersuchungen zum zentralen chemosensiblen Mechanismus der Atmung. III. Die Wirkung starker Änderungen des Liquor-pH (pH 5.4–7.7) bei Katzen vor und nach Vagotomie. Pfluegers Arch 332:171–183

    Google Scholar 

  • Berndt J, Berger W, Berger K, Schmidt M (1972d) Untersuchungen zum zentralen chemosensiblen Mechanismus der Atmung. IV. Beobachtungen an anaesthesierten und dezerebrierten Katzen. Pfluegers Arch 332:184–197

    Google Scholar 

  • Bertrand F, Hugelin A, Jutier P (1967) Analyse quantitative des effects du réveil et de PACO 2 sur les ondes électrocortigraphiques dans la bande de 20 á 70 Hz. J Physiol (Paris) (Suppl 19) 59:215

    Google Scholar 

  • Betz E (1972) Cerebral blood flow: Its measurement and regulation. Physiol Rev 52:595–630

    Google Scholar 

  • Betz E (1976a) Cerebral blood flow and acid-base homeostasis of the cerebral tissue. In: Loeschcke HH (ed) Acid-base homeostasis of the brain-extracellular fluid and the respiratory control system. Thieme, Stuttgart, pp 44–49

    Google Scholar 

  • Betz E (1976b) Ionic interaction in pial vascular smooth muscles. In: Betz E (ed) Ionic action on vascular smooth muscle. Springer, Berlin Heidelberg New York, pp 75–77

    Google Scholar 

  • Betz E, Csornai M (1978) Action and interaction of perivascular H+, K+ and Ca++ on pial arteries. Pfluegers Arch 374:67–72

    Google Scholar 

  • Birchfield R, Sieker H, Heyman A (1958) Alterations in blood gases during natural sleep and narcolepsy. Neurology (Minneap) 8:107

    Google Scholar 

  • Biscoe TJ, Sampson SR (1968) Rhythmical and non-rhythmical spontaneous activity recorded from the central cut end of the sinus nerve. J Physiol (Lond) 196:327–338

    Google Scholar 

  • Biscoe TJ, Sampson SR (1970) Responses of cells in the brain stem of the cat to stimulation of the sinus, glossopharyngeal, aortic and superior laryngeal nerves. J Physiol (Lond) 209:359–373

    Google Scholar 

  • Biscoe TJ, Taylor A (1963) The discharge pattern recorded in chemoreceptor afferent fibres from the cat carotid body with normal circulation and during perfusion. J Physiol (Lond) 168:332–334

    Google Scholar 

  • Bisgard GE, Vogel JH (1971) Hyperventilation and pulmonary hypertension in calves after carotid body excision. J Appl Physiol 31:431–437

    Google Scholar 

  • Bisgard GE, Forster HV, Byrnes B, Stanek K, Klein J, Manohar M (1978) Cerebrospinal fluid acid-base balance during muscular exercise. J Appl Physiol 45/1:94–101

    Google Scholar 

  • Bishop PO (1964) Properties of afferent synapses and sensory neurones in the lateral geniculate nucleus. Int Rev Neurobiol 6:191–255

    Google Scholar 

  • Bolton DPB, Herman S (1974) Ventilation and sleep state in the newborn. J Physiol (Lond) 240:67–77

    Google Scholar 

  • Borison HL, McCarthy LE (1973) CO2 ventilatory response time obtained by inhalation step forcing in cerebrate cats. J Appl Physiol 34/1:1–7

    Google Scholar 

  • Bousquet P (1974) Etude des mécanismes de l'action hypotensive de la Clonidine: approche pharmacologique des centres vasomoteurs bulbaires. MD dissertation, University Louis Pasteur, Strasbourg

    Google Scholar 

  • Bousquet P, Feldman J, Velly J, Block R (1975) Role of the ventral surface of the brain stem in the hypotensive action of clonidine. Eur J Pharmacol 34:151–156

    Google Scholar 

  • Bouverot P (1976) Arterial chemosensitivity and CSF acid-base status of awake dogs at low and high altitude. In: Loeschcke HH (ed) Acid-base homeostasis of the brain extracellular fluid and the respiratory control system. Thieme, Stuttgart, pp 81–87

    Google Scholar 

  • Bouverot P, Bureau M (1975) Ventilatory acclimatization and csf acid-base balance in carotid chemodenervated dogs at 3550 m. Pfluegers Arch 361:17–23

    Google Scholar 

  • Bouverot P, Flandrois R, Grandpierre R (1961) A propos des méchanism d'action chemoreflex ou reflex central du “stimulus CO2” de la ventilation. CR Acad Sci (D) (Paris) 252:790

    Google Scholar 

  • Bouverot P, Puccinelli R, Flandrois R, Vaurelle A (1963) Effects respiratoires de la section chronique des nerfs de Hering cher le chien éveillé. CR Soc Biol (Paris) 157:2045–2047

    Google Scholar 

  • Bouverot P, Flandrois R, Puccinelli R, Dejours P (1965) Etude du role des chémorecepteurs artériels dans la régulation de la respiration pulmonaire chez le chien éveillé. Arch Int Pharmacodyn Ther 157:253–271

    Google Scholar 

  • Brettschneider H, Ullah Z, Dermietzel R (1974) Die Feinstruktur eines zentralen Chemo-Rezeptors der Atmung. Verh Anat Ges 68:409–417

    Google Scholar 

  • Brightman MW, Albers RW (1959) Species differences in the distribution of extraneuronal cholinesterase within the vertebrate central nervous system. J Neurochem 4:244–250

    Google Scholar 

  • Brooks CMcC, Eccles JC (1947) A study of the effects of anaesthesia and asphyxia on the monosynaptic pathway through the spinal cord. J Neurophysiol 10:349–360

    Google Scholar 

  • Brown AM (1974) Carbon dioxide action on neuronal membranes. In: Nahas G, Schaefer KE (eds) Carbon dioxide and metabolic regulations. Springer, Berlin Heidelberg New York, pp 81–86

    Google Scholar 

  • Brown AM, Berman PR (1970) Mechanism of excitation of aplasia neurons by carbon dioxide. J Gen Physiol 56:543–558

    Google Scholar 

  • Bryan HM, Hagan R, Gulston G, Bryan AC (1976) CO2 response and sleep state in infants. Clin Res 24:689

    Google Scholar 

  • Bryan MW, Bryan AC (1979) Respiration during sleep in infants. Wenner-Gren Cent Int Symp Ser 32:457–465

    Google Scholar 

  • Buelow K (1963) Respiration and wakefulness in man. Acta Physiol Scand 59:1–74

    Google Scholar 

  • Burwell CS, Robin ED, Whaley RD, Bickelmann AG (1956) Extreme obesity associated with alveolar hypoventilation — pickwickian syndrome. Am J Med 811–818

    Google Scholar 

  • Cakar L, Terzioglu M (1976) The response of the chemosensitive areas of the cat to the breathing of hypercapnic gas mixtures. Bull Physiol Pathol Resp 12(6):224

    Google Scholar 

  • Carpenter DO, Hubbard JH, Humphrey DR, Thompson H, Marshall WH (1974) Carbon dioxide effects on nerve cell function. In: Nahas G, Schaefer KE (eds) Carbon dioxide and metabolic regulations. Springer, Berlin Heidelberg New York, pp 63–80

    Google Scholar 

  • Carroll D (1974) Sleep periodic breathing and snoring in the aged: Control of ventilation in the aging and diseases respiratory system. J Am Geriatr Soc 22/7:307–315

    Google Scholar 

  • Chalazonitis N (1974) Simultaneous recordings of pH, PCO2, an neuronal activity during hypercapnic transients (identifiable neurons of aplasia). In: Nahas G, Schaefer KE (eds) Carbon dioxide and metabolic regulation. Springer, Berlin Heidelberg New York, pp 63–80

    Google Scholar 

  • Cherniak NS, Edelman NH, Lahiri S (1970/71) Hypoxia and hypercapnia as respiratory stimulants and depressants. Respir Physiol 11:113–126

    Google Scholar 

  • Cherniak NS, Euler C v, Homma I, Kao FF (1978a) Some effects of graded changes in central chemoreceptor input by local temperature changes on the ventral surface of medulla. In: Fitzgerald RS, Gautier H, Lahiri S (eds) The regulation of respiration during sleep and anesthesia. Adv Exp Med Biol 99:397–402

    Google Scholar 

  • Cherniak NS, Euler C v, Homma I, Kao FF (1978b) Effects of increased respiratory controller gain during hypoxia and hypercapnia on periodic breathing in cats. In: Fitzgerald RS, Gautier H, Lahiri S (eds) The regulation of respiration during sleep and anesthsia. Adv Exp Med Biol 99:423–431

    Google Scholar 

  • Cherniak NS, Euler C v, Homma I, Kao FF (1979a) Graded changes in central chemoreceptor input by local temperature changes on the ventral surface of medulla. J Physiol (Lond) 287:191

    Google Scholar 

  • Cherniak NS, Euler C v, Homma I, Kao FF (1979b) Animal models of Cheyne-Stokes breathing. Wenner-Gren Cent Int Symp Ser 32:417–425

    Google Scholar 

  • Cherniak NS, Euler C v, Homma I, Kao FF (1979c) Experimentally induced Cheynestokes breathing. Respir Physiol 37:185–200

    Google Scholar 

  • Chiesa A, Balbi L, Dolcetti A, Motta PE (1970) Un caso di ipoventilazione alveolare primitiva in sogetto non obeso. Minerva Med 61 (33): 1755–1761

    Google Scholar 

  • Clark SL (1934) Innervation of the choroid plexuses and to blood vessels within the central nervous system. J Comp Neurol 60:21–35

    Google Scholar 

  • Cohen JA, Osterbaan RA (1963) The interaction of acetylcholinesterase with substrate. In: Koelle GB (ed) Cholinesterase and Anticholinesterase agents. Chapter 7, The active side of acetylcholinesterase and related esterases and its reactivity towards substrates and inhibitors. Springer, Berlin Göttingen Heidelberg (Handbuch der experimentellen Pharmakologie XV, S 300–316)

    Google Scholar 

  • Cohen MI (1968) Discharge patterns of brain-stem respiratory neurons in relation to carbon dioxide tension. J Neurophysiol 31:142–165

    Google Scholar 

  • Cohen MI (1971) Switching of the respiratory phases and evoked phrenic responses produced by rostral pontine electrical stimulation. J. Physiol (Lond) 217:133–158

    Google Scholar 

  • Cohen MI (1973) Synchronization of discharge, spontaneous and evoked, between inspiratory neurons. Acta Neurobiol Exp (Warsz) 33:189–218

    Google Scholar 

  • Cohen MI (1979) Neurogenesis of respiratory rhythm in the mammal. Physiol Rev 59:1105–1173

    Google Scholar 

  • Cohen MI, Hugelin A (1965) Suprapontine reticular control of intrinsic respiratory mechanisms. Arch Ital Biol 103:317–334

    Google Scholar 

  • Cohen MI, Piercey MF, Gootman PM, Wolotsky P (1976) Respiratory rhythmicity in the cat. Fed Proc 35:1967–1974

    Google Scholar 

  • Comroe JH (1943) The effects of direct chemical and electrical stimulation of the respiratory center in the cat. Am J Physiol 139:490–498

    Google Scholar 

  • Comroe JH (1944) The hyperpnoea of muscular exercise. Physiol Rev 24:319

    Google Scholar 

  • Comroe JH (1975) Frankenstein, Pickwick, and Ondine. Am Rev Respir Dis 111:689–692

    Google Scholar 

  • Comroe JH, Schmidt CF (1938) The part played by reflexes from the carotid body in the chemical regulation of respiration in the dog. Am J Physiol 121:75

    Google Scholar 

  • Comroe JH, Schmidt CF (1943) Reflexes from the limbs as a factor in the hyperpnea of muscular exercise. Am J Physiol 138:536–547

    Google Scholar 

  • Comroe JH, Bahnson ER, Coates EO (1950) Mental changes occurring in chronically anoxemic patients during oxygen therapy. JAMA 143:1044–1048

    Google Scholar 

  • Coote JH, McLeod VH (1974) The influence of bulbospinal monoaminergic pathways on sympathetic nerve activity. J Physiol (Lond) 241:453–475

    Google Scholar 

  • Cozine RA, Ngai SH (1967) Medullary surface chemoreceptors and regulation of respiration in the cat. J Appl Physiol 22:117–121

    Google Scholar 

  • Cragg P, Patterson L, Purves MJ (1977) The pH of brain extracellular fluid in the cat. J Physiol (Lond) 272:137–166

    Google Scholar 

  • Cunningham DJC (1963) Regulation of breathing in exercise. Circ Res (Suppl) 1:20–21

    Google Scholar 

  • Cunningham DJC (1973) The control system regulating breathing in man. Q Rev Biophys 6(4):433–483

    Google Scholar 

  • Cunningham DJC, Lloyd BB (eds) (1963) The regulation of human respiration. Blackwell, Oxford

    Google Scholar 

  • Daily WIR, Klaus M, Meyer HBP (1969) Apnea in premature infants: monitoring, incidence, heart rate changes, and an effect of environmental temperature. Pediatrics 43:510–518

    Google Scholar 

  • Dautrebande L, Maréchal R (1933) L'action d'un nouvel éther de al choline chez le chien. CR Soc Biol (Paris) 113:76

    Google Scholar 

  • Davies RO (1980) Evidence that neural paths from the caudal and cranial chemoreceptor zones of the ventral medulla converge in the intermediate zone. Proc Int Un Physiol Sci 14:371

    Google Scholar 

  • Davies RO, Loeschcke HH (1977a) Response of phrenic nerve to electrical stimulation of medullary chemosensitive areas and carotid sinus nerve. Pfluegers Arch 368:R39

    Google Scholar 

  • Davies RO, Loeschcke HH (1977b) Neural activity evoked by electrical stimulation on the chemosensitive areas on the ventral medullary surface. Proc Int Un Physiol Sci 13:164

    Google Scholar 

  • Dejours P (1959) La régulation de la ventilation au cours de l'exercise musculaire chez l'homme. J Physiol (Paris) 51:163–261

    Google Scholar 

  • Dejours P (1962) Chemoreflexes in breathing. Physiol Rev 42:335–358

    Google Scholar 

  • Dejours P (1963) The regulation of breathing during muscular exercise in man. A neurohumoral theory. In: Cunningham DJC, Lloyd BB (eds) The regulation of human respiration. Blackwell, Oxford, pp 535–547

    Google Scholar 

  • Dejours P (1964) Control of respiration in muscular exercise. Handb Physiol 1/3:631–648

    Google Scholar 

  • Dejours P, Raynaud J, Guenod CL, Labrousse Y (1955) Modifications instantanées de la ventilation au début et à l'arrêt de l'exercise musculaire. Interpreétation. J Physiol (Paris) 47:155–159

    Google Scholar 

  • Del Castillo J, Engbaek L (1954) The nature of neuromuscular block produced by magnesium. J Physiol (Lond) 124:370–384

    Google Scholar 

  • Dell P, Bonvallet M (1954) Contrôle direct et réflexe de l'activité du système réticulé activateur ascendant du tronc cérébral par l'oxygène et le gaz carbonique du sang. CR Soc Biol 148:855–858

    Google Scholar 

  • Dembowski K, Lackner K, Czachurski Z, Seller H (in press) Tonic catecholaminergic inhibition of the spinal somato-sympathetic reflex with origin in the ventro-lateral medulla oblongata. J Auto Nerv Syst

    Google Scholar 

  • Deonna T, Arczynska W, Torrado A (1974) Congenital failure of automatic ventilation (Ondine's curse). J Pediatr 84(5):710–714

    Google Scholar 

  • Dermietzel R (1976) Central chemosensitivity, morphological studies. In: Loeschcke HH (ed) Acid-base homeostasis of the brain extracellular fluid and the respiratory control system. Thieme, Stuttgart, pp 52–66

    Google Scholar 

  • Dermietzel R, Luber J, Leibstein A, Schlaefke ME, Kille JF, See WR (1974) Morphology of central chemosensitivity. Proc Int Un Physiol Sci 11:88

    Google Scholar 

  • Dermietzel R, Leibstein A, Willenberg I, See WR, Schlaefke ME (1977) In vivo labelling of neurons in the chemosensitive areas of the ventral surface of the medulla oblongata with horse-radish peroxidase. Proc Int Un Physiol Sci 13:180

    Google Scholar 

  • Dermietzel R, Willenberg IM, Leibstein AG (1978) In vivo labelling of neurons in the chemosensitive fields of the ventral surface of the medulla oblongata. Drug Res 28/II, 121:2366

    Google Scholar 

  • Dev NB, Loeschcke HH (1979a) Topography of the respiratory and circulatory responses to Acetylcholine and Nicotine on the ventral surface of the medulla oblongata. Pfluegers Arch 379:19–27

    Google Scholar 

  • Dev NB, Loeschcke HH (1979b) A cholinergic mechanism involved i the respiratory chemosensitivity. Pfluegers Arch 379:29–36

    Google Scholar 

  • Dikshit BB (1934) Action of acetylcholine on the brain and its occurrence therein. J Physiol (Lond) 80:409–421

    Google Scholar 

  • Doll E, Kuhlo W, Steiner H, Keul J (1968) Zur Genese des Cor pulmonale beim Pickwick-Syndrom. Dtsch Med Wochenschr 49:2361–2364

    Google Scholar 

  • Drachman DB, Gummit RJ (1962) Periodic alteration of consciousness in the “pickwickian” syndrome. Arch Neurol 6:63–69

    Google Scholar 

  • Dripps RD, Dumke PR (1943) The effect of narcotics on the balance between central and chemoceptor control of respiration. J Pharmacol 77:290–299

    Google Scholar 

  • Dripps RD, Severinghaus JW (1955) General anaesthesia and respiration. Physiol Rev 35:741–777

    Google Scholar 

  • Duffin J (1971) The chemical regulation of ventilation. Anaesthesia 26:142–154

    Google Scholar 

  • Dundee JW, Black GW, Nicholl RM (1962) Alteration in response to somatic pain associated with anaesthesia. Br J Anaesth 34:24–30

    Google Scholar 

  • Duron B (1972) La fonction respiratoire pendant le sommeil physiologique. Bull Eur Physiopathol Respir 8:1031–1057

    Google Scholar 

  • Duron B (ed) (1976) Respiratory centers and afferent systems. INSERM, Paris

    Google Scholar 

  • Edery H, Guertzenstein PG (1974) A central vasodepressor effect of dyflos. Br J Pharmacol 50:481–487

    Google Scholar 

  • Elmqvist D, Feldmann DS (1965) Mammalian neuromuscular junction in tetrodotoxin. Acta Physiol Scand 64:475–476

    Google Scholar 

  • Errington ML, Dashwood MR (1979) Projections to the ventral surface of the cat brainstem demonstrated by horseradish peroxidase. Neurosci Lett 12:153–158

    Google Scholar 

  • Euler C v (1976) Origin of the respiratory rhythm. Verh Ges Lungen-und Atmungsforschg 6:21–32

    Google Scholar 

  • Euler C v (1977) The functional organization of the respiratory phase-switching mechanisms. Fed Proc 36:2375–2380

    Google Scholar 

  • Euler C v (1979) On the neural organization of the motor control of the diaphragma. Amer Rev Respir Dis 119:45–50

    Google Scholar 

  • Euler C v, Soederberg U (1952a) Medullary chemosensitive receptors. J Physiol (Lond) 118:545–559

    Google Scholar 

  • Euler C v, Soederberg U (1952b) Slow potentials in the respiratory centers. J Physiol (Lond) 118(4):555–564

    Google Scholar 

  • Euler C v, Trippenbach T (1976) On the respiratory phase-switching mechanisms. In: Duvon B (ed) Respiratory centers and afferent systems. INSERM, Paris, pp 1–18

    Google Scholar 

  • Euler C v, Lagercrantz H (1979) Central nervous control mechanisms in breathing. Wenner-Gren Cent Int Symp Ser 32:1–508

    Google Scholar 

  • Euler C v, Herrero F, Wexler I (1970) Control mechanisms determining rate and depth of respiratory movements. Respir Physiol 10:93–108

    Google Scholar 

  • Euler C v, Marttila I, Remmers JE, Trippenbach T (1976) Effects of lesions in the parabrachial nucleus on the mechanisms for central and reflex termination of inspiration in the cat. Acta Physiol Scand 96:324–337

    Google Scholar 

  • Euler US v, Liljestrand G (1940) The effect of carotid sinus denervation on respiration during rest. Acta Physiol Scand 1:93

    Google Scholar 

  • Eyzaguirre C, Koyano H (1965) Effect of some pharmacological agents on chemoreceptor discharges. J Physiol (Lond) 178:410–437

    Google Scholar 

  • Eyzaguirre C, Zapata P (1968) A discussion of possible transmitter or generator substances in carotid body chemoreceptors. In: Torrance RW (ed) Arterial chemoreceptors. Blackwell, Oxford, pp 213–251

    Google Scholar 

  • Fagenholtz SA, O'Connell K, Shannon DC (1976) Chemoreceptor function and sleep state in apnea. Pediatrics 58:31–36

    Google Scholar 

  • Feldberg W (1976) The ventral surface of the brain stem: a scarcely explored region of pharmacological sensitivity. Neuroscience 1:427–441

    Google Scholar 

  • Feldberg W (1980) Cardiovascular effects of drugs acting on the ventral surface of the brain stem. In: Koepchen HP, Hilton SM, Trzebski A (eds) Central interaction between respiratory and cardiovascular control systems. Springer, Berlin Heidelberg New York, pp 45–55

    Google Scholar 

  • Feldberg W, Guertzenstein PG (1972) A vasodepressor effect of pentobarbitone sodium. J Physiol (Lond) 224:83–103

    Google Scholar 

  • Feldberg W, Guertzenstein PG (1976) Vasodepressor effects obtained by drugs acting on the ventral surface of the brain stem. J Physiol (Lond) 258:337–355

    Google Scholar 

  • Feldberg W, Rocha de Silva M Jr (1978) Vasopressin release produced in anaesthetized cats by antagonists of GABA and glycine. Br J Pharmacol 62:99–106

    Google Scholar 

  • Feldberg W, Wei W (1977) The central origin and mechanism of cardiovascular effect of morphine as revealed by naloxone in cats. J Physiol (Lond) 272:99–100

    Google Scholar 

  • Fencl V (1971) Distribution of H+ and HCO 3 in cerebral fluids. In: Siesjoe OK, Sørensen SC (eds) Ion homeostasis of the brain. Munksgaard, Kopenhagen, pp 175–195

    Google Scholar 

  • Fencl V, Miller TB, Pappenheimer JR (1966) Studies on the respiratory response to disturbances of acid-base balance, with deductions concerning the ionic composition of cerebral interstitial fluid. Am J Physiol 210:459–472

    Google Scholar 

  • Fenner A, Schalk U, Hoenicke H, Wendenburg A, Roehling T (1973) Periodic breathing in premature and neonatal babies: incidence, breathing pattern, respiratory gas tensions, response to changes in the composition of ambient air. Pediatr Res 7:174–183

    Google Scholar 

  • Finer NN, Abroms IF, Taeusch MW Jr (1976) Ventilation and sleep states in newborn infants. J Pediatr 89:100–108

    Google Scholar 

  • Fishman AP, Goldring RM, Turino GM (1966) General alveolar hypoventilation: a syndrome of respiratory and cardiac failure in patients with normal lungs. Q J Med 35(138):261–275

    Google Scholar 

  • Fishman LS, Samson JH, Sperling DR (1965) Primary alveolar hypoventilation syndrome (Ondine's curse). Am J Dis Child 110:155–161

    Google Scholar 

  • Fitzgerald RS, Parks DC (1971) Effect of hypoxia on carotid chemoreceptor response to carbon dioxide in cats. Respirat Physiol 12:218–229

    Google Scholar 

  • Fitzgerald RS, Gautier H, Lahiri S (eds) (1978) The respiratory regulation during sleep and anaesthesia. Adv Exp Med Biol 99:1–448

    Google Scholar 

  • Flandrois R, Lacour JR, Eclache JP (1974a) Control of respiration in exercising dog: Interaction of chemical and physical humoral stimuli. Respir Physiol 21:169–181

    Google Scholar 

  • Flandrois R, Guerin JC, Kalb JC (1974b) Le controle chémoréflexe de la ventilation chez le malade hypoxique chronique. Poumon coeur 30(4):301–311

    Google Scholar 

  • Fleischhauer K, Petrovický R (1968) Über den Bau der Wandungen des Aquaeductus cerebri und des IV. Ventrikels der Katze. Z Zellforsch 88:113–125

    Google Scholar 

  • Florez J, Borison HL (1969) Effect of central depressant drugs on respiratory regulation in the decerebrate cat. Respir Physiol 6:318–329

    Google Scholar 

  • Florez J, Borison HL (1971) Tidal volume in CO2 regulation: peripheral denervations and ablation of area postrema. Am J Physiol 212:985–991

    Google Scholar 

  • Folgering H, Kuyper F, Kille JF (1979) Primary alveolar hypoventilation (Ondine's curse syndrome) in an infant without external arcuate nucleus. Case report. Bull Physico-Pathol Resp 15/4:659–666

    Google Scholar 

  • Frantz ID III, Adler SM, Thach BT, Taeusch HW Jr (1976) Maturational effects on respiratory responses to carbon dioxide in premature infants. J Appl Physiol 41:41–45

    Google Scholar 

  • Frédéric QL (1901) Sur la cause de l'apnée. Arch Biol (Paris) 17:561–576

    Google Scholar 

  • Fruhmann G, Bloemer H, Kolb P (1961) Primäre alveolare Hyperventilation infolge einer Funktionsstörung des Atemzentrums unbekannter Genese. Klin Wochenschr 39/12:618–625

    Google Scholar 

  • Fukuda Y, Honda Y (1975) pH-sensitive cells at ventrolateral surface of the rat medulla oblongata. Nature New Biol 256:317–318

    Google Scholar 

  • Fukuda Y, Loeschcke HH (1977) Effect of H+ on spontaneous neuronal activity in the surface layer of the rat medullar oblongata in vitro. Pfluegers Arch 371:125–134

    Google Scholar 

  • Fukuda Y, Loeschcke HH (1979) A cholinergic mechanism involved in the neuronal exciation by H+ in the respiratory chemosensitive structures of the ventral medulla oblongata of rats in vitro. Pfluegers Arch 379:125–135

    Google Scholar 

  • Fukuda Y, Honda Y, Schlaefke ME, Loeschcke HH (1978) Effect of H+ on the membrane potential of silent cells in the ventral and dorsal surface layers of the rat medulla in vitro. Pfluegers Arch 376:229–235

    Google Scholar 

  • Fukuda Y, See WR, Schlaefke ME, Loeschcke HH (1979) Chemosensitivity and rhythmic activity of neurons in the ventral surface layer of the rat medulla oblongata in vitro and in vivo. Pfluegers Arch 379:50

    Google Scholar 

  • Gabriel M, Albani M (1976) Cardiac slowing and respiratory arrest in preterm infants. Pediatrics 57:257–261

    Google Scholar 

  • Gabriel M, Albani M, Schulte FJ (1976) Apnoeic spells and sleep states in preterm infants. Pediatrics 57:142–147

    Google Scholar 

  • Gautier H (1976a) Pattern of breathing during hypoxia or hypercapnia of the awake or anaesthetized cat. Respir Physiol 27:193–206

    Google Scholar 

  • Gautier H (1976b) Respiratory activity and peripheral chemosensitivity in the cat. In: Duron B (ed) Respiratory centers and afferent systems. INSERM, Paris, pp 221–229

    Google Scholar 

  • Geis GS, Wurster RD (1980) Cardiac responses during stimulation of the dorsal motor nucleus and nucleus ambiguus in the cat. Circ Res 46:606–611

    Google Scholar 

  • Geisler LS (1971) Das Pickwick-Syndrom. Dtsch Med Wochenschr 5:212–216

    Google Scholar 

  • Geisler LS, Herberg D, Schönthal H (1967) CO2-Antwortkurven bei Patienten mit Pickwick-Syndrom. Verh Dtsch Ges Inn Med 73:864–868

    Google Scholar 

  • Gellhorn E (1953) On the physiological action of carbon dioxide on cortex and hypothalamus. Electroencephalogr Clin Neurophysiol 5:401–413

    Google Scholar 

  • Gerardy W, Herberg D, Kuhn HM (1960) Chronische primäre alveoläre Hypoventilation. Klin Wochenschr 38/12:583–589

    Google Scholar 

  • Gesell R (1923) On the chemical regulation of respiration. I. The regulation of respiration with special reference to the metabolism of the respiratory center etc. Am J Physiol 66:5

    Google Scholar 

  • Gesell R (1925) The chemical regulation of respiration. Physiol Rev 5:551

    Google Scholar 

  • Gesell R (1939) Respiration and its adjustments. Am Rev Physiol 1:185–216

    Google Scholar 

  • Gesell R (1940) A neurophysiological interpretation of the respiratory act. Erg Physiol 43:477–639

    Google Scholar 

  • Gesell R, Frey JS (1950) Temporal summation of stimuli studied with the aid of anticholinesterases. Am J Physiol 160:375–384

    Google Scholar 

  • Gesell R, Hansen ET, Worzniak JJ (1942/43) Humoral intermediation of nerve cell activation in the central nervous system. Am J Physiol 138:776–791

    Google Scholar 

  • Gesell R, Hansen ET (1945) cH and nervous integration. Am J Physiol 144:126–163

    Google Scholar 

  • Gill PK, Kuno M (1963) Properties of phrenic motoneurones. J Physiol (Lond) 168:258–273

    Google Scholar 

  • Giroud M, Flandrois R, Calamai M, Buffat JJ, Quiriger P, Mouret JR, Fisher C (1974) L'hypoventilation alveolaire primaire “Malediction d'Ondine”. Poumon Coeur 30/2:101–108

    Google Scholar 

  • Granholm L (1973) Pulmonary ventilation in neurological disorders. Bull Physio-Pathol Resp 9/3:593–602

    Google Scholar 

  • Granholm L, Pontén U (1969) The in vivo CO2 buffer curve of the intracellular space of cat cerebral cortex. Acta Neurol Scand 45:493–501

    Google Scholar 

  • Grant JL, Arnold W (1968) Idiopathic hypoventilation. JAMA 194:119–122

    Google Scholar 

  • Gray EG (1959) Axosomatic and axodendritic synapses of the cerebral cortex: an electron microscope study. J Anat 94:345–356

    Google Scholar 

  • Gray JS (1950) Pulmonary ventilation and its physiological regulation. Thomas, Springfield

    Google Scholar 

  • Grodinski M. Beber M, Backer CP (1933) A test for the response of novocaine in nervous tissue. Science 77:450

    Google Scholar 

  • Grossmann RG, Hampton T (1968) Depolarization of cortical glial cells during electrocortical activity. Brain Res 11:316–324

    Google Scholar 

  • Guazzi M (1969) Importanza di reflezzi zeno-aortici nel controllo di pH, pO2 e pCO2 arteriozi durante la veglia e il zonno. Bol Soc Ital Biol Sper 45/2:108–111

    Google Scholar 

  • Guazzi M, Freis E (1969) Sino-aortic reflexes and arterial pH, and PCO 2 in wakefulness and sleep. Am J Physiol 217/6:1623–1627

    Google Scholar 

  • Guertzenstein PG (1973) Blood pressure effects obtained by drugs applied to the ventral surface of the brain stem. J Physiol (Lond) 229:395–408

    Google Scholar 

  • Guertzenstein PG, Silver A (1974) Fall in blood pressure produced from discrete regions of the ventral surface of the medulla by glycine and lesions. J Physiol (Lond) 242:489–503

    Google Scholar 

  • Guenard H, Chambille B, Bargeton D (1976) Characteristics of the regulation of respiration during moderate muscular exercise. In: Loeschcke HH (ed) Acid base homeostasis of the brain extracellular fluid and the respiratory control system. Thieme, Stuttgart, pp 203–209

    Google Scholar 

  • Guilleminault CR, Eldridge FL, Dement WC (1974) Human pathology — sleep — induced apneas and cardiovascular changes. Bull Physio-Pathol Resp 10/2:244–247

    Google Scholar 

  • Guilleminault CR, Peraita R, Souquet M, Dement WC (1975) Apneas during sleep in infants: possible relationship with sudden infants death syndrome. Science 190:677–679

    Google Scholar 

  • Guthrie RD, Standaert TA, Hodson WA, Woodrum DE (1980) Sleep and maturation of encapnic ventilation and CO2 sensitivity in the premature primate. J Appl Physiol 48/2:347–354

    Google Scholar 

  • Guz A (1975) Regulation of respiration in man. Am Rev Physiol 37:303–323

    Google Scholar 

  • Guz A, Noble MJM, Widdicombe JG, Trenchard DW, Mushin WW (1966) The effect of bilateral block of vagus and glossopharyngeal nerves on the ventilatory response to CO2 of conscions man. Respir Physiol 1:206–210

    Google Scholar 

  • Haddad G, Epstein R, Epstein M, Leistner H, Mariono P, Mellins R (1979) Maturation of ventilatory pattern in normal sleeping infants. J Appl Physiol 46:998–1002

    Google Scholar 

  • Haldane JS, Priestley JG (1905) The regulation of the lung ventilation. J Physiol (Lond) 32:225–266

    Google Scholar 

  • Hall M (1837) Memoirs on the nervous system. Sherwood, Gilbert & Piper, London

    Google Scholar 

  • Hasselmeyer EG, Hunter JC (1975) The sudden infant death syndrome. Obstet Gynecol Annu 4:213–236

    Google Scholar 

  • Hathorn MDS (1974) The rate and depth of breathing in newborn infants in different sleep states. J Physiol (Lond) 243:101–113

    Google Scholar 

  • Heeringa J (1979) Peripheral chemoreceptors and the ventilatory response to CO2 during hyperoxia. Dissertation, University Leiden

    Google Scholar 

  • Heinemann H, Goldring R (1974) Bicarbonate and the regulation of ventilation. Am J Med 57:361–370

    Google Scholar 

  • Hesser CM (1949) Central and chemoreflex components in the respiratory activity during acid-base displacements in the blood. Acta Physiol Scand (Suppl) 18:64

    Google Scholar 

  • Heymans C (1951) Chemoreceptors and regulation of respiration. Acta Physiol Scand 22:4–13

    Google Scholar 

  • Heymans C, Bouckaert JJ (1930) Sinus caroticus and respiratory reflexes. I. Cerebral blood flow and respiration adrenaline apnoea. J Physiol 69:254

    Google Scholar 

  • Heymans C, Bouckaert JJ (1939) Les chémo-récepteurs du sinus carotidien. Erg Physiol 41:28–55

    Google Scholar 

  • Heymans C, Bouckaert JJ, Farber S, Hsu FJ (1936) Influence réflexogène de l'acéthylcholine sur les terminaisons nerveuses chimiosensitives du sinus caroticien. Arch Int Pharmacodyn Ther 54:129

    Google Scholar 

  • Heymans JF, Heymans C (1927) Sur les modifications directes et sur la régulation réflexe de l'activité du centre respiratoire de la lête isolée du chien. Arch Int Pharmacodyn Ther 33:273

    Google Scholar 

  • Heymans JF, Bouckaert JJ, Dautrebande L (1931) Sinus carotidien et réflexes respiratoires. II. Sensibilité de sinus carotidien au substances chimiques etc. Arch Int Pharmacodyn Ther 40:54

    Google Scholar 

  • Hoover DB, Muth EA, Jacobowitz DM (1978) A mapping of the distribution of acetylcholine, choline acetyltransferase and acetylcholinesterase in discrete areas of rat brain. Brain Res 153:295–306

    Google Scholar 

  • Hori T, Roth GI, Yamamoto WS (1970) Respiratory sensitivity of rat brain-stem surface to chemical stimuli. J Appl Physiol 6:721–724

    Google Scholar 

  • Hubbard JI, Jones SF, Landau EM (1968) On the mechanism by which calcium and magnesium affect the spontaneous release of transmitter from mammalian motor nerve terminals. J Physiol (Lond) 194:355–380

    Google Scholar 

  • Hugelin A (1977a) Anatomical organization of bulbopontine respiratory oscillators. Fed. Proc 36:2390–2394

    Google Scholar 

  • Hugelin A (1977b) L'organisation des oscillateurs respiratoires. J Physiol (Paris) 73:511–521

    Google Scholar 

  • Hugelin A, Cohen MI (1963) The reticular activating system and respiratory regulation in the cat. Ann NY Acad Sci 109:568–603

    Google Scholar 

  • Hukuhara T Jr (1973) Neuronal organization of the central respiratory mechanism in the brain stem of the cat. Acta Neurobiol Exp (Warsz) 33:219–244

    Google Scholar 

  • Hukuhara T Jr (1974) Functional organization of brain stem respiratory neurons and rhythmogenesis. In: Umbach W, Koepchen HP (eds) Central rhythmic and regulation, circulation, respiration, extrapyramidal motor system. Hippokrates, Stuttgart, pp 35–52

    Google Scholar 

  • Hukuhara T Jr (1976) Functional organization of brain stem respiratory neruones and its modulation induced by afferences. In: Duron B (ed) Respiratory centres and afferent systems. INSERM, Paris, pp 41–53

    Google Scholar 

  • Hukuhara T Jr, Saji Y, Kumadaki N, Kojima H, Tamaki H, Takeda R, Sakai F (1969) Die Lokalisation von atemsynchron entladenden Neuronen in der retikulären Formation des Hirnstammes der Katze unter verschiedenen experimentellen Bedingungen. Naunyn Schmiedebergs Arch Pharmakol 263:462–484

    Google Scholar 

  • Hukuhara T Jr, See WR, Fritsche P, Schlaefke ME (1976) Respiratory drives in the ascending reticular activating system. Pfluegers Arch 365:39

    Google Scholar 

  • Hukuhara T Jr, Goto K, Kiguchi Y, Kazuo T (1979) Unterschiedliche Stabilität respiratorischer Einzelneuronenaktivität im Hirnstamm der Katze. Jikeikai Med J 26:245–261

    Google Scholar 

  • Hunt CE, Matalon SV, Thompson TR, Demuth S, Loew JM, Liu HH, Mastri A, Burke B (1978) Central hypoventilation syndrome. Experience with bilateral phrenic nerve pacing in 3 neonates. Am Rev Respir Dis 118:23–28

    Google Scholar 

  • Hutter OF, Kostial K (1954) Effect of magnesium and calcium ions on the release of acetylcholine. J Physiol (Lond) 124:234–241

    Google Scholar 

  • Ingvar DH, Buelow KB (1963) Respiratory regulation in sleep. Ann NY Acad Sci 109/2:870–881

    Google Scholar 

  • Ivanov YN (1963) Changes in electrical activity of different brain regions in cats and dogs exposed to carbon dioxide. Fed Proc 22:13–18

    Google Scholar 

  • Jacobs MH (1920a) To what extent are the physiological effects of carbon dioxide due to the hydrogen ions? Am J Physiol 51:321–331

    Google Scholar 

  • Jacobs MH (1920b) Production of intracellular acidity by neutral and alkaline solutions containing carbon dioxide. Am J Physiol 53:457

    Google Scholar 

  • Jones DR, Purves MJ (1970) The effect of carotid body denervation upon the respiratory response to hypoxia and hypercapnia in the duck. J Physiol (Lond) 211:295–310

    Google Scholar 

  • Jordan D, Spyer KM (1979) The effects of acetylcholine on respiratory neurones of the nucleus retroambigualis. J Physiol (Lond) 300:37–38P

    Google Scholar 

  • Jung R (1965) Physiologie und Pathophysiologie des Schlafes. Verh Dtsch Ges Inn Med 7:787–797

    Google Scholar 

  • Jung R, Kuhlo W (1965) Neurophysiological studies of abnormal night sleep and the Pickwickian syndrome. Progr Brain Res 18:141–159

    Google Scholar 

  • Jurna I, Soederberg U (1963) The effect of carbon dioxide, anesthetics and strychnine on jaw reflexes. Arch Int Pharmacodyn Ther 142:323–338

    Google Scholar 

  • Kaemmerer E, Dolce G (1967) Pickwickian-Syndrom. Münch Med Wochenschr 109:220–223

    Google Scholar 

  • Kafer ER, Leigh J (1972) Recurrent respiratory failure associated with the absence of ventilatory response to hypercapnia and hypoxemia. Am Rev Resp Dis 106:100–103

    Google Scholar 

  • Kao FF, Wang CW, Mei SF, Michel CC (1965) The relationship of exercise hyperpnea to csf-pH. In: Brooks C McC, Kao FF, Lloyd BB (eds) Cerebrospinal fluid and the regulation of respiration. Blackwell, Oxford, pp 269–275

    Google Scholar 

  • Kao FF, Mei SS, Kalia M (1979) Interaction between neurogenic exercise drive and chemical drive. Wenner-Gren Cent Int Symp Ser 32:75–90

    Google Scholar 

  • Karahashi Y, Goldring S (1966) Intracellular potentials from ‘Idle’ cells in cerebral cortex of cat. Electroencephalogr Clin Neurophysiol 20:600–607

    Google Scholar 

  • Karczewski WA (1974) Organization of the brain stem respiratory complex. In: Guyton AC, Widdicombe JG (eds) MTP international review of science, physiology series. I. Respiratory physiology I. University Park Press, Baltimore, pp 197–219

    Google Scholar 

  • Karczewski WA, Widdicombe JG (1973) Neural control of breathing. Acta Neurobiol Exp (Warsz) 33/1:1–432

    Google Scholar 

  • Katsaros B (1965) Die Rolle der Chemorezeptoren des Carotisgebietes der narkotisierten Katze für die Antwort der Atmung auf isolierte Änderung der Wasserstoffionenkonzentration und des CO2-Druckes des Blutes. Pfluegers Arch 282:157–178

    Google Scholar 

  • Katz B, Miledi R (1963) A study of spontaneous miniature potentials in spinal motoneurones. J Physiol (Lond) 168:389–422

    Google Scholar 

  • Katzman R, Graziani L, Ginsburg S (1968) Cation exchange in blood, brain and csf. In: Lajtha A, Ford DH (eds) Brain barrier systems, vol 29, Progress in brain research. Elsevier, Amsterdam London New York, pp 283–294

    Google Scholar 

  • Kelly JP, van Essen DC (1974) Cellstructure and function in the visual cortex of the cat. J Physiol (Lond) 238:515–547

    Google Scholar 

  • Kille JF (1969) Ergebnisse von Gefäßfüllungen mit Plastogen G an Nieren verschiedener Tierarten. Praeparator 15(3/4):129–136

    Google Scholar 

  • Kille JF, Schlaefke ME (1974) Histological investigations in the chemosensitive areas on the ventral surface of the medulla oblongata. Pfluegers Arch 347:38

    Google Scholar 

  • Kille JF, Schlaefke ME (1978) Histological studies on the medullary chemosensitive areas after chronic denervation of a carotid body. Neurosci Lett (Suppl) 1:16

    Google Scholar 

  • Kim JK, Carpenter FG (1961) Excitation of medullary neurons by chemical agents. Am J Physiol 201/6:1187–1190

    Google Scholar 

  • Kirsten EB, Satayavivad J, John WMSt, Wang SC (1978) Alteration of medullary respiratory unit discharge by iontophoretic application of putative neurotransmitters. Br J Pharmacol 63:275–283

    Google Scholar 

  • Kirstein L (1951) Early effects of oxygen lack and carbon dioxide excess on spinal reflexes. Acta Physiol Scand (Suppl) 23:80

    Google Scholar 

  • Kiwull-Schoene H, Kiwull P (1979) The role of the vagus nerves in the ventilatory response to lowered PaO2 with intact and eliminated carotid chemoreflexes. Pfluegers Arch 381:1–9

    Google Scholar 

  • Kiwull-Schoene H, Kiwull P, Mueckenhoff K, Both W (1976) The role of carotid chemoreceptors in the regulation of arterial oxygen transport under hypoxia with and without hypercapnia. In: Grote J, Reneau D, Thews G (eds) Oxygen transport to tissue — II. Plenum Press, New York, pp 469–476

    Google Scholar 

  • Kiwull P, Wiemer W, Schoene H (1972) The role of the carotid chemoreceptors in the CO2-hyperpnea under hypoxia. Pfluegers Arch 336:171–186

    Google Scholar 

  • Kiwull P, Kiwull-Schoene H, Klatt H (1976) Interaction of central and peripheral respiratory drives: differentiation between the role of stimuli and afferents. In: Loeschcke HH (ed) Acid-base homeostasis of the brain-extracellular fluid. Thieme, Stuttgart, pp 146–154

    Google Scholar 

  • Koelle GB (1954) The histochemical localization of cholinesterase in the central nervous system of the cat. J Comp Neurol 100:211–235

    Google Scholar 

  • Koepchen HP (1976) Quantitative approach to neural control of ventilation. In: Loeschcke HH (ed) Acid-base homeostasis of the brain extracellular fluid and the respiratory control system. Thieme, Stuttgart, pp 164–186

    Google Scholar 

  • Koepchen HP, Klüssendorf D, Philipp U (1973) Mechanisms of central transmission of respiratory reflex. Acta Neurobiol Exp (Warsz) 33/1:287–300

    Google Scholar 

  • Koepchen HP, Lazar H, Borchert J (1974) On the role of nucleus infrasolitarius in the determination of respiratory periodicity. In: Proc Int Un physiol sci, vol XI (243):81

    Google Scholar 

  • Koepchen HP, Borchert J, Frank Ch, Klüssendorf D, Kolbe K, Sommer D (1976a) Respiratory centre input-output relations in response to different afferences. In: Duron B (ed) Respiratory centres and afferent systems. INSERM, Paris, pp 73–84

    Google Scholar 

  • Koepchen HP, Kolbe K, Klüssendorf D, Schroeter R, Schwanghart F (1976b) CO2 and the brain stem respiratory complex. Bull Physio-Pathol Respir 12/6:216–217

    Google Scholar 

  • Koepchen HP, Klüssendorf D, Borchert J, Lessmann DW, Dinter A, Frank Ch, Sommer D (1977) Type of respiratory neuronal activity pattern in reflex control of ventilation. In: Paintal AS, Gill Kumar P (eds) Respiratory adaptation, capillary exchanges and reflex mechanisms. Navchetan Press, New Dehli, pp 291–311

    Google Scholar 

  • Koepchen HP, Sommer D, Frank Ch, Klüssendorf D, Krämer A, Rosin P, Forstreuter K (1979) Characteristics and functional significance of the expiratory bulbar neuron pools. Wenner-Gren Cent Int Symp Ser 32:217–232

    Google Scholar 

  • Koepchen HP, Hilton SM, Trzebski A (eds) (1980) Central interactions between respiratory and cardiovascular control systems. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Krauss AN, Klain DB, Waldman S, Auld PAM (1975) Ventilatory response to carbon dioxide in newborn infants. Pediatr Res 9:46–50

    Google Scholar 

  • Krauss A, Solomon GE, Auld PAM (1977) Sleep state, apnea and bradycardia in preterm infants. Dev Med Child Neurol 19:160–168

    Google Scholar 

  • Krieger AJ (1973) Respiratory failure after ventral spinal surgery: A clinical and experimental study. J Surg Res 14:512–517

    Google Scholar 

  • Krnjević K (1974) Chemical nature of synaptic transmission in vertebrates. Physiol Rev 54:418–540

    Google Scholar 

  • Krnjević K, Schwartz S (1967) Some properties of unresponsive cells in the cerebral cortex. Exp Brain Res 3:306–319

    Google Scholar 

  • Krnjević K, Randić M, Siesjoe B (1965) Cortical CO2 tension and neuronal excitability. J Physiol (Lond) 176:105–122

    Google Scholar 

  • Krogh A, Lindhard J (1913) The regulation of respiration and circulation during the initial stages of muscular work. J Physiol 47:112–136

    Google Scholar 

  • Kronenberg RS, Cain SM (1968) Effects of acetazolamide and hypoxia on cerebrospinal fluid bicarbonate. J Appl Physiol 24:17–20

    Google Scholar 

  • Kuffler SW, Nicholls JG (1966) The physiology of neuroglial cells. Erg Physiol Biol Chem Exp Pharmacol 57:1–90

    Google Scholar 

  • Kuffler SW, Nicholls JG (1976) From neuron to brain: A cellular approach to the function of the nervous system. Sinauer Assoc, Sunderland, MA, pp 255–288

    Google Scholar 

  • Kuhlo W (1968) Neurophysiologische und klinische Untersuchungen beim Pickwick-Syndrom. Arch Psychiatr Nervenkr 211:170–192

    Google Scholar 

  • Lambertsen CJ, Semple SJG, Smyth MG, Gelfand R (1961) H+ and pCO2 as chemical factors in respiratory and cerebral circulatory control. J Appl Physiol 16:473–484

    Google Scholar 

  • Landgren S, Liljestrand G, Zotterman Y (1952) The effect of certain autonomic drugs on the action potentials of the sinus nerve. Acta Physiol Scand 26:264

    Google Scholar 

  • Leibstein AG (1979) Vergleichende elektronenmikroskopische Untersuchungen der chemosensiblen Areale an der ventralen Oberfläche der Medulla oblongata. Dissertation, Gesamthochschule Essen

    Google Scholar 

  • Leibstein A, Luber J, Dermietzel R, Brettschneider H, Schlaefke ME, See WR (1975) Elektronenoptische Untersuchungen eines für die Regulation der Atmung bedeutsamen Gebietes der Medulla oblongata. Verh Anat Ges 69:601–606

    Google Scholar 

  • Leonhardt H (1967) Über die Blutkapillaren und perivaskulären Strukturen der area postrema des Kaninchens und über ihr Verhalten im Pentamethylentetrazol-(Cardiazol)-Krampf. Z Zellforsch Mikroskop Anat 76:511–524

    Google Scholar 

  • Leonhardt H (1970) Subependymale Basalmembranlabyrinthe im Hinterhorn des Seitenventrikels des Kaninchengehirns. Z Zellforsch Mikroskop Anat 105:595–604

    Google Scholar 

  • Leusen IR (1954a) Chemosensitivity of the respiratory center. Influence of CO2 in the cerebral ventricles on respiration. Am J Physiol 176:39–44

    Google Scholar 

  • Leusen IR (1954b) Chemosensitivity of the respiratory center. II. Influences of changes in the H+-and total buffer concentrations in the cerebral ventricles on respiration. Am J Physiol 176:45–51

    Google Scholar 

  • Leusen IR (1972) Regulation of CSF composition with reference to breathing. Physiol Rev 52:1–56

    Google Scholar 

  • Liljestrand Å (1953) Respiratory reactions elicited from medulla oblongata of the cat. Acta Physiol Scand (Suppl 106) 29:321–393

    Google Scholar 

  • Liljestrand Å (1958) Neural control of breathing. Physiol Rev 38:691–708

    Google Scholar 

  • Liljestrand G, Zotterman Y (1954) The effect of certain choline esters on the chemoreceptor activity in the carotid body. Acta Physiol Scand 31:203

    Google Scholar 

  • Lipscomb WT, Boyarski LL (1972) Neurophysiological investigations of medullary chemosensitive areas of respiration. Respir Physiol 16:362–376

    Google Scholar 

  • Lipski J, McAllen RM, Spyer KM (1975) The sinus nerve and baroreceptor input to the medulla of the cat. J Physiol (Lond) 251:61–78

    Google Scholar 

  • Loeschcke HH (1957) Intracraniale Chemoreceptoren mit Wirkung auf die Atmung? Helv Physiol Pharmacol Acta 15:C25–C26

    Google Scholar 

  • Loeschcke HH (1960) Beziehung zwischen CO2 und Atmung. Anaesthesist 9:38–46

    Google Scholar 

  • Loeschcke HH (1965) A concept of the role of intracranial chemosensitivity in respiratory control In: Brooks C McC, Kao FF, Loyd BB (eds) Cerebrospinal fluid and the regulation of ventilation. Blackwell, Oxford, pp 183–210

    Google Scholar 

  • Loeschcke HH (1969) On specificity of CO2 as a respiratory stimulus. Bull Physio-Pathol Respir 5:13–25

    Google Scholar 

  • Loeschcke HH (1971) DC potentials between CSF and blood. In: Siersjö BK, Sørensen SC (eds) Ion homeostasis of the brain. Alfred Benzon Symposium III. Munksgaard, Copenhagen, pp 77–96

    Google Scholar 

  • Loeschcke HH (1972) Der Säure-Basenstatus des Liquor cerebrospinalis und seine Regulation durch die Lungenventilation. Klin Wochenschr 50:581–593

    Google Scholar 

  • Loeschcke HH (1973a) Control of the acid base status of brain extracellular fluid by the ventilation. Clin Physiol (Jpn) 3:156–169

    Google Scholar 

  • Loeschcke HH (1973b) Respiratory adaptations to changes in the acid base status of CSF and brain. Bull Physio-Pathol Respir 9:647–656

    Google Scholar 

  • Loeschcke HH (1973c) Respiratory chemosensitivity in the medulla oblongata. Acta Neurobiol Exp (Warsz) 33:97–112

    Google Scholar 

  • Loeschcke HH (1973d) The respiratory control system: analysis of steady state solutions for metabolic and respiratory acidosis-alkalosis and increased metabolism. Pfluegers Arch 341:23–42

    Google Scholar 

  • Loeschcke HH (1974a) Central nervous chemoreceptors. In: Widdicombe JG (ed) Physiology, Series One, vol 2, Respiration physiology. Butterworths, London, pp 167–196

    Google Scholar 

  • Loeschcke HH (1974b) Regulation of the extracellular pH of the brain by the lung ventilation. In: Umbach W, Koepchen HP (eds) Central rhythmic and regulation. Hippokrates, Stuttgart, pp 85–92

    Google Scholar 

  • Loeschcke HH (ed) (1976) Acid base homeostasis of the brain extracellular fluid and the respiratory control system. Thieme, Stuttgart

    Google Scholar 

  • Loeschcke HH (1977) Neuere Aspekte der Atmungsregulation. Wiener Klin Wochenschr 89/13:429–435

    Google Scholar 

  • Loeschcke HH (1979) Functional aspects of central chemosensitivity. Wenner-Gren Cent Int Symp Ser 32:13–24

    Google Scholar 

  • Loeschcke HH, Ahmad HR (1980) Transients and steady state of chloride-bicarbonate relationship of brain extracellular fluid. In: Bauer C, Gros G, Bartels H (eds) Biophysics and physiology of carbon dioxide. Springer, Berlin Heidelberg New York, pp 439–448

    Google Scholar 

  • Loeschcke HH, Koepchen HP (1958a) Beeinflussung von Atmung und Vasomotorik durch Einbringen von Novocain in die Liquorräume. Pfluegers Arch 266:611–627

    Google Scholar 

  • Loeschcke HH, Koepchen HP (1958b) Über das Verhalten der Atmung und des arteriellen Druckes bei Einbringen von Veratridin, Lobelin und Cyanid in den Liquor cerebrospinalis. Pfluegers Arch 266:586–610

    Google Scholar 

  • Loeschcke HH, Koepchen HP (1958c) Versuch zur Lokalisation des Angriffsortes der Atmungs-und Kreislaufwirkung von Novocain im Liquor cerebrospinalis. Pfluegers Arch 266:628–641

    Google Scholar 

  • Loeschcke HH, Schlaefke ME (1976) Central chemosensitivity. In: Paintal AS (ed) Morphology and mechanisms of chemoreceptors. Vallabhbahai Patel Chest Institute, New Delhi, pp 282–298

    Google Scholar 

  • Loeschcke HH, Sugioka K (1969) pH of cerebrospinal fluid in the cisterna magna and on the surface of the choroid plexus of the 4th ventricle and its effect on ventilation in experimental disturbances of acid-base balance. Pfluegers Arch 312:161–188

    Google Scholar 

  • Loeschcke HH, Koepchen HP, Gertz KH (1958) Über den Einfluß der Wasserstoff-ionenkonzentration und CO2-Druck im Liquor cerebrospinalis auf die Atmung. Pfluegers Arch 266:569–585

    Google Scholar 

  • Loeschcke HH, De Lattre J, Schlaefke ME, Trouth CO (1970) Effects on respiration and circulation of electrically stimulating the ventral surface of the medulla oblongata. Respir Physiol 10:184–197

    Google Scholar 

  • Loeschcke HH, Schlaefke ME, See WR, Herker-See A (1979) Does CO2 act on the respiratory centers? Pfluegers Arch 381:249–254

    Google Scholar 

  • Loewy AD, McKellar S (1980) The neuroanatomical basis of central cardiovascular control. Fed Proc 39:2495–2503

    Google Scholar 

  • Luber J (1976) Elektronenmikroskopische Untersuchungen eines für die Regulation der Atmung bedeutsamen Gebietes der Medulla oblongata der Katze, rostromedial des Austritts des Nervus hypoglossus. Dissertation, Gesamthochschule Essen

    Google Scholar 

  • Lüllmann H, Peters T (1967) Influence of pH on the action of parasympathomimetic drugs. Eur J Pharmacol 2:106–111

    Google Scholar 

  • Lugaresi E, Coecagna G, Ceroni B (1968) Syndrome de Pickwick et syndrome d'hypoventilation alvéolaire. Act Neurol Belg 68:15–29

    Google Scholar 

  • Lugaresi E, Coecagna C, Mantovani M (1972) Hypersomnia with periodic breathing: Periodic apneas and alveolar hypoventilation during sleep. Bull Physio-Pathol Respir 8:1103–1113

    Google Scholar 

  • MacIntosh FC, Perry WLM (1950) Biological estimation of acetylcholine. Methods Med Res 3:76–92

    Google Scholar 

  • Majcherczyk S, Willshaw P (1973) Inhibition of peripheral chemoreceptor activity during superfusion with an alkaline c.s.f. of the ventral brainstem surface of the cat. J Physiol (Lond) 231:26–27P

    Google Scholar 

  • Majcherczyk S, Willshaw P (1977) The influence of hyperventilation on efferent control of peripheral chemoreceptors. Brain Res 124:561–564

    Google Scholar 

  • Majcherczyk S, Willshaw P (1980) Central chemosensitive mechanisms involved in a feedback control of peripheral chemoreceptors. In: Koepchen HP, Hilton SM, Trzebski A (eds) Central interaction between respiratory and cardiovascular control systems. Springer, Berlin Heidelberg New York, pp 76–81

    Google Scholar 

  • Maren TH, Broder LE (1970) The role of carbonic anhydrase in anion secretion into cerebrospinal fluid. J Pharmacol Exp Ther 172:197–202

    Google Scholar 

  • Marino PL, Lamb TW (1975) Effects of CO2 and extracellular H+ iontophoresis on single cell activity in the cat brainstem. J Appl Physiol 38/4:688–695

    Google Scholar 

  • Marshall EK Jr, Rosenfeld M (1936) Depression of respiration by oxygen. J Pharmacol Exp Ther 57:437–457

    Google Scholar 

  • McCloskey PI, Mitchell JH (1972) Reflex cardiovascular and respiratory responses originating in exercising muscle. J Physiol (Lond) 224:173–186

    Google Scholar 

  • McLennan H, Hicks TP (1978) Pharmacological characterization of the excitatory cholinergic receptors of rat central neurones. Neuropharmacology 17:329–334

    Google Scholar 

  • Meier GW, Berger RJ (1965) Development of sleep and wakefulness patterns in the infant rhesus monkey. Exp Neurol 12:257–277

    Google Scholar 

  • Metz B (1962) Correlation between respiratory reflex and acetylcholine content of pons and medulla. Am J Physiol 202:80–82

    Google Scholar 

  • Metz B (1966) Hypercapnia and acetylcholine release from the cerebral cortex and medulla. J Physiol (Lond) 186:321–332

    Google Scholar 

  • Middendorf T, Loeschcke HH (1976a) Analysis of the respiratory control system. In: Loeschcke HH (ed) Acid-base homeostasis of the brain extracellular fluid and the respiratory control system. Thieme, Stuttgart, pp 190–202

    Google Scholar 

  • Middendorf T, Loeschcke HH (1976b) Mathematische Simulation des Respirations-systems. J Math Biol 3:149–177

    Google Scholar 

  • Middendorf T, Loeschcke HH (1978) Cooperation of the peripheral and central chemosensitive mechanisms in the control of the extracellular pH in brain in non-respiratory acidosis. Pfluegers Arch 375:257–260

    Google Scholar 

  • Miledi R, Slater SR (1966) The action of calcium on neuronal synapses in the squid. J Physiol (Lond) 184:473–498

    Google Scholar 

  • Miller MJ, Tenney SM (1975) Hyperoxic hyperventilation in carotid-deafferentiated cats. Respir Physiol 23:23–30

    Google Scholar 

  • Mitchell RA (1965) The regulation of respiration in metabolic acidosis and alkalosis. In: Brooks C McC, Kao FF, Lloyd BB (eds) Cerebrospinal fluid and the regulation of respiration. Blackwell, Oxford, pp 109–132

    Google Scholar 

  • Mitchell RA (1977) Location and function of medullary respiratory neurons. Am Rev Respir Dis (Suppl) 115:209–216

    Google Scholar 

  • Mitchell RA, Berger AJ (1975) Neural regulation of respiration. Am Rev Respir Dis 111:206–224

    Google Scholar 

  • Mitchell RA, Herbert DA (1974a) The effect of carbon dioxide on the membrane potential of medullary respiratory neurons. Brain Res 75:345–349

    Google Scholar 

  • Mitchell RA, Herbert DA (1974b) Synchronized high frequency synaptic potentials in medullary respiratory neurons. Brain Res 75:350–355

    Google Scholar 

  • Mitchell RA, Massion W, Carman CT, Severinghaus JW (1960) 4th Ventricle respiratory chemosensitivity and the area postrema. Fed Proc 19:374

    Google Scholar 

  • Mitchell RA, Loeschcke HH, Massion WH, Severinghaus JW (1963a) Respiratory responses mediated through superficial chemosensitive areas on the medulla. J Appl Physiol 18:523–533

    Google Scholar 

  • Mitchell RA, Loeschcke HH, Severinghaus JW, Richardson BW, Massion WH (1963b) Region of respiratory chemosensitivity on the surface of the medulla. Ann NY Acad Sci 109:661–681

    Google Scholar 

  • Mitchell RA, Bainton CR, Edelist G (1964) Respiratory response and CSF pH during disturbances in blood acid-base balance in awake dogs with denervated aortic and carotid bodies. Physiologist 7:208

    Google Scholar 

  • Mitchell RA, Carman CJ, Severinghaus JW, Richardson BW, Singer MM, Schnider S (1965) Stability of cerebrospinal fluid pH in chronic acid-base disturbances in blood. J Appl Physiol 20:443–452

    Google Scholar 

  • Mueller J (1837) Handbuch der Physiologie des Menschen für Vorlesungen. Zweiten Bandes erste Abtheilung. J Hölscher, Coblenz

    Google Scholar 

  • Naeye RL (1978) The sudden infant death syndrome. In: Thurbeck WM (ed) The lung. Structure, function and disease. Williams and Wilkins, Baltimore, pp 262–270

    Google Scholar 

  • Naeye RL (1980) Sudden infant death. Sci Am 242/4:52–59

    Google Scholar 

  • Naeye RL, Whalen P, Ryser M, Fisher R (1976) Cardiac and other abnormalities in the sudden infant death syndrome. Am J Pathol 82:1–8

    Google Scholar 

  • Nakayama S, Baumgarten R v (1964) Lokalisierung absteigender Atmungsbahnen im Rückenmark der Katze mittels antidromer Reizung. Pfluegers Arch 281:231–244

    Google Scholar 

  • Neil E (1973) Chemical regulation of ventilation. Bull Physio-Pathol Respir 9:587–591

    Google Scholar 

  • Neil E, O'Regan RG (1969) Effects of sinus and aortic efferents and arterial chemor-reflex function. J Physiol (Lond) 200:69

    Google Scholar 

  • Netick A, Orem J, Dement W (1977) Neuronal activity specific to REM sleep and its relationship to breathing. Brain Res 120:197–207

    Google Scholar 

  • Ngai SH, Wang SC (1957) Organization of central respiratory mechanisms in the brain stem of the cat: localization by stimulation and destruction. Am J Physiol 190/2:343–349

    Google Scholar 

  • Nicholson HC (1936) Localization of the central respiratory mechanisms as studied by local cooling of the surface of the brain stem. Am J Physiol 115:402–409

    Google Scholar 

  • Nicholson HC, Sobin S (1938) Respiratory effects from the application of cocaine, nicotine, and lobeline of the floor of the fourth ventricle. Am J Physiol 123:766–774

    Google Scholar 

  • Orem J, Netick A, Dement W (1977) Breathing during sleep and wakefulness in the cat. Respir Physiol 30:265–289

    Google Scholar 

  • Orem J (1978) Some observations on breathing during sleep in the cat. In: Guilleminault C, Dement WC (eds) Sleep apnea syndromes. Troc Foundat Series vol 11. Liss, New York, pp 65–91

    Google Scholar 

  • Paintal AS (ed) (1976) Morphology and mechanisms of chemoreceptors. Vallabhbhai Patel Chest Institute, New Delhi

    Google Scholar 

  • Paintal AS, Gill Kumar P (eds) (1977) Respiratory adaptation, capillary exchange and reflex mechanisms. Vallabhbhai Patel Chest Institute, New Delhi

    Google Scholar 

  • Pappenheimer JR (1967) The ionic composition of cerebral extracellular fluid and its relation to control of breathing. Harvey Lect 61:71–94

    Google Scholar 

  • Pappenheimer JR, Fencl V, Hasey SR, Held D (1965) Role of cerebral fluids in the control of respiration as studied in unanaesthetized goats. Am J Physiol 208:436–450

    Google Scholar 

  • Perkins JF Jr (1968) The contribution of the peripheral respiratory chemoreceptors to pulmonary ventilation — a historical and experimental approach. In: Torrance RW (ed) Symposium on arterial chemoreceptors. Blackwell, Oxford, pp 335–352

    Google Scholar 

  • Peskow BJ, Piatin WF (1976) Reactions of neurons of the respiratory center to local cooling of the ventral surface of the medulla oblongata. Sechenov Physiol J UDSSR 62/7

    Google Scholar 

  • Peskow BJ, Piatin BF, Kulchitsky NA, Pekarskaya TK, Ovchinnikova EV (1980) Functional significance of the intermedial chemosensitive significance of the intermedial chemosensitive area of the medulla oblongata ventrale surface. Proc Int Un Physiol Sci 14:636

    Google Scholar 

  • Petrovický R (1968) Über die Glia marginalis und oberflächliche Nervenzellen im Hirnstamm der Katze. Z Anat Entw 127:221–231

    Google Scholar 

  • Pflüger E (1868) Über die Ursache der Atembewegungen sowie der Dyspnoe und Apnoe. Pfluegers Arch 1:61–106

    Google Scholar 

  • Philipot E (1937) Action réspiratoire et circulatoire sino-carotidienne réflexe de quelques dérivés de la choline. Arch Int Pharmacodyn 57:357

    Google Scholar 

  • Phillipson EA (1977) Regulation of breathing during sleep. Am Rev Respir Dis (Suppl) 115:217–224

    Google Scholar 

  • Phillipson EA (1978a) Control of breathing during sleep. Am Rev Respir Dis 118:909–939

    Google Scholar 

  • Phillipson EA (1978b) Respiratory adaptations in sleep. Annu Rev Physiol 40:133–156

    Google Scholar 

  • Phillipson EA, Kozar LF, Rebuck AS, Murphy E (1977) Ventilatory and waking responses to CO2 in sleeping dogs. Am Rev Respir Dis 115:251–259

    Google Scholar 

  • Phillipson EA, Sullivan CE, Read JC, Murphy E, Kozar LF (1978) Ventilatory and waking responses to hypoxia in sleeping dogs. J Appl Physiol 44/4:512–520

    Google Scholar 

  • Pitts RF (1940) The respiratory center and its descending pathways. J Comp Neurol 72:605–625

    Google Scholar 

  • Pitts RF (1946) Organization of the respiratory center. Physiol Rev 26:609–630

    Google Scholar 

  • Pitts RF, Magoun HW, Ranson SW (1939a) Localization of the medullary respiratory centers in the cat. Am J Physiol 126:673–688

    Google Scholar 

  • Pitts RF, Magoun HW, Ranson SW (1939b) Interrelations of the respiratory centers in the cat. Am J Physiol 126/3:689–707

    Google Scholar 

  • Pitts RF, Magoun HW, Ranson SW (1939c) The origin of respiratory rhythmicity. Am J Physiol 127:654–670

    Google Scholar 

  • Pokorski M (1976) Neurophysiological studies on central chemosensor in medullary ventrolateral areas. Am J Physiol 230:1288–1295

    Google Scholar 

  • Pokorski M, Schlaefke ME, See WR (1975) Neurophysiological studies on the central chemosensitive mechanism (rostral area). Pfluegers Arch 355:R33

    Google Scholar 

  • Porter R (1963) Unit responses evoked in the medulla oblongata by vagus nerve stimulation. J Physiol (Lond) 168:717–735

    Google Scholar 

  • Poulsen T (1952) Investigation into the anaesthetic properties of carbon dioxide. Acta Pharmacol Toxicol (Copenh) 8:30–46

    Google Scholar 

  • Prill RK (1977) Das Verhalten von Neuronen des caudalen chemosensiblen Feldes in der Medulla oblongata der Katze gegenüber intravenösen Injektionen von NaHCO3 und HCl. Dissertation, Ruhr-Universität, Bochum

    Google Scholar 

  • Prill RK, Pokorski M, See WR, Schlaefke ME (1975) Neurophysiological studies on the central chemosensitive mechanism (caudal area). Pfluegers Arch 355:33

    Google Scholar 

  • Prime FJ, Westlake EK (1954) The respiratory response to CO2 in emphysema. Clin Sci 13:321–332

    Google Scholar 

  • Rach E (1863) Quo modo medulla oblongata, ut respirandi motus efficiat, incitetur. Inauguraldissertation, Regiomonti

    Google Scholar 

  • Ranson BR, Goldring S (1973a) Ionic determinants of membrane potential of cells presumed to be glia in cerebral cortex of cat. J Neurophysiol 36:855–868

    Google Scholar 

  • Ranson BR, Goldring S (1973b) Slow depolarization in cells presumed to be glia in cerebral cortex of cat. J Neurophysiol 36:869–878

    Google Scholar 

  • Reed DJ, Kellog RH (1958) Changes in respiratory response to CO2 during natural sleep at sea level and at altitude. J Appl Physiol 13:325

    Google Scholar 

  • Reed DJ, Kellog RH (1960) Effect of sleep on hypoxic stimulation of breathing at sea level and altitude. J Appl Physiol 15:1130–1134

    Google Scholar 

  • Reed DJ, Withrow CD, Woodbury DM (1967) Electrolyte and acid-base parameters of rat cerebrospinal fluid. Exp Brain Res 3:212–219

    Google Scholar 

  • Reite M, Pauley JD, Kaufman IC, Stynes AJ, Marker V (1974) Normal physiological patterns and physiological behavioral correlations in unrestrained monkey infants. Physiol Behav 12:1021–1033

    Google Scholar 

  • Richards CD, Sercombe R (1970) Calcium, magnesium and the electrical activity of guinea-pig olfactory cortex in vitro. J Physiol (Lond) 211:571–584

    Google Scholar 

  • Richter T, West JR, Fishman AP (1957) The syndrome of alveolar hypoventilation and diminished sensitivity of the respiratory center. The New England J Med 256:1165–1170

    Google Scholar 

  • Rigatto H (1979) A critical analysis of the development of peripheral and central respiratory chemosensitivity during the neonatal period. Wenner-Gren Cent Int Symp Ser 32:137–148

    Google Scholar 

  • Rigatto H, Brady JP (1972) Periodic breathing and apnea in preterm infants. I Evidence for hypoventilation possibly due to central respiratory depression. Pediatrics 50:202–218

    Google Scholar 

  • Rigatto H, Brady J, de la Torre Verduzco R (1975a) Chemoreceptor reflexes in preterm infants: I. The effect of gestational and postnatal age on the ventilatory response to inhalation of 100% and 15% oxygen. Pediatrics 55:604–614

    Google Scholar 

  • Rigatto H, Brady JP, de la Torre Verduzco R (1975b) Chemoreceptor reflexes in preterm infants. II. The effect of gestational and postnatal age on the ventilatory response to inhaled carbon dioxide. Pediatrics 55:614–620

    Google Scholar 

  • Rigatto H, de la Torre Verduzco R, Cates D (1975c) Effects of O2 on the ventilatory response to CO2 in preterm infants. J Appl Physiol 39:896–899

    Google Scholar 

  • Robin RD, Whaley RD, Crump CH, Bickelman AG, Travis DM (1958) Acid base relations between spinal fluid and arterial blood with special references to control of ventilation. J Appl Physiol 13:385–392

    Google Scholar 

  • Rodgers SH (1968) Ventilatory response to ventral root stimulation in the vertebrate cat. Respir Physiol 5:165–174

    Google Scholar 

  • Rosenstein R, McCarthy LE, Borison HC (1974) Influence of hypoxia on tidal volume response to CO2 in decerebrate cats. Respir Physiol 20:239–250

    Google Scholar 

  • Rutherford SG, Cuthbertson EM, Hansen JT, Pace N (1967) Surgical excision of the canine carotied bodies and denervation of the aortic bodies. J Surg Res 7/10:457–463

    Google Scholar 

  • Salmoiraghi GC, Baumgarten Rv (1961) Intracellular potentials from respiratory neurons in brain stem of cat and mechanism of rhythmic respiration. J Neurophysiol 24:203

    Google Scholar 

  • Salmoiraghi GC, Burns BD (1960) Notes on mechanism of rhythmic respiration. J Neurophysiol 23:14–26

    Google Scholar 

  • Salmoiraghi GC, Steiner FA (1963) Acetylcholine sensitivitiy of cat's medullary neurones. J Neurophysiol 26:581–597

    Google Scholar 

  • Saper CB, Swanson LW, Cowan WM (1976) The efferent connections of the ventromedial nucleus of the hypothalamus of the rat. J Comp Neurol 169:409–442

    Google Scholar 

  • Schiff JM (1858/9) Lehrbuch der Muskel-und Nervenphysiologie. Schauenburg, Lahr

    Google Scholar 

  • Schlaefke ME (1972) Untersuchungen zur Funktion und Struktur der zentralen Chemosensibilität, ihre Bedeutung für die Lungenventilation und die Regelung des extracellulären pH im Zentralnervensystem. Habilitationsschrift Medizin, Ruhr-Universität Bochum

    Google Scholar 

  • Schlaefke ME (1973) 'specific’ and ‘non-specific’ stimuli in the drive of respiration. Acta Neurobiol Exp (Warsz) 33:149–154

    Google Scholar 

  • Schlaefke ME (1974) Role of central chemosensitivity for the respiratory system during respiratory and metabolic acidosis. In: Viswanathan R, Jaggi OP (eds) Advances in chronic obstructive lung disease. Atma Ram, New Delhi, pp 223–227

    Google Scholar 

  • Schlaefke ME (1976a) Central chemosensitivity: Neurophysiology and contribution to regulation. In: Loeschcke HH (ed) Acid-base homeostasis of the brain extracellular fluid on the respiratory control system. Thieme, Stuttgart, pp 66–80

    Google Scholar 

  • Schlaefke ME (1976b) Central chemosensitivity. In: Ulmer WT (ed) Verh Ges Lungen-und Atmungsforschung 6:14–20

    Google Scholar 

  • Schlaefke ME, Loeschcke HH (1967) Lokalisation eines an der Regulation von Atmung und Kreislauf beteiligten Gebietes an der ventralen Oberfläche der Medulla oblongata durch Kälteblockade. Pfluegers Arch 297:201–220

    Google Scholar 

  • Schlaefke ME, See WR (1978) Origin and modification of central chemosensitive drive. Drug Res 28/II 12:2365–2367

    Google Scholar 

  • Schlaefke ME, See WR (1979) Ventral medullary neurons modified by H+-ions and peripheral nerve stimulation. Pfluegers Arch 379:R50

    Google Scholar 

  • Schlaefke ME, See WR (1980a) Ventral surface stimulus response in relation to ventilatory and cardiovascular effects. In: Koepchen HP, Hilton SM, Trzebski A (eds) Central interaction between respiratory and cardiovascular control systems. Springer, Berlin Heidelberg New York, pp 56–64

    Google Scholar 

  • Schlaefke ME, See WR (1980b) Loss of central chemosensitivity in the respiratory control system — a model for studying Ondine's curse and sudden infant death syndrome. Bull Europ Physio-Pathol Resp 16/5:220P

    Google Scholar 

  • Schlaefke ME, See WR, Massion WH, Loeschcke HH (1969) Die Rolle 'spezifischer’ und ‘unspezifischer’ Afferenzen für den Antrieb der Atmung, untersucht durch Reizung und Blockade von Afferenzen an der decerebrierten Katze. Pfluegers Arch 312:189–205

    Google Scholar 

  • Schlaefke ME, See WR, Loeschcke HH (1970) Ventilatory response to alterations of H+-ion concentration in small areas of the ventral medullary surface. Respir Physiol 10:198–212

    Google Scholar 

  • Schlaefke ME, Kille JF, Folgering H, Herker A, See WR (1974) Breathing without central chemosensitivity. In: Umbach W, Koepchen HP (eds) Central rhythmic and regulation. Hippokrates. Stuttgart, pp 97–104

    Google Scholar 

  • Schlaefke ME, Pokorski M, See WR, Prill RK Kille JF, Loeschcke HH (1975a) Chemosensitive neurons on the ventral medullary surface. Bull Physio-Pathol Respir 11:277–284

    Google Scholar 

  • Schlaefke ME, See WR, Herker A (1975b) Response of neurons in the ventral medullary surface to alterations of H+ ion concentration in the cerebrospinal fluid. Pfluegers Arch (Suppl) 359:49

    Google Scholar 

  • Schlaefke ME, See WR, Kille JF (1977) Untersuchungen zum Angriffsort antihypertensiv wirkender Imidazolinderivate. Therapiewoche 27:44

    Google Scholar 

  • Schlaefke ME, See WR, Fukuda Y (1978) An attempt to differentiate chemosensitive neurones in the ventral medulla oblongata. Neurosci Lett (Suppl) 1:18

    Google Scholar 

  • Schlaefke ME, Kille JF, Loeschcke HH (1979a) Elimination of central chemosensitivity by coagulation of a bilateral area on the ventral medullary surface in awake cats. Pfluegers Arch 379:231–241

    Google Scholar 

  • Schlaefke ME, See WR, Herker-See A, Loeschcke HH (1979b) Respiratory response to hypoxia and hypercapnia after elimination of central chemosensitivity. Pfluegers Arch 381:241–248

    Google Scholar 

  • Schlaefke ME, See WR, Kille JF (1979c) Origin and afferent modification of respiratory drive from ventral medullary areas. Wenner-Gren Cent Int Symp Ser 32:25–34

    Google Scholar 

  • Schlaefke ME, Luttmann A, Dermietzel R, Kille JF, Hukuhara T Jr, Tinti M, Wierich W, See WR (1980a) Zur Pathophysiologie der zentralen Chemosensibilität der Atmung. Atemwegs-und Lungenkrankheiten 6/3:165–169

    Google Scholar 

  • Schlaefke ME, Hukuhara T Jr, See WR (1980b) Loss of central chemosensitivity, experimental studies on a clinical problem. Proc Int Un Physiol Sci 14:686

    Google Scholar 

  • Schlaefke ME, Kille JF, Wierich W (1980c) Comparative studies on central chemosensitivity in cat and in man. Pfluegers Arch 384:R30

    Google Scholar 

  • Schlaefke ME, See WR, Burghardt F (1980d) Influence of central chemosensitivity upon respiratory and sympathetic efferent pathways. Neurosci Lett (Suppl) 18:S140

    Google Scholar 

  • Schmidt CF, Comroe JH Jr (1940) Functions of the carotid and aortic bodies. Physiol Rev 20:115–157

    Google Scholar 

  • Schwanghart F, Schroeter R, Klüssendorf D, Koepchen HP (1974) The influence of novocaine block of superficial brain stem structures on discharge pattern of specific respiratory and unspecific reticular neurons. In: Umbach W, Koepchen HP (eds) Central rhythmic and regulation. Hippokrates, Stuttgart, pp 104–110

    Google Scholar 

  • Schweitzer A, Wright S (1938) Action of prostigmine and acetylcholine on respiration. Quart J Exp Physiol 28:33–47

    Google Scholar 

  • Scott RW (1920) Observations on pathologic physiology of chronic pulmonary emphysema. Arch Intern Med 26:544

    Google Scholar 

  • See WR (1973) Die Rolle chemischer und nicht chemischer Afferenzen des Nervus vagus als Atmungsantriebe. Biology thesis, Ruhr Universität Bochum

    Google Scholar 

  • See WR (1976a) Über den Beitrag des Hypothalamus zur Atmung nach Ausschaltung der chemischen Atemantriebe. Ph D Dissertation, Ruhr Universität Bochum

    Google Scholar 

  • See WR (1976b) Respiratory drive in hyperthermia, interaction with central chemosensitivity. In: Loeschcke HH (ed) Acid-base homeostasis of the brain extracellular fluid and the respiratory control system. Thieme, Stuttgart, pp 122–129

    Google Scholar 

  • See WR, Schlaefke ME (1978) The influence of sinus-nerve stimulation on neuronal activity of ventral medullary neurons. Neurosci Lett (Suppl) 1:519

    Google Scholar 

  • See WR, Schlaefke ME (1980) Convergence of afferents on H+-modulated neurones in central chemosensitive structures. Proc Int Un Physiol Sci 14:692

    Google Scholar 

  • See WR, Schlaefke ME, Herker-See A (1977) The effect of local hypothalamic heating on respiration after elimination of chemical afferences to the respiratory system. Proc IV Iranian Congr Physiol Pharmacol pp 117–118

    Google Scholar 

  • See WR, Folgering H, Schlaefke ME (1978) Central respiratory and cardiovascular effects of the ACh-releaser 4-Amin opyridine. Pfluegers Arch 377:R20

    Google Scholar 

  • See WR, Hukuhara T Jr, Schlaefke ME (1980) Efferent sinus nerve activity before and during elimination of central chemosensitivity. Pfluegers Arch 384:R30

    Google Scholar 

  • Segundo JP, Perkel DH (1969) The nerve cell as an analyzer of spike trains. Med Sci 11:349–390

    Google Scholar 

  • Segundo JP, Takenaka T, Eucabo H (1967a) Electrophysiology of bulbar reticular neurons. J Neurophysiol 30:1194–1220

    Google Scholar 

  • Segundo JP, Takenaka T, Eucabo H (1967b) Somatic sensory properties of bulbar reticular neurons. J Neurophysiol 30:1221–1238

    Google Scholar 

  • Severinghaus JW, Mitchell RA (1962) Ondine's curse — failure of respiratory center automaticity while awake. Clin Res 20:122

    Google Scholar 

  • Shahar A, Edery H (1976) Large multipolar nerve cells in the ventral medulla oblongata of the cat. Proc VI Europ Congr on Electron Microscopy, Jerusalem, pp 614–616

    Google Scholar 

  • Shannon DC, Kelly D (1977) Impaired regulation of alveolar ventilation and the sudden infant death syndrome. Science 197:367–368

    Google Scholar 

  • Shannon DC, Kelly DH, O'Connell K (1977) Abnormal regulation of ventilation in infants of risk for sudden infant death syndrome. N Engl J Med 297:747

    Google Scholar 

  • Shimada K, Trouth CO, Loeschcke HH (1969) Von der H+-Ionenkonzentration des Liquors abhängige Aktivität von Neuronen im Gebiet der chemosensiblen Zonen der Medulla oblongata. Pfluegers Arch 312:R55

    Google Scholar 

  • Siesjö BK, Sørensen SC (eds) (1971) Ion homeostasis of the brain. The regulation of hydrogene and potassium ion concentrations in cerebral intra-and extracellular fluids. Alfred Benzon Symposium III. Munksgaard, Copenhagen

    Google Scholar 

  • Soerensen SC, Mines AH (1970) Ventilatory response to acute and chronic hypoxia in goats after sinus nerve section. J Appl Physiol 28:832–835

    Google Scholar 

  • Somjen GG (1975) Electrophysiology of neuroglia. Am Rev Physiol 37:163–190

    Google Scholar 

  • Speckman EJ, Caspers H (1969a) Verschiebungen des corticalen Bestandspotentials bei Veränderungen der Ventilationsgröße. Pfluegers Arch 310:235–250

    Google Scholar 

  • Speckman EJ, Caspers H (1969b) Inhibitorische CO2-Wirkungen auf spinale Zwischen-und Motoneurone bei der Ratte. Pfluegers Arch 307:R119–120

    Google Scholar 

  • Speckmann EJ, Caspers H, Sokolov W (1970) Aktivitätsänderungen spinaler Neurone während und nach einer Asphyxie. Pfluegers Arch 319:122–138

    Google Scholar 

  • Spode R (1980) Ausschaltung der zentralen und peripheren chemosensiblem Atemantriebe bei der anaesthesierten Katze während Muskelarbeit. Medical Dissertation, Ruhr-Universiät Bochum

    Google Scholar 

  • Spode R, Schlaefke ME (1975) Influence of muscular exercise on respiration after central and peripheral chemodenervation. Pfluegers Arch 359:R49

    Google Scholar 

  • Steinschneider A (1972) Prolonged apnea and the sudden infant death syndrome. Clinical and laboratory observations. Pediatrics 50/4:646–654

    Google Scholar 

  • Stella G (1938a) On the mechanism of production and the physiological significance of ‘apneusis'. J Physiol (Lond) 93:10–23

    Google Scholar 

  • Stella G (1938b) The dependence of the activity of the ‘apneustic centre’ on the carbon dioxide of the arterial blood. J Physiol 93:263–275

    Google Scholar 

  • St. John WM, Wang SC (1976) Integration of chemoreceptor stimuli by caudal pontile and rostral medullary sites. J Appl Physiol 41/5:612–622

    Google Scholar 

  • St. John WM, Wang SC (1977a) Response of medullary respiratory neurons to hypercapnia and isocapnic hypoxia. J Appl Physiol 43/5:812–821

    Google Scholar 

  • St. John W, Wang SC (1977b) Alterations from apneusis to more regular rhythmic respiration in decerebrate cats. Respir Physiol 31:91–106

    Google Scholar 

  • Sullivan CE, Kozar LF, Murphy E, Phillipson EA (1978) Primary role of respiratory afferents in sustaining breathing rhythm. J Appl Physiol 45/1:11–17

    Google Scholar 

  • Taber E (1961) The cytoarchitecture of the brain stem of the cat. I. Brain stem nuclei of cat. J Comp Neurol 116:27–70

    Google Scholar 

  • Terzian H (1966) Syndrome de Pickwick el. nercolepsie. Rev Neurol (Paris) 115:184–188

    Google Scholar 

  • Thach B, Frantz I, Adler S, Taeusch HW Jr (1978) Maturation of reflexes influencing inspiratory duration in human infants. J Appl Physiol 45:203–211

    Google Scholar 

  • Trouth CO, Loeschcke HH, Berndt J (1973a) A superficial substrate on the ventral surface of the medulla oblongata influencing respiration. Pfluegers Arch 339:135–152

    Google Scholar 

  • Trouth CO, Loeschcke HH, Berndt J (1973b) Histological structures in the chemosensitive regions on the ventral surface of the cat's medulla oblongata. Pfluegers Arch 339:171–183

    Google Scholar 

  • Trouth CO, Loeschcke HH, Berndt J (1973c) Topography of the circulatory responses to electrical stimulation in the medulla oblongata. Pfluegers Arch 339:185–201

    Google Scholar 

  • Trzebski A, Zielinski A, Lipski J, Majcherczyk S (1971) Increase of sympathetic preganglionic discharges and of the peripheral resistance following stimulation by H+ ions of the superficial chemosensitive areas in the medulla oblongata in cats. Proc Int Un Physiol Sci 9:571

    Google Scholar 

  • Trzebski A, Zielinski A, Majcherczyk S, Lipski J, Szulczyk P (1974) Effect of chemical stimulation and depression of the medullary superficial areas on the respiratory motoneurones discharges, sympathetic activity and efferent control of carotid area receptors. In: Umbach W, Koepchen HP (eds) Central rhythmic and regulation. Hippokrates, Stuttgart, pp 170–177

    Google Scholar 

  • Trzebski A, Majcherczyk S, Szulczyk P, Chruscielewski L (1976) Direct nervous mechanisms as the possible pathways of interaction of the central and peripheral chemosensitive areas. In: Loeschcke HH (ed) Acid-base homeostasis of the brain extracellular fluid and the respiratory control system. Thieme, Stuttgart, pp 130–146

    Google Scholar 

  • Trzebski A, Mikulski A, Przybyszewski A (1977) Influence of the chemosensitive areas on the ventral surface of the medulla oblongata on the EEG activity in encéphale isolé preparations in cats. Proc Int Un Physiol Sci 13:764

    Google Scholar 

  • Trzebski A, Mikulski A, Przybyszewski A (1980) Effects of stimulation of chemosensitive areas by superfusion on ventral medulla and by infusion into vertebral artery of chemical stimuli in non-anaesthetized “encéphale isolé” preparations in cats. In: Koepchen HP, Hilton S, Trzebski A (eds) Central interaction between respiratory and cardiovascular control systems. Springer Berlin Heidelberg New York, pp 65–75

    Google Scholar 

  • Ullah Z (1973) Elektronenmikroskopische Untersuchungen über ein chemosensibles Areal für die Atmungsregulation im Bereiche der Medulla oblongata der Hauskatze. Medical Disseration, Gesamthochschule Essen

    Google Scholar 

  • Umbach W, Koepchen HP (eds) (1974) Central rhythmic and regulation. Hippokrates, Stuttgart

    Google Scholar 

  • Unterberg W (1971) Das Pickwick-Syndrom. Dtsches Ärtzeblatt 14:1009–1012

    Google Scholar 

  • Vierordt K (1844) Respiration. In: Wagner (ed) Handwörterbuch Physiologie II, pp 828–919

    Google Scholar 

  • Volkmann AW (1841) Über die Bewegungen des Athmens und Schluckens, mit besonderer Berücksichtigung neurologischer Streitfragen. Arch Anat Physiol 332–360

    Google Scholar 

  • Walker JL, Brown AM (1970) Unified account of variable effects of carbon dioxide on nerve cells. Science 167:1502–1504

    Google Scholar 

  • Ward RA, Kelsey WM (1962) The pickwickian syndrome. J Pediatr 61:745–749

    Google Scholar 

  • Warsaw Symposium (1976) Carbon dioxide and breathing. Bull Physio-Pathol Respir 12:213–255

    Google Scholar 

  • Washizu Y (1960) Effect of CO2 and pH on the responses of spinal motoneurons. Brain Nerve 12:757–766

    Google Scholar 

  • Wells HH, Kattwinkel J, Morrow JD (1980) Control of ventilation in Ondine's curse. J Pediatr 96/5:865–867

    Google Scholar 

  • Wennergren G, Wennergren M (1980) Respiratory effects elicited in newborn animals via the central chemoreceptors. Acta Physiol Scand (Copenh) 108:309–311

    Google Scholar 

  • Whipp BJ (1978) Trends of the exercise hyperpnea and their degree of corroboration. Chest 73:274–283

    Google Scholar 

  • Wichser J, Kazemi H (1975) CSF bicarbonate regulation in respiratory acidosis and alkalosis. J Appl Physiol 38/3:504–511

    Google Scholar 

  • Wiemer W, Ott N, Winterstein H (1964) Reflektorische und zentrale Anteile der Hyperpneo bei HCl-Acidose. Z Biol (Munich) 114:299–308

    Google Scholar 

  • Wiemer W, Winterstein H, Kiwull P, Ott N (1965) Interaction of intracranial and extracranial respiratory mechanisms. In: Brooks C McC, Kao FF, Lloyd BB (eds) Cerebrospinal fluid and the regulation of ventilation. Blackwell, Oxford, pp 303–321

    Google Scholar 

  • Willshaw P (1975) Sinus nerve efferents as a link between central and peripheral chemoreceptors. In: Purves MT (ed) The peripheral arterial chemoreceptors. Cambridge University Press 253–268

    Google Scholar 

  • Willshaw P (1977) Mechanism of inhibition of chemoreceptor activity by sinus nerve efferents. In: Acker H, Fidone S, Pallot D, Eyzaguirre C, Lübbers DW, Torrance RW (eds) Chemoreception in the carotid body. Springer, Berlin Heidelberg New York, pp 168–174

    Google Scholar 

  • Willshaw P, Majcherczyk S (1979) The peripheral arterial chemoreceptors as detectors of oxygen flow to the brain. Wenner-Gren Cent Int Symp Ser 32:25–34

    Google Scholar 

  • Winder CV (1937a) Pressoreceptor reflexes from the carotid sinus. Am J Physiol 118:379–388

    Google Scholar 

  • Winder CV (1937b) On the mechanism of stimulation of carotid gland chemoreceptor. Am J Physiol 118:389–398

    Google Scholar 

  • Winterstein H (1910) Die Regulierung der Atmung durch das Blut. Centralbl Physiol 24:811

    Google Scholar 

  • Winterstein H (1911) Die Regulierung der Atmung durch das Blut. Pfluegers Arch 138:167

    Google Scholar 

  • Winterstein H (1923) Atmungsregulation und Reaktionsregulation. Naturwissenschaften 625:644

    Google Scholar 

  • Winterstein H (1950) Die Atmung ohne Chemorezeptoren. Arch Intern Pharmacodyn Ther 83:80–90

    Google Scholar 

  • Winterstein H (1955) Die chemische Steuerung der Atmung. Erg Physiol Biol Chem Exp Pharmakol 48:328–528

    Google Scholar 

  • Witnerstein H (1960) Die Entdeckung neuer Sinnesflächen für die chemische Steuerung der Atmung. Naturwissenschaften 47:99–103

    Google Scholar 

  • Winterstein H, Goekhan N (1953) Chemoreceptoren-Reizstoff und Blut/Hirn-Schranke. Arch Exp Pathol Pharmakol 219:192–196

    Google Scholar 

  • Wittich CW von (1866) Über die Beziehung der Medulla oblongata zu den Atembewegungen bei Fröschen. Virchows Arch Pathol Anat 37:322–345

    Google Scholar 

  • Woody CD, Marshall WH, Besson JM, Brain HK (1970) Brain potential shift with respiratory acidosis in the cat and monkey. Am J Physiol 218:275–283

    Google Scholar 

  • Wyss OAM (1964) Die nervöse Steuerung der Atmung. Erg Physiol Biol Chem Exp Pharmakol 54:1–413

    Google Scholar 

  • Wyszogrodski I, Thach B, Milic-Emili J (1978) Maturation of respiratory control in unanesthetized newborn rabbits. J Appl Physiol 44:304–310

    Google Scholar 

  • Zink P, Hach B, Hillemacher A (1977) Plötzlicher unerwarteter Tod bei seltener Halswirbelsäulenmißbildung. Z Rechtsmed 79:63–67

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Dr. Dr. h.c. Hans H. Loeschcke on the occasion of his 68th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag

About this chapter

Cite this chapter

Schlaefke, M.E. (1981). Central chemosensitivity: A respiratory drive. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 90. Reviews of Physiology, Biochemistry and Pharmacology, vol 90. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0034080

Download citation

  • DOI: https://doi.org/10.1007/BFb0034080

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10657-9

  • Online ISBN: 978-3-540-38616-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics