Skip to main content

The roles of calcium and phosphoinositides in the mechanisms of α 1-adrenergic and other agonists

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 111

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 111))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Letif AA, Akhtar RA, Hawthorne JN (1977) Acetylcholine increases the breakdown of triphosphoinositide of rabbit iris muscle prelabelled with [32P]phosphate. Biochem J 162:61–73

    Google Scholar 

  • Ackermann KE, Gish BG, Honchar MP, Sherman WR (1987) Evidence that inositol 1-phosphate in brain of lithium-treated rats results mainly from phosphatidylinositol metabolism. Biochem J 242:517–524

    Google Scholar 

  • Adelstein RS, Conti MA (1975) Phosphorylation of platelet myosin increases actin-activated myosin ATPase activity. Nature 256:597–598

    Google Scholar 

  • Adelstein RS, Eisenberg E (1980) Regulation and kinetics of the actin-myosin-ATP interaction. Annu Rev Biochem 49:921–956

    Google Scholar 

  • Agranoff BW, Murthy P, Seguin EB (1983) Thrombin-induced phosphodiesteratic cleavage of phosphatidylinositol bisphosphate in human platelets. J. Biol Chem 258:2076–2078

    Google Scholar 

  • Ahmad Z, DePaoli-Roach AA, Roach PJ (1982) Purification and characterization of a rabbit liver calmodulin-dependent protein kinase able to phosphorylate glycogen synthase. J Biol Chem 257:8348–8355

    Google Scholar 

  • Akhtar RA, Abdel-Latif AA (1978) Studies on the properties of triphosphoinositide phosphomonoesterase and phosphodiesterase of rabbit iris smooth muscle. Biochim Biophys Acta 527:159–170

    Google Scholar 

  • Akhtar RA, Abdel-Latif AA (1984) Carbachol causes rapid phosphodiesteratic cleavage of phosphatidylinositol 4,5-bisphosphate and accumulation of inositol phosphates in rabbit iris smooth muscle; prazosin inhibits noradrenaline-and ionophore A23187-stimulated accumulation of inositol phosphates. Biochem J 224:291–300

    Google Scholar 

  • Albert PR, Tashjian AH Jr (1984) Relationship of thyrotropin-releasing hormone-induced spike and plateau phases in cytosolic free Ca2+ concentrations to hormone secretion. J Biol Chem 259:15350–15363

    Google Scholar 

  • Albert PR, Tashjian AH Jr (1985) Dual actions of phorbol esters on cytosolic free Ca2+ concentrations and reconstitution with ionomycin of acute thyrotropin-releasing hormone responses. J Biol Chem 260:8746–8759

    Google Scholar 

  • Albert PR, Wolfson G, Tashjian AH Jr (1987) Diacylglycerol increases cytosolic free Ca2+ concentration in rat pituitary cells. J Biol Chem 262:6577–6581

    Google Scholar 

  • Alkon DL, Kubota M, Neary JT, Naito S, Coulter D, Rasmussen H (1986) C-Kinase activation prolongs Ca2+-dependent inactivation of K+ currents. Biochem Biophys Res Commun 134:1245–1253

    Google Scholar 

  • Allan D, Michell RH (1978) A calcium-activated polyphosphoinositide phosphodiesterase in the plasma membrane of human and rabbit erythrocytes. Biochim Biophys Acta 508:277–286

    Google Scholar 

  • Althaus-Salzmann M, Carafoli E, Jakob A (1980) Ca2+, K+ redistributions and a-adrenergic activation of glycogenolysis in perfused rat livers. Eur J Biochem 106:241–248

    Google Scholar 

  • Altin JG, Bygrave FL (1985) The Ca2+-mobilizing actions of vasopressin and angiotensin differ from those of the a-adrenergic agonist phenylephrine in the perfused rat liver. Biochem J 232:911–917

    Google Scholar 

  • Ambler SK, Brown RD, Taylor P (1984) The relationship between phosphoinositol metabolism and mobilization of intracellular calcium elicited by alpha1-adrenergic receptor stimulation in BC3H-1 muscle cells. Mol Pharmacol 26:405–413

    Google Scholar 

  • Amitai G, Brown RD, Taylor P (1984) The relationship between a 1-adrenergic receptor occupation and the mobilization of intracellular calcium. J Biol Chem 259:12519–12527

    Google Scholar 

  • Assimacopoulos-Jeannet FD, Blackmore PF, Exton JH (1977) Studies on a-adrenergic activation of hepatic glucose output: studies on role of calcium in a-adrenergic activation of phosphorylase. J Biol Chem 252:2662–2669

    Google Scholar 

  • Assimacopoulos-Jeannet FD, Blackmore PF, Exton JH (1982) Studies on the interaction between glucagon and a-adrenergic agonists in the control of hepatic glucose output. J Biol Chem 257:3759–3765

    Google Scholar 

  • Assimacopoulos-Jeannet F, McCormack JG, Jeanrenaud B (1983) Effect of phenylephrine on pyruvate dehydrogenase activity in rat hepatocytes and its interaction with insulin and glucagon. FEBS Lett 159:83–88

    Google Scholar 

  • Assimacopoulos-Jeannet F, McCormack JG, Jeanrenaud B (1986) Vasopressin and/or glucagon rapidly increases mitochondrial calcium and oxidative enzyme activities in the perfused rat liver. J Biol Chem 261:8799–8804

    Google Scholar 

  • Aub DL, Putney JW Jr (1984) Metabolism of inositol phosphates in parotid cells: implications for the pathway of the phosphoinositide effect and for the possible messenger role of inositol trisphosphate. Life Sci 34:1347–1355

    Google Scholar 

  • Aub DL, Putney JW Jr (1985) Properties of receptor-controlled inositol trisphosphate formation in parotid acinar cells. Biochem J 225:263–266

    Google Scholar 

  • Aub DL, McKinney JS, Putney JW Jr (1982) Nature of the receptor-regulated calcium pool in the rat parotid gland. J Physiol (Lond) 331:557–565

    Google Scholar 

  • Aub DL, Frey EA, Sekura RD, Cote TE (1986) Coupling of the thyrotropin-releasing hormone receptor to phospholipase C by a GTP-binding protein distinct from the inhibitory or stimulatory GTP-binding protein. J Biol Chem 261:9333–9340

    Google Scholar 

  • Aub DL, Gosse ME, Cote TE (1987) Regulation of thyrotropin-releasing hormone receptor binding and phospholipase C activation by a single GTP-binding protein. J Biol Chem 262:9521–9528

    Google Scholar 

  • Authi KS, Crawford N (1985) Inositol 1,4,5-trisphoshate-induced release of sequestered Ca2+ from highly purified human platelet intracellular membranes. Biochem J 250:247–253

    Google Scholar 

  • Authi KS, Lagarde M, Crawford N (1985) Diacylglycerol lipase activity in human platelet intracellular and surface membranes. FEBS Lett 180:95–101

    Google Scholar 

  • Babcock DF, Chen J-LJ, Yip BP, Lardy HA (1979) Evidence for mitochondrial localization of the hormone-responsive pool of Ca2+ in isolated hepatocytes. J Biol Chem 254:8117–8120

    Google Scholar 

  • Balaban RS, Blum JJ (1982) Hormone-induced changes in NADH fluorescence and O2 consumption of rat hepatocytes. Am J Physiol 242:C172–C177

    Google Scholar 

  • Balla T, Baukal AJ, Guillemette G, Morgan RO, Catt KJ (1986) Angiotensin-stimulated production of inositol trisphosphate isomers and rapid metabolism through inositol 4-monophosphate in adrenal glomerulosa cells. Proc Natl Acad Sci USA 83:9323–9327

    Google Scholar 

  • Balla T, Guillemette G, Baukal AJ, Catt KJ (1987) Metabolism of inositol 1,3,4-trisphosphate to a new tetrakisphosphate isomer in angiotensin-stimulated adrenal glomerulosa cells. J Biol Chem 262:9952–9955

    Google Scholar 

  • Baldassare JJ, Fisher GJ (1986a) Regulation of membrane-associated and cytosolic phospholipase C activities in human platelets by guanosine trisphosphate. J Biol Chem 261:11942–11944

    Google Scholar 

  • Baldassare JJ, Fisher GJ (1986b) GTP and cytosol stimulate phosphoinositide hydrolysis in isolated platelet membranes. Biochem Biophys Res Commun 137:801–805

    Google Scholar 

  • Ballester R, Rosen OM (1985) Fate of immunoprecipitable protein kinase C in GH3 cells treated with phorbol 12-myristate 13-acetate. J Biol Chem 260:15194–15199

    Google Scholar 

  • Banno Y, Nakashima S, Nozawa Y (1986a) Partial purification of phosphoinositide phospholipase C from human platelet cytosol: characterization of its three forms. Biochem Biophys Res Commun 136:713–721

    Google Scholar 

  • Banno Y, Nakashima S, Tohmatsu T, Nozawa Y, Lapetina EG (1986b) GTP and GDP will stimulate platelet cytosolic phospholipase C independently of Ca2+. Biochem Biophys Res Commun 140:728–734

    Google Scholar 

  • Banno Y, Nagao S, Katada T, Nagata K, Ui M, Nozawa Y (1987) Stimulation by GTP-binding proteins (Gi, Go) of partially purified phospholipase C activity from human platelet membranes. Biochem Biophys Res Commun 146:861–869

    Google Scholar 

  • Bansal VS, Inhorn RC, Majerus PW (1987) The metabolism of inositol 1,3,4-trisphosphate to inositol 1,3-bisphoshate. J Biol Chem 262:9444–9447

    Google Scholar 

  • Banschbach MW, Geison RL, Hokin-Neaverson M (1981) Effects of cholinergic stimulation on levels and fatty acid composition of diacylglycerols in mouse pancreas. Biochim Biophys Acta 663:34–45

    Google Scholar 

  • Baraban JM, Gould RJ, Peroutka SJ, Snyder SH (1985a) Phorbol ester effects on neurotransmission: interaction with neurotransmitters and calcium in smooth muscle. Proc Natl Acad Sci USA 82:604–607

    Google Scholar 

  • Baraban JM, Snyder SH, Alger BE (1985b) Protein kinase C regulates ionic conductance in hippocampal pyramidal neurons: electrophysiological effects of phorbol esters. Proc Natl Acad Sci USA 82:2538–2542

    Google Scholar 

  • Barritt GJ, Parker JC, Wadsworth JC (1981) A kinetic analysis of effects of adrenaline on calcium distribution in isolated rat liver parenchymal cells. J Physiol (Lond) 312:29–55

    Google Scholar 

  • Bass DA, Gerard C, Olbrantz P, Wilson J, McCall CE, McPhail LC (1987) Priming of the respiratory burst of neutrophils by diacylglycerol. J Biol Chem 262:6643–6649

    Google Scholar 

  • Batty IR, Nahorski SR, Irvine RF (1985) Rapid formation of inositol (1,3,4,5) tetrakisphosphate following muscarinic receptor stimulation of rat cerebral corticol slices. Biochem J 232:211–215

    Google Scholar 

  • Baudiere B, Guillon G, Bali J-P, Jard S (1986) Muscarinic stimulation of inositol phosphate accmulation and acid secretion in gastric fundic mucosal cells. FEBS Lett 198:321–325

    Google Scholar 

  • Baukal AJ, Guillemette G, Rubin R, Spat A, Catt KJ (1985) Binding sites for inositol trisphosphate in the bovine adrenal cortex. Biochem Biophys Res Commun 133:532–538

    Google Scholar 

  • Beguinot L, Hanover JA, Ito S, Richert ND, Willingham MC, Pastan I (1985) Phorbol esters induce transient internalization without degradation of unoccupied epidermal growth factor receptors. Proc Natl Acad Sci USA 82:2774–2778

    Google Scholar 

  • Bell JD, Buxton ILO, Brunton LL (1985) Enhancement of adenylate cyclase activity in S49 lymphoma cells by phorbol esters. J Biol Chem 260:2625–2628

    Google Scholar 

  • Benham CD, Tsien RW (1987) A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature 328:275–278

    Google Scholar 

  • Bennett CF, Crooke ST (1987) Purification and characterization of a phosphoinositide-specific phospholipase C from guinea pig uterus. J Biol Chem 262:13789–13797

    Google Scholar 

  • Bennett MK, Erondu NE, Kennedy MB (1983) Purification and characterization of a calmodulin-dependent protein kinase that is highly concentrated in brain. J Biol Chem 258:12735–12744

    Google Scholar 

  • Berkowitz SA, Wolff J (1981) Intrinsic calcium sensitivity of tubulin polymerization: the contributions of temperature, tubulin concentration, and associated proteins. J Biol Chem 256:11216–11223

    Google Scholar 

  • Berridge MJ (1983) Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem J 212:849–858

    Google Scholar 

  • Berridge MJ (1984) Inositol trisphosphate and diacylglycerol as second messengers. Biochem J 220:345–360

    Google Scholar 

  • Berridge MJ (1986) Growth factors, oncogenes and inositol lipids. Cancer Surv 5:413–430

    Google Scholar 

  • Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321

    Google Scholar 

  • Berridge MJ, Dawson RMC, Downes CP, Heslop JP, Irvine RF (1983) Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J 212:473–482

    Google Scholar 

  • Berridge MJ, Heslop JP, Irvine RF, Brown KD (1984) Inositol trisphosphate formation and calcium mobilizationin Swiss 3T3 cells in response to platelet-derived growth factor. Biochem J 222:195–201

    Google Scholar 

  • Berthelsen S, Pettinger WA (1977) A functional basis for classification of a-adrenergic receptors. Life Sci 21:595–606

    Google Scholar 

  • Berthon B, Poggioli J, Capiod T, Claret M (1981) Effect of the a-agonist noradrenaline on total and 45Ca2+ movements in mitochondria of rat liver cells. Biochem J 200:177–180

    Google Scholar 

  • Berthon B, Binet A, Mauger JP, Claret M (1984) Cytosolic free Ca2+ in isolated rat hepatocytes as measured by Quin-2. FEBS Lett 167:19–24

    Google Scholar 

  • Besterman JM, Cuatrecasas P (1984) Phorbol esters rapidly stimulate amiloride-sensitive Na+/H+ exchange in a human leukemic cell line. J Cell Biol 99:340–343

    Google Scholar 

  • Besterman JM, Duronio V, Cuatrecasas P (1986a) Rapid formation of diacylglycerol from phosphatidylcholine: a pathway for generation of a second messenger. Proc Natl Acad Sci USA 83:6785–6789

    Google Scholar 

  • Besterman JM, Pollenz RS, Booker EL Jr, Cuatrecasas P (1986b) Diacylglycerol-induced translocation of diacylglycerol kinase: use of affinity-purified enzyme in a reconstitution system. Proc Natl Acad Sci USA 83:9378–9382

    Google Scholar 

  • Biden TJ, Wollheim CB (1986) Ca2+ regulates the inositol tris/tetrakisphosphate pathway in intact and broken preparations of insulin-secreting R1Nm5F cells. J Biol Chem 261:11931–11934

    Google Scholar 

  • Biden TJ, Prentki M, Irvine RF, Berridge MJ, Wollheim CB (1984) Inositol 1,4,5-trisphosphate mobilizes intracellular Ca2+ from permeabilized insulin-secreting cells. Biochem J 223:467–473

    Google Scholar 

  • Biden TJ, Wollheim CB, Schlegel W (1986) Inositol 1,4,5-trisphosphate and intracellular Ca2+ homeostasis in clonal pituitary cells. J Biol Chem 261:7223–7229

    Google Scholar 

  • Biden TJ, Peter-Riesch B, Schlegel W, Wollheim C (1987) Ca2+-mediated generation of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in pancreatic islets. J Biol Chem 262:3567–3571

    Google Scholar 

  • Billah MM, Lapetina EG (1982) Rapid decrease of phosphatidylinositol 4,5-bisphosphate in thrombin-stimulated platelets. J Biol Chem 257:12705–12708

    Google Scholar 

  • Billah MM, Michell RH (1979) Phosphatidylinositol metabolism in rat hepatocytes stimulated by glycogenolytic hormones. Biochem J 182:661–668

    Google Scholar 

  • Binet A, Berthon B, Claret M (1985) Hormone-induced increase in free cytosolic calcium and glycogen phosphorylase activation in rat hepatocytes incubated in normal and low-calcium media. Biochem J 228:565–574

    Google Scholar 

  • Birnbaumer L (1987) Which G-protein subunits are the active mediators in signal transduction? Trends Pharmacol Sci 8:209–211

    Google Scholar 

  • Blackmore PF, Exton JH (1985) Mechanisms involved in the actions of calcium-dependent hormones. In: Litwak G (ed) Biochemical actions of hormones, vol 12. Academic, New York, pp 215–235

    Google Scholar 

  • Blackmore PF, Exton JH (1986) Studies on the hepatic calcium-mobilizing activity of aluminum fluoride and glucagon. Medulation by cAMP and phorbol myristate acetate. J Biol Chem 261:11056–11063

    Google Scholar 

  • Blackmore PF, Brumley FT, Marks JL, Exton JH (1978) Studies on a-adrenergic activation of hepatic glucose output: relationship between a-adrenergic stimulation of calcium efflux and activation of phosphorylase in isolated rat liver parenchymal cells. J Biol Chem 253:4851–4858

    Google Scholar 

  • Blackmore PF, Dehaye J-P, Exton JH (1979) Studies on a-adrenergic activation of hepatic glucose output: the role of mitochondrial calcium release in a-adrenergic activation of phosphorylase in perfused rat liver. J Biol Chem 254:6945–6950

    Google Scholar 

  • Blackmore PF, Hughes BP, Shuman EA, Exton JH (1982) a-Adrenergic activation of phosphorylase in liver cells involves mobilization of intracellular calcium without influx of extracellular calcium. J Biol Chem 257:190–197

    Google Scholar 

  • Blackmore PF, Hughes BP, Charest R, Shuman EA IV, Exton JH (1983a) Time course of α 1-adrenergic and vasopressin actions on phosphorylase activation, calcium efflux, pyridine nucleotide reduction and respiration in hepatocytes. J Biol Chem 258:10488–10494

    Google Scholar 

  • Blackmore PF, Hughes BP, Exton JH (1983b) Time course of a-adrenergic and vasopressin effects in isolated hepatocytes. In: Harris RA, Cornell NW (eds) Isolation, characterization and use of hepatocytes. Elsevier, New York, pp 433–438

    Google Scholar 

  • Blackmore PF, Bocckino SB, Waynick LE, Exton JH (1985) Role of a guanine nucleotide-binding regulatory protein in the hydrolysis of hepatocyte phosphatidylinositol 4,5-bisphosphate by calcium-mobilizing hormones and the control of cell calcium. Studies utilizing aluminum fluoride. J Biol Chem 260:14477–14483

    Google Scholar 

  • Blackmore PF, Strickland WG, Bocckino SB, Exton JH (1986) Mechanism of hepatic glycogen synthase inactivation induced by Ca2+-mobilizing hormones. Biochem J 237:235–242

    Google Scholar 

  • Blackshear PJ, Stumpo DJ, Huang J-K, Nemenoff RA, Spach DH (1987) Protein kinase C-dependent and-independent pathways of proto-oncogene induction in human astrocytoma cells. J Biol Chem 262:7774–7781

    Google Scholar 

  • Blair JB, James ME, Foster JL (1979) Adrenergic control of glucose output and adenosine 3′:5′-monophosphate levels in hepatocytes from juvenile and adult rats. J Biol Chem 254:7579–7584

    Google Scholar 

  • Bocckino SB, Blackmore PF, Exton JH (1985) Stimulation of 1,2-diacylglycerol accumulation in hepatocytes by vasopressin, epinephrine and angiotensin II. J Biol Chem 260:14201–14207

    Google Scholar 

  • Bocckino SB, Blackmore PF, Wilson PB, Exton JH (1987) Phosphatidate accumulation in hormone-treated hepatocytes via a phospholipase D mechanism. J Biol Chem 262:15309–15315

    Google Scholar 

  • Bojanic D, Fain JN (1986) Guanine nucleotide regulation of [3H]vasopressin binding to liver plasma membranes and solubilized receptors. Evidence for the involvement of a guanine nucleotide regulatory protein. Biochem J 240:361–365

    Google Scholar 

  • Bokoch GM, Gilman AG (1984) Inhibition of receptor-mediated release of arachidonic acid by pertussis toxin. Cell 39:301–308

    Google Scholar 

  • Bolton TB (1979) Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev 59:606–718

    Google Scholar 

  • Bond M, Kitazawa T, Somlyo AP, Somlyo AV (1984) Release and recycling of calcium by the sarcoplasmic reticulum in guinea-pig portal vein smooth muscle. J Physiol (Lond) 355:677–695

    Google Scholar 

  • Boni LT, Rando RR (1985) The nature of protein kinase C activation by physically defined phospholipid vesicles and diacylglycerols. J Biol Chem 260:10819–10825

    Google Scholar 

  • Bouscarel B, Exton JH (1986) Regulation of hepatic glycogen phosphorylase and glycogen synthase by calcium and diacylglycerol. Biochim Biophys Acta 888:126–134

    Google Scholar 

  • Bouscarel B, Meurer K, Decker C, Exton JH (1988) The role of protein kinase C in the inactivation of hepatic glycogen synthase by calcium-mobilizing agonists. Biochem J 251:47–53

    Google Scholar 

  • Bouvier M, Leeb-Lundberg LMF, Benovic JL, Caron MG, Lefkowitz RJ (1987) Regulation of adrenergic receptor function by phosphorylation. J Biol Chem 262:3106–3113

    Google Scholar 

  • Boyer JL, Garcia A, Posadas C, Garcia-Sainz JA (1984) Differential effect of pertussis toxin on the affinity state for agonists of renal a 1-and a 2-adrenoceptors. J Biol Chem 259:8076–8079

    Google Scholar 

  • Bradford PG, Rubin RP (1986) Guanine nucleotide regulation of phospholipase C activity in permeabilized rabbit neutrophils. Biochem J 239:97–102

    Google Scholar 

  • Brandt SJ, Niedel JE, Bell RM, Young WS (1987) Distinct patterns of expression of different protein kinase C mRNAs in rat tissues. Cell 49:57–63

    Google Scholar 

  • Brass LF, Joseph SK (1985) A role for inositol triphosphate in intracellular Ca2+ mobilization and granule secretion in platelets. J Biol Chem 260:15172–15179

    Google Scholar 

  • Brass LF, Laposata M, Banga HS, Rittenhouse SE (1986) Regulation of the phosphoinositide hydrolysis pathway in thrombin-stimulated platelets by a pertussis toxin-sensitive guanine nucleotide-binding protein. J Biol Chem 261:16838–16847

    Google Scholar 

  • Brass LF, Shaller CC, Belmonte EJ (1987) Inositol 1,4,5-trisphosphate-induced granule-secretion in platelets. J Clin Invest 79:1269–1275

    Google Scholar 

  • Breant B, Keppens S, DeWulf H (1981) Desensitization of the cAMP-independent glycogenolytic response in rat hepatocytes. Arch Int Physiol Biochim 89:B90–B91

    Google Scholar 

  • Brooks CL, Landt M (1985) Calmodulin-dependent protein kinase in acini from lactating rat mammary tissue: subcellular locale, characterization, and solubilization. Arch Biochem Biophys 240:663–673

    Google Scholar 

  • Brown JE, Rubin LJ (1984) A direct demonstration that inositol trisphosphate induces an increase in intracellular calcium in Limulus photoreceptors. Biochem Biophys Res Commun 125:1137–1142

    Google Scholar 

  • Brown JE, Rubin LJ, Ghalayini AJ, Tarver AP, Irvine RF, Berridge MJ, Anderson RE (1984) Myoinositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors. Nature 311:160–163

    Google Scholar 

  • Brown JE, Watkins DC, Malbon CC (1987) Light-induced changes in the content of inositol phosphates in squid (Loligo pealei) retina. Biochem J 247:293–297

    Google Scholar 

  • Brown RD, Berger KD, Taylor P (1984) α 1-Adrenergic receptor activation mobilizes cellular Ca2+ in a muscle cell line. J Biol Chem 260:7554–7562

    Google Scholar 

  • Bruns C, Marme D (1987) Pertussis toxin inhibits the angiotensin II-and serotonin-induced rise of free cytoplasmic calcium in cultured smooth muscle cells of rat aorta. FEBS Lett 212:40–44

    Google Scholar 

  • Buckley JT, Hawthorne JN (1972) Erythrocyte membrane polyphosphoinositide metabolism and the regulation of calcium binding. J Biol Chem 247:7218–7223

    Google Scholar 

  • Burch RM, Luini A, Mais DE, Corda D, Vanderhoek JY, Kohn LD, Axelrod J (1986a) α 1-Adrenergic stimulation of arachidonic acid release and metabolism in a rat thyroid cell line. J Biol Chem 261:11236–11241

    Google Scholar 

  • Burch RM, Luini A, Axelrod J (1986b) Phospholipase A2 and phospholipase C are activated by distinct GTP-binding proteins in response to α 1-adrenergic stimulation in FRTL5 thyroid cells. Proc Natl Acad Sci USA 83:7201–7205

    Google Scholar 

  • Burgess GM, Godfrey PP, McKinney JS, Berridge MJ, Irvine RF, Putney JW Jr (1984a) The second messenger linking receptor activation to internal Ca release in liver. Nature 309:63–66

    Google Scholar 

  • Burgess GM, Irvine RF, Berridge MJ, McKinney JS, Putney JW Jr (1984b) Actions of inositol phosphates on Ca2+ pools in guinea-pig hepatocytes. Biochem J 224:741–746

    Google Scholar 

  • Burgess GM, McKinney JS, Irvine RF, Berridge MJ, Hoyle PC, Putney JW Jr (1984c) Inositol 1,4,5-trisphosphate may be a signal for f-Met-Leu-Phe-induced intracellular calcium mobilisation in human leucocytes (HL-60 cells). FEBS Lett 176:193–196

    Google Scholar 

  • Burke BE, Lorenzo RJ (1981) Ca2+-and calmodulin-stimulated endogenous phosphorylation of neurotubulin. Proc Natl Acad Sci USA 78:991–995

    Google Scholar 

  • Busa WB, Ferguson JE, Joseph SK, Williamson JR, Nuccitelli R (1985) Activation of frog (Xenopus laevis) eggs by inositol trisphosphate. 1. Characterization of Ca2+ release from intracellular stores. J Cell Biol 101:677–682

    Google Scholar 

  • Buxton D, Barron LL, Olson MS (1982) The effects of α-adrenergic agonists on the regulation of the branched-chain α-ketoacid oxidation in the perfused rat liver. J Biol Chem 257:14318–14323

    Google Scholar 

  • Buxton ILO, Brunton LL (1985) Action of the cardiac α 1-adrenergic receptor: activation of cyclic AMP degradation. J Biol Chem 260:6733–6737

    Google Scholar 

  • Bylund DB, U'Prichard DC (1983) Characterization of α 1-and α 2-adrenergic receptors. Int Rev Neurobiol 24:343–431

    Google Scholar 

  • Cabot MC, Welsh CJ, Zhang Z, Cao H, Chabbott H, Lebowitz M (1988) Vasopressin, phorbol diesters and serum elicit glycerophospholipid hydrolysis and diacylglycerol formation in nontransformed cells: transformed derivatives do not respond. Biochem Biophys Acta 959:46–57

    Google Scholar 

  • Campbell KP, MacLennan DH (1982) A calmodulin-dependent protein kinase system from skeletal muscle sarcoplasmic reticulum: phosphorylation of a 60000-dalton protein. J Biol Chem 257:1238–1246

    Google Scholar 

  • Canessa de Scarnatti O, Lapetina E (1974) Adrenergic stimulation of phosphatidylinositol labelling in rat vas deferens. Biochim Biophys Acta 360:298–305

    Google Scholar 

  • Capponi AM, Lew PD, Vallotton MB (1985) Cytosolic free calcium levels in monolayers of cultured rat aortic smooth muscle cells. J Biol Chem 260:7836–7842

    Google Scholar 

  • Carafoli E (1984) Calmodulin-sensitive calcium-pumping ATPase of plasma membranes: isolation, reconstitution, and regulation. Fed Proc 43:3005–3010

    Google Scholar 

  • Carter HR, Smith AD (1987) Resolution of the phosphoinositide-specific phospholipase C isolated from porcine lymphocytes into multiple species. Biochem J 244:639–645

    Google Scholar 

  • Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y (1982) Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 257:7847–7851

    Google Scholar 

  • Casteels R, Droogmans G (1981) Exchange characteristics of the noradrenaline-sensitive calcium store in vascular smooth muscle cells of rabbit ear artery. J Physiol (Lond) 317:263–279

    Google Scholar 

  • Casteels R, Raeymaekers L (1979) The action of acetylcholine and catecholamines on an intracellular calcium store in smooth muscle cells of guinea-pig taenia coli. J Physiol (Lond) 294:51–68

    Google Scholar 

  • Chacko S, Conti MA, Adelstein RS (1977) Effect of phosphorylation of smooth muscle myosin on actin activation and Ca2+ regulation. Proc Natl Acad Sci USA 74:129–133

    Google Scholar 

  • Chan TM, Exton JH (1977) α-Adrenergic-mediated accumulation of adenosine 3′:5′-monophosphate in calcium-depleted hepatocytes. J Biol Chem 252:8645–8651

    Google Scholar 

  • Chan TM, Exton JH (1978) Studies on α-adrenergic activation of hepatic glucose output: studies on α-adrenergic inhibition of hepatic pyruvate kinase and activation of gluconeogenesis. J Biol Chem 253:6393–6400

    Google Scholar 

  • Chan K-F, Graves DJ (1984) Molecular properties of phosphorylase kinase. In: Cheung WY (ed) Calcium and cell function, vol 5. Academic, New York, pp 1–31

    Google Scholar 

  • Chan TM, Blackmore PF, Steiner KE, Exton JH (1979) Effects of adrenalectomy on hormone action on hepatic glucose metabolism. J Biol Chem 254:2428–2433

    Google Scholar 

  • Charest R, Blackmore PF, Berthon B, Exton JH (1983) Changes in free cytosolic Ca2+ in hepatocytes following α 1-adrenergic stimulation. J Biol Chem 258:8769–8773

    Google Scholar 

  • Charest R, Prpic V, Exton JH, Blackmore PF (1985) Stimulation of inositol trisphosphate formation in hepatocytes by vasopressin, epinephrine and angiotensin II and its relationship to changes in cytosolic free Ca2+. Biochem J 227:79–90

    Google Scholar 

  • Chen J-L J, Babcock DF, Lardy HA (1978) Norepinephrine, vasopressin, glucagon, and A23187 induce efflux of calcium from an exchangeable pool in isolated rat hepatocytes. Proc Natl Acad Sci USA 75:2234–2238

    Google Scholar 

  • Cheung WY (1980) Calmodulin plays a pivotal role in cellular regulation. Science 207:19–27

    Google Scholar 

  • Chew CS, Brown MR (1986) Release of intracellular Ca2+ and elevation of inositol trisphosphate by secretagogues in parietal and chief cells isolated from rabbit gastric mucosa. Biochim Biophys Acta 888:116–125

    Google Scholar 

  • Chiarugi V, Porciatti F, Pasquali F, Bruni P (1985) Transformation of BALB/3T3 cells with EJ/T24/H-RAS oncogene inhibits adenylate cyclase response to β-adrenergic agonist while increases muscarinic receptor-dependent hydrolysis of inositol lipids. Biochem Biophys Res Commun 132:900–907

    Google Scholar 

  • Chueh S-H, Gill DL (1986) Inositol 1,4,5-trisphosphate and guanine nucleotides activate calcium release from endoplasmic reticulum via distinct mechanisms. J Biol Chem 261:13883–13886

    Google Scholar 

  • Chueh S-H, Mullaney JM, Ghosh TK, Zachary AL, Gill DL (1987) GTP-and inositol 1,4,5-trisphosphate-activated intracellular calcium movements in neuronal and smooth muscle cell lines. J Biol Chem 262:13857–13864

    Google Scholar 

  • Ciapa B, Whitaker M (1986) Two phases of inositol polyphosphate and diacylglycerol production at fertilization. FEBS Lett 195:347–351

    Google Scholar 

  • Cochet C, Gill GN, Meisenhelder J, Cooper JA, Hunter T (1984) C-kinase phosphorylates the epidermal growth factor receptor and reduces its epidermal growth factor-stimulated tyrosine protein kinase activity. J Biol Chem 259:2553–2558

    Google Scholar 

  • Cockcroft S (1986) The dependence on Ca2+ of the guanine nucleotide-activated polyphosphoinositide phosphodiesterase in neutrophil plasma membranes. Biochem J 240:503–507

    Google Scholar 

  • Cockeroft S, Gomperts BD (1985) Role of guanine nucleotide-binding protein in the activation of polyphosphoinositide phosphodiesterase. Nature 314:534–536

    Google Scholar 

  • Cockcroft S, Baldwin JM, Allan D (1984) The Ca2+-activated polyphosphoinositide phosphodiesterase of human and rabbit neutrophil membranes. Biochem J 221:477–482

    Google Scholar 

  • Codina J, Grenet D, Yatani A, Birnbaumer L, Brown AM (1987) Hormonal regulation of pituitary GH3 cell K+ channels by Kk is mediated by its α-subunit. FEBS Lett 216:104–106

    Google Scholar 

  • Cohen P (1980) The role of calcium ions, calmodulin and troponin in regulation of phosphorylase kinase from rabbit skeletal muscle. Eur J Biochem 111:563–574

    Google Scholar 

  • Cohen P, Burchell A, Foulkes JG, Cohen PTW (1978) Identification of the Ca2+-dependent modulator protein as the fourth subunit of rabbit skeletal muscle phosphorylase kinase. FEBS Lett 92:287–293

    Google Scholar 

  • Colucci WS, Alexander RW (1986) Norepinephrine-induced alteration in the coupling of α 1-adrenergic receptor occupancy to calcium efflux in rabbit aortic smooth muscle cells. Proc Natl Acad Sci USA 83:1743–1746

    Google Scholar 

  • Colucci WS, Gimbrone MA Jr, Alexander RW (1981) Regulation of postsynaptic α-adrenergic receptor in rat mesenteric artery: effects of chemical sympathectomy and epinephrine treatment. Circ Res 48:104–111

    Google Scholar 

  • Combettes L, Berthon B, Binet A, Claret M (1986) Glucagon and vasopressin interactions on Ca2+ movements in isolated hepatocytes. Biochem J 237:675–683

    Google Scholar 

  • Connelly PA, Sisk RB, Schulman H, Garrison JC (1987) Evidence for the activation of the multifunctional Ca2+/calmodulin-dependent protein kinase in response to hormones that increase intracellular Ca2+. J Biol Chem 262:10154–10163

    Google Scholar 

  • Connolly TM, Bross TE, Majerus PW (1985) Isolation of a phosphomonoesterase from human platelets that specifically hydrolyzes the 5-phosphate of inositol 1,4,5-trisphosphate. J Biol Chem 260:7868–7874

    Google Scholar 

  • Connolly TM, Lawing WJ Jr, Majerus PW (1986a) Protein kinase C phosphorylates human platelet inositol trisphosphate 5′-phosphomonoesterase increasing the phosphatase activity. Cell 49:951–958

    Google Scholar 

  • Connolly TM, Wilson DB, Bross TE, Majerus PW (1986b) Isolation and characterization of the inositol cyclic phosphate products of phosphoinositide cleavage by phospholipase C. J Biol Chem 261:122–126

    Google Scholar 

  • Connolly TM, Bansal VS, Bross TE, Irvine RF, Majerus PW (1987) The metabolism of the tris-and tetraphosphates of inositol by 5-phosphomonoesterase and 3-kinase enzymes. J Biol Chem 262:2146–2149

    Google Scholar 

  • Cooper RH, Kobayashi K, Williamson JR (1984) Phosphorylation of a 16-kDa protein by diacylglycerol-activated protein kinase C in vitro and by vasopressin in intact hepatocytes. FEBS Lett 166:125–130

    Google Scholar 

  • Cooper RH, Coll KE, Williamson JR (1985) Differential effects of phorbol ester on phenylephrine-and vasopressin-induced Ca2+ mobilization in isolated hepatocytes. J Biol Chem 260:3281–3288

    Google Scholar 

  • Corda D, Kohn LD (1986) Role of pertussis toxin-sensitive G-proteins in the alpha1-adrenergic receptor-but not in the thyrotropin receptor-mediated activation of membrane phospholipases and iodide fluxes in FRTL-5 thyroid cells. Biochem Biophys Res Commun 141:1000–1006

    Google Scholar 

  • Corvera S, Garcia-Sainz JA (1984) Phorbol esters inhibit alpha1-adrenergic stimulation of glycogenolysis in isolated rat hepatocytes. Biochem Biophys Res Commun 119:1128–1133

    Google Scholar 

  • Corvera S, Hernandez-Sotomayor SMT, Garcia-Sainz JA (1984) Modulation by thyroid status of cyclic AMP-dependent and Ca2+-dependent mechanisms of hormone action in rat liver cells. Biochem Biophys Acta 803:95–105

    Google Scholar 

  • Corvera S, Schwartz KR, Graham RM, Garcia-Sainz JA (1986) Phorbol esters inhibit α 1-adrenergic effects and decrease the affinity of liver cell α 1-adrenergic receptors for (-)-epinephrine. J Biol Chem 261:520–526

    Google Scholar 

  • Coughlin SR, Lee WMF, Williams PW, Giels GM, Williams LT (1985) cmyc Gene expression is stimulated by agents that activate protein kinase C and does not account for the mitogenic effect of PDGF. Cell 43:243–251

    Google Scholar 

  • Coussen F, Haiech J, d'Alayer J, Monneron A (1985) Identification of the catalytic subunit of brain adenylate cyclase: a calmodulin-binding protein of 135 kDa. Proc Natl Acad Sci USA 82:6736–6740

    Google Scholar 

  • Coussens L, Parker PJ, Rhee L, Yang-Feng TL, Chen E, Waterfield MD, Francke V, Ullrich A (1986) Multiple distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways. Science 233:859–866

    Google Scholar 

  • Creba JA, Downes CPK, Hawkins PT, Brewster G, Michell RH, Kirk CJ (1983) Rapid breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in rat hepatocytes stimulated by vasopressin and other Ca2+-mobilizing hormones. Biochem J 212:733–747

    Google Scholar 

  • Crossley I, Swann K, Chambers E, Whitaker M (1988) Activation of sea urchin eggs by inositol phosphates is independent of external calcium. Biochem J 252:257–262

    Google Scholar 

  • Dabrowska R, Sherry JMF, Aromatorio DK, Hartshorne DJ (1978) Modulator protein as a component of the myosin light-chain kinase from chicken gizzard. Biochemistry 17:253–258

    Google Scholar 

  • Dale MM, Penfield A (1984) Synergism between phorbol ester and A23187 in superoxide production by neutrophils. FEBS Lett 175:170–172

    Google Scholar 

  • Daniel JL, Molish IR, Holmsen H (1981) Myosin phosphorylation in intact platelets. J Biol Chem 256:7510–7514

    Google Scholar 

  • Daniel JL, Molish IR, Rigmaiden M, Stewart G (1984) Evidence for a role of myosin phosphorylation in the initiation of the platelet shape-change response. J Biol Chem 259:9826–9831

    Google Scholar 

  • Daniel JL, Dangelmaier CA, Smith JB (1987) Formation and metabolism of inositol 1,4,5-trisphosphate in human platelets. Biochem J 246:109–114

    Google Scholar 

  • Daniel LW, Waite M, Wykle RL (1986) A novel mechanism of diglyceride formation. J Biol Chem 261:9128–9132

    Google Scholar 

  • Danthuluri NR, Deth RC (1984) Phorbol ester-induced contraction of arterial smooth muscle and inhibition of α-adrenergic response. Biochem Biophys Res Commun 125:1103–1109

    Google Scholar 

  • Davis BA, Schwartz A, Samaha FJ, Kranias EG (1983) Regulation of cardiac sarcoplasmic reticulum calcium transport by calcium-calmodulin-dependent phosphorylation. J Biol Chem 258:13587–13591

    Google Scholar 

  • Davis JN, Arnett CD, Hoyler E, Stalvey LP, Daly JW, Skolnick P (1978) Brain α-adrenergic receptors: comparison of [3H]-WB4101 binding with norepinephrine-stimulated cyclic AMP accumulation in rat cerebral cortex. Brain Res 159:125–135

    Google Scholar 

  • Davis RJ, Czech MP (1984) Tumor-promoting phorbol diesters mediate phosphorylation of the epidermal growth factor receptor. J Biol Chem 259:8545–8549

    Google Scholar 

  • Davis RJ, Ganong BR, Bell RM, Czech MP (1985) Structural requirements for diacylglycerols to mimic tumor-promoting phorbol diester action on the epidermal growth factor receptor. J Biol Chem 260:5315–5322

    Google Scholar 

  • Dawson AP (1985) GTP enhances inositol trisphosphate-stimulated Ca2+ release from rat liver microsomes. FEBS Lett 185:147–150

    Google Scholar 

  • Dawson AP, Irvine RF (1984) Inositol(1,4,5)trisphosphate-promoted Ca2+ release from microsomal fractions of rat liver. Biochem Biophys Res Commun 120:858–864

    Google Scholar 

  • Dawson RMC, Freinkel N, Jungalawala FB, Clarke N (1971) The enzymic formation of myoinositol 1:2-cyclic phosphate from phosphatidylinositol. Biochem J 122:605–607

    Google Scholar 

  • Dean NM, Moyer JD (1987) Separation of multiple isomers of inositol phosphates formed in GH3 cells. Biochem J 242:361–366

    Google Scholar 

  • Deckmyn H, Tu S-M, Majerus PW (1986) Guanine nucleotides stimulate soluble phosphoinositide-specific phospholipase C in the absence of membranes. J Biol Chem 261:16553–16558

    Google Scholar 

  • Dehaye J-P, Hughes BP, Blackmore PF, Exton JH (1981) Insulin inhibition of α-adrenergic actions in liver. Biochem J 194:949–956

    Google Scholar 

  • Delbeke D, Kojima I, Dannies PS, Rasmussen H (1984) Synergistic stimulation of prolactin release by phorbol ester, A23187 and forskolin. Biochem Biophys Res Commun 123:735–741

    Google Scholar 

  • Delfert DM, Hill S, Pershadsingh HA, Sherman WR, McDonald JM (1986) Myoinositol 1,4,5-trisphosphate mobilizes Ca2+ from isolated adipocyte endoplasmic reticulum but not from plasma membranes. Biochem J 236:37–44

    Google Scholar 

  • Delvaux A, Dumont JE, Erneaux C (1987) The metabolism of inositol 4-monophosphate in rat mammalian tissues. Biochem Biophys Res Commun 145:59–65

    Google Scholar 

  • DenHertog A (1981) Calcium and the α-action of catecholamines on guinea-pig taenia caeci. J Physiol (Lond) 316:109–125

    Google Scholar 

  • Denton RM, McCormack JG (1981) Calcium ions, hormones and mitochondrial metabolism. Clin Sci 61:135–140

    Google Scholar 

  • Denton RM, McCormack JG (1985) Ca2+ transport by mammalian mitochondria and its role in hormone action. Am J Physiol 249:E545–E554

    Google Scholar 

  • Denton RM, Randle PJ, Martin BR (1972) Stimulation by calcium ions of pyruvate dehydrogenase phosphate phosphatase. Biochem J 128:161–163

    Google Scholar 

  • Denton RM, McCormack JG, Edgell NJ (1980) Role of calcium ions in the regulation of intramitochondrial metabolism: effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochem J 190:107–117

    Google Scholar 

  • DeRiemer SA, Kaczmarck LK, Lai Y, McGuiness TL, Greengard P (1984) Calcium/calmodulin-dependent protein phosphorylation in the nervous system of Aplysia. J Neurosci 4:1618–1625

    Google Scholar 

  • DeRiemer SA, Strong JA, Albert KA, Greengard P, Kaczmarek LK (1985) Enhancement of calcium current in Aplysia neurones by phorbol ester and protein kinase C. Nature 313:313–316

    Google Scholar 

  • Deth R, Casteels R (1977) A study of releasable Ca fractions in smooth muscle cells of rabbit aorta. J Gen Physiol 69:401–416

    Google Scholar 

  • Deth R, Van Breemen C (1974) Relative contributions of Ca2+ influx and cellular Ca2+ release during drug-induced activation of the rabbit aorta. Pflugers Arch 348:13–22

    Google Scholar 

  • DeVirgilio F, Lew DP, Pozzan T (1984) Protein kinase C activation of physiological processes in human neutrophils at vanishingly small cytosolic Ca2+ levels. Nature 310:691–693

    Google Scholar 

  • DeWitt LM, Putney JW (1983) a-Adrenergic stimulation of potassium efflux in guinea pig hepatocytes may involve calcium influx and calcium release. J Physiol (Lond) 346:395–407

    Google Scholar 

  • Dickey BF, Pyun HY, Williamson KC, Navarro J (1987) Identification and purification of a novel G-protein from neutrophils. FEBS Lett 219:289–292

    Google Scholar 

  • Didsbury JR, Snyderman R (1987) Molecular cloning of a novel GTP-binding protein and its potential role in chemoattractant stimulus-response coupling. Clin Res 35:656A

    Google Scholar 

  • Dillon SB, Murray JJ, Snyderman R (1987) Identification of a novel inositol bisphosphate isomer found in chemotatractant-stimulated human polymorphonuclear leukocytes. Biochem Biophys Res Commun 144:264–270

    Google Scholar 

  • Dixon JF, Hokin LE (1987) Inositol 1,2-cyclic 4,5-trisphosphate concentration relative to inositol 1,4,5-trisphosphate in pancreatic minilobules on stimulation with carbamylcholine in the absence of lithium. J Biol Chem 262:13892–13895

    Google Scholar 

  • Doskeland AP, Schworer CM, Doskeland SO, Chrisman TD, Soderling TR, Corbin JD, Flatmark T (1984) Some aspects of phosphorylation of phenylalanine 4-mono-oxygenase by a calcium-dependent and calmodulin-dependent protein kinase. Eur J Biochem 145:31–37

    Google Scholar 

  • Dougherty RW, Godfrey PP, Hoyle PC, Putney JW Jr, Freer RJ (1984) Secretagogue-induced phosphoinositide metabolism in human leucocytes. Biochem J 222:307–314

    Google Scholar 

  • Downes CP, Michell RH (1981) The polyphosphoinositide phosphodiesterase of erythrocyte membranes. Biochem J 198:133–140

    Google Scholar 

  • Downes CP, Wusteman MM (1983) Breakdown of polyphosphoinositides and not phosphatidylinositol accounts for muscarinic agonist-stimulated inositol phospholipid metabolism in rat parotid glands. Biochem J 216:633–640

    Google Scholar 

  • Downes CP, Mussat MC, Michell RH (1982) The inositol triphosphate phosphomonoesterase of the human erythrocyte membrane. Biochem J 203:169–177

    Google Scholar 

  • Downes CP, Hawkins PT, Irvine RF (1986) Inositol 1,3,4,5-tetrakisphosphate is the probable precursor of inositol 1,3,4-trisphosphate in agonist-stimulated parotid gland. Biochem J 238:501–506

    Google Scholar 

  • Driska SP, Aksoy MO, Murphy RA (1981) Myosin light-chain phosphorylation associated with contraction in arterial smooth muscle. Am J Physiol 240:C222–C233

    Google Scholar 

  • Drust DS, Martin TFJ (1985) Protein kinase C translocates from cytosol to membrane upon hormone activation: effects of thyrotropin-releasing hormone in GH3 cells. Biochem Biophys Res Commun 128:531–537

    Google Scholar 

  • Dunlop ME, Larkins RG (1986) Muscarinic-agonist and guanine nucleotide activation of polyphosphoinositide phosphodiesterase in isolated islet-cell membranes. Biochem J 240:731–737

    Google Scholar 

  • Ebeling JG, Vandenbark GR, Kuhn LJ, Ganong BR, Bell RM, Niedel JE (1985) Diacylglycerols mimic phorbol diester induction of leukemic cell differentiation. Proc Natl Acad Sci USA 82:815–819

    Google Scholar 

  • Ebstein RP, Bennett ER, Stessman J, Lerer B (1987) Isoelectric focusing of human platelet phospholipase C: evidence for multimolecular forms. Life Sci 40:161–167

    Google Scholar 

  • El-Refai MF, Chan TM (1986) Effects of adrenalectomy on binding to and actions of adrenergic receptors. Biochem J 237:527–531

    Google Scholar 

  • El-Refai MF, Blackmore PF, Exton JH (1979) Evidence for two a-adrenergic binding sites in liver plasma membranes. Studies with [3H]epinephrine and [3H]dihydroergocryptine. J Biol Chem 254:4375–4386

    Google Scholar 

  • Enjalbert A, Sladeczek F, Guillon G, Bertrand P, Shu C, Epelbaum J, Garcia-Sainz A, Jard S, Lombard C, Kordon C, Bockaert J (1986) Angiotensin II and dopamine modulate both cAMP and inositol phosphate production in anterior pituitary cells. J Biol Chem 261:4071–4075

    Google Scholar 

  • Erneux C, VanSande J, Miot F, Cochaux P, Decoster C, Dumont JE (1985) A mechanism in the control of intracellular cAMP level: the activation of a calmodulin-sensitive phosphodiesterase by a rise of intracellular free calcium. Mol Cell Endocrinol 43:123–134

    Google Scholar 

  • Erneux C, Delvaux A, Moreau C, Dumont JE (1987) The dephosphorylation pathway of d-myo-inositol 1,3,4,5-tetrakisphosphate in rat brain. Biochem J 247:635–639

    Google Scholar 

  • Evans T, Martin MW, Hughes AR, Harden TK (1985) Guanine nucleotide-sensitive, high-affinity binding of carbachol to muscarinic cholinergic receptors of 1321N1 astrocytoma cells in insensitive to pertussis toxin. Mol Pharmacol 27:32–37

    Google Scholar 

  • Evans T, Brown ML, Fraser ED, Northup JK (1986) Purification of the major GTP-binding proteins from human placental membranes. J Biol Chem 261:7052–7059

    Google Scholar 

  • Exton JH (1980) Mechanisms involved in a-adrenergic phenomena: role of calcium ions in actions of catecholamines in liver and other tissues. Am J Physiol 238:E3–E12

    Google Scholar 

  • Exton JH (1981) Molecular mechanisms involved in a-adrenergic responses. Mol Cell Endocrinol 23:233–264

    Google Scholar 

  • Exton JH (1985) Mechanisms involved in a-adrenergic phenomena. Am J Physiol 248:E633–E647

    Google Scholar 

  • Exton JH (1987) Mechanisms of a 1-adrenergic and related responses: roles of calcium, phosphoinositides, guanine nucleotides, diacylglycerol, calmodulin and changes in protein phosphorylation. In: Elson EL, Frazier WA, Glaser L (eds) Cell membranes: methods and reviews. Plenum, New York, vol 3, pp 113–182

    Google Scholar 

  • Fain JN, Brindley DN, Pittner RA, Hawthorne JN (1985) Stimulation of specific GTPase activity by vasopressin in isolated membranes from cultured rat hepatocytes. FEBS Lett 192:251–254

    Google Scholar 

  • Fain JN, Li SY, Litosch I, Wallace M (1984) Synergistic activation of rat hepatocyte glycogen phosphorylase by A23187 and phorbol ester. Biochem Biophys Res Commun 119:88–94

    Google Scholar 

  • Farley J, Auerbach S (1986) Protein kinase C activation induces conductance changes in Hermissenda photoreceptors like those seen in associative learning. Nature 319:220–223

    Google Scholar 

  • Fein A, Payne R, Corson DW, Berridge MJ, Irvine RF (1984) Photoreceptor excitation and adaptation by inositol 1,4,5-trisphosphate. Nature 311:157–160

    Google Scholar 

  • Fisher MJ, Pogson CI (1984) Phenylalanine hydroxylase in liver cells: correlation of glucagonstimulated enzyme phosphorylation with expressed activity. Biochem J 219:79–85

    Google Scholar 

  • Fisher MJ, Santana MA, Pogson CI (1984) Effects of adrenergic agents, vasopressin and ionophore A23187, on the phosphorylation of, and flux through, phenylalanine hydroxylase in rat liver cells. Biochem J 219:87–90

    Google Scholar 

  • Fisher RA, Tanabe S, Buxton DB, Olson MS (1985) The effects of a-adrenergic stimulation on the regulation of the pyruvate dehydrogenase complex in the perfused rat liver. J Biol Chem 260:9223–9229

    Google Scholar 

  • Fitzgerald TJ, Uhing RJ, Exton JH (1986) Solubilization of the vasopressin receptor from liver plasma membranes. Evidence for a receptor GTP-binding protein complex. J Biol Chem 261:16871–16877

    Google Scholar 

  • Flavahan NA, Vanhoutte PM (1986) a 1-Adrenoceptor subclassification in vascular smooth muscle. Trends Pharmacol Sci 7:347–349

    Google Scholar 

  • Fleischman LF, Chahwala SB, Cantley L (1986) Ras-transformed cells: altered levels of phosphatidylinositol-4,5-bisphosphate and catabolites. Science 231:407–410

    Google Scholar 

  • Fratelli M, DeBlasi A (1987) Agonist-induced α 1-adrenergic receptor changes. FEBS Lett 212:149–153

    Google Scholar 

  • Fuse I, Tai H-H (1987) Stimulations of arachidonate release and inositol-1,4,5-trisphosphate formation are mediated by distinct G-proteins in human platelets. Biochem Biophys Res Commun 146:659–665

    Google Scholar 

  • Galizzi J-P, Qar J, Fosset M, Van Renterghem C, Lazdunski M (1987) Regulation of calcium channels in aortic muscle cells by protein kinase C activators (diacylglycerol and phorbol esters) and by peptides (vasopressin and bombesin) that stimulate phosphoinositide breakdown. J Biol Chem 262:6945–6950

    Google Scholar 

  • Gallo-Payet N, Guillon G, Balestre MN, Jard S (1986) Vasopressin induces breakdown of membrane phosphoinositides in adrenal glomerulosa and fasciculata cells. Endocrinology 119:1042–1047

    Google Scholar 

  • Ganong BR, Loomis CR, Hannun YA, Bell RM (1986) Specifics and mechanism of protein kinase C activation by sn-1,2-diacylglycerols. Proc Natl Acad Sci USA 83:1184–1188

    Google Scholar 

  • Garcia-Sainz JA, Fain JN (1980) Effects of adrenergic amines on phosphatidylinositol labeling and glycogen synthase activity in fat cells from euthyroid and hypothyroid rats. Mol Pharmacol 28:72–77

    Google Scholar 

  • Garcia-Sainz JA, Hernandez-Sotomayor SMT (1985) Adrenergic regulation of gluconeogenesis: possible involvement of two mechanisms of signal transduction in α 1-adrenergic action. Proc Natl Acad Sci USA 82:6727–6730

    Google Scholar 

  • Garcia-Sainz JA, Hernandez-Sotomayor SMT (1987) Inhibitors of protein kinase C block the α 1-adrenergic refractoriness induced by phorbol 12-myristate 13-acetate, vasopressin and angiotensin II. Eur J Biochem 163:417–421

    Google Scholar 

  • Garcia-Sainz JA, Litosch I, Hoffman BB, Lefkowitz RJ, Fain JN (1981) Effect of thyroid status on α-and β-catecholamine responsiveness of hamster adipocytes. Biochim Biophys Acta 678:334–341

    Google Scholar 

  • Garcia-Sainz JA, Tussie-Luna MI, Hernandez-Sotomayor SMT (1986) Phorbol esters, vasopressin and angiotensin II block α 1-adrenergic action in rat hepatocytes. Possible role of protein kinase C. Biochim Biophys Acta 887:69–72

    Google Scholar 

  • Garrison JC, Wagner JD (1982) Glucagon and the Ca2+-linked hormones angiotensin II, norepinephrine, and vasopressin stimulate the phosphorylation of distinct substrates in intact hepatocytes. J Biol Chem 257:13135–13143

    Google Scholar 

  • Garrison JC, Borland GK, Florio VA, Twible DA (1979) The role of calcium ion as a mediator of the effects of angiotensin II, catecholamines, and vasopressin on the phosphorylation and activity of enzymes in isolated hepatocytes. J Biol Chem 254:7147–7156

    Google Scholar 

  • Garrison JC, Johnsen DE, Campanile CP (1984) Evidence for the role of phosphorylase kinase, protein kinase C, and other Ca2+-sensitive protein kinases in the response of hepatocytes to angiotensin II and vasopressin. J Biol Chem 259:3283–3292

    Google Scholar 

  • Geras EJ, Gershengorn MC (1982) Evidence that TRH stimulates secretion of TSH by two calcium-mediated mechanisms. Am J Physiol 242:E109–E114

    Google Scholar 

  • Gershengorn MC, Geras E, Purrello VS, Rebecchi MJ (1984) Inositol trisphosphate mediates thyrotropin-releasing hormone mobilization of non-mitochondrial calcium in rat mammotropic pituitary cells. J Biol Chem 259:10675–10681

    Google Scholar 

  • Geynet P, Borsodi A, Ferry N, Hanoune J (1980) Proteolysis of rat liver plasma membranes cancels the guanine nucleotide sensitivity of agonist binding to the alpha-receptor. Biochem Biophys Res Commun 97:947–954

    Google Scholar 

  • Gierschik P, Falloon J, Milligan G, Pines M, Gallin JI, Spiegel A (1986) Immunochemical evidence for a novel pertussis toxin substrate in human neutrophils. J Biol Chem 261:8058–8062

    Google Scholar 

  • Gierschik P, Sidiropoulos D, Spiegel A, Jakobs KH (1987) Purification and immunochemical characterization of the major pertussis-toxin-sensitive guanine-nucleotide-binding protein in bovine-neutrophil membranes. Eur J Biochem 165:185–194

    Google Scholar 

  • Gleason MM, Flaim SF (1986) Phorbol ester contracts rabbit thoracic aorta by increasing intracellular calcium and by activating calcium influx. Biochem Biophys Res Commun 138:1362–1369

    Google Scholar 

  • Gomperts BD (1983) Involvement of guanine nucleotide-binding protein in the gating of Ca2+ by receptors. Nature 306:64–66

    Google Scholar 

  • Gonzatti-Haces MI, Traugh JA (1986) Ca2+-independent activation of protease-activated kinase II by phospholipids/diolein and comparison with the Ca2+/phospholipid-dependent protein kinase. J Biol Chem 261:15266–15272

    Google Scholar 

  • Goodhardt M, Ferry N, Geynet P, Hanoune J (1982) Hepatic α 1-adrenergic receptors show agonist-specific regulation by guanine nucleotides. Loss of nucleotide effect after adrenalectomy. J Biol Chem 257:11577–11583

    Google Scholar 

  • Gopalakrishna R, Barsky SH, Thomas TP, Anderson WB (1986) Factors influencing chelatorstable, detergent-extractable, phorbol diester-induced membrane association of protein kinase C. J Biol Chem 261:16438–16445

    Google Scholar 

  • Graf P, Vom Dahl S, Sies H (1987) Sustained oscillations in extracellular calcium concentrations upon hormonal stimulation of perfused rat liver. Biochem J 241:933–936

    Google Scholar 

  • Graham RM, Lanier SM (1986) Identification and characterization of alpha-adrenergic receptors. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE (eds) The heart and cardiovascular system. Raven, New York

    Google Scholar 

  • Graham RM, Hess H-J, Homcy CJ (1982) Biophysical characterization of the purified α 1-adrenergic receptor and identification of the hormone-binding subunit. J Biol Chem 257:15174–15181

    Google Scholar 

  • Grandt R, Greiner C, Zubin P, Jakobs KH (1986) Bradykinin stimulates GTP hydrolysis in NG108-15 membranes by a high-affinity, pertussis toxin-insensitive GTPase. FEBS Lett 196:279–283

    Google Scholar 

  • Greenberg ME, Ziff EB (1984) Stimulation of 3T3 cells induces transcription of the c-fos protooncogene. Nature 311:433–438

    Google Scholar 

  • Griendling KK, Rittenhouse SE, Brock TA, Ekstein LS, Gimbrone MA Jr, Alexander RW (1986) Sustained diacylglycerol formation from inositol phospholipids in angiotensin II-stimulated vascular smooth muscle cells. J Biol Chem 261:5901–5906

    Google Scholar 

  • Grunberger G, Gorden P (1982) Affinity alteration of insulin receptor induced by a phorbol ester. Am J Physiol 243:E319–E324

    Google Scholar 

  • Guellaen G, Yaltes-Aggerbeck M, Vauquelin G, Strosberg D, Hanoune J (1978) Characterization with [3H]dihydroergocyrptine of the α-adrenergic receptor of the hepatic plasma membrane. J Biol Chem 253:1114–1120

    Google Scholar 

  • Guellaen G, Goodhardt M, Barouki R, Hanoune J (1982) Subunit structure of rat liver α 1-adrenergic receptor. Biochem Pharmacol 31:2817–2820

    Google Scholar 

  • Guillemette G, Balla T, Baukal AJ, Spat A, Catt KJ (1987) Intracellular receptors for inositol 1,4,5-trisphosphate in angiotensin II target tissues. J Biol Chem 262:1010–1015

    Google Scholar 

  • Guillon G, Balestre M-N, Mouillac B, Devilliers G (1986a) Activation of membrane phospholipase C by vasopressin. A requirement for guanyl nucleotides. FEBS Lett 196:155–159

    Google Scholar 

  • Guillon G, Mouillac B, Balestre M-N (1986b) Activation of phosphoinositide phospholipase C by fluoride in WRK1 cell membranes. FEBS Lett 204:183–188

    Google Scholar 

  • Haddas RA, Landis CA, Putney JW Jr (1979) Relationship between calcium release and potassium release in rat parotid gland. J Physiol (Lond) 291:457–465

    Google Scholar 

  • Hall DJ, Stiles CD (1987) Platelet-derived growth factor-inducible genes respond differentially to a least two distinct intracellular second messengers. J Biol Chem 262:15302–15308

    Google Scholar 

  • Han C, Abel PW, Minneman KP (1987) α 1-Adrenergic receptor subtypes linked to different mechanisms for increasing intracellular Ca2+ in smooth muscle. Nature 329:333–335

    Google Scholar 

  • Hannun YA, Bell RM (1986) Phorbol ester binding and activation of protein kinase C on triton X-100 mixed micelles containing phosphatidylserine. J Biol Chem 261:9341–9347

    Google Scholar 

  • Hannun YA, Loomis CR, Bell RM (1985) Activation of protein kinase C by triton X-100 mixed micelles containing diacylglycerol and phosphatidylserine. J Biol Chem 260:10039–10043

    Google Scholar 

  • Hannun YA, Loomis CR, Bell RM (1986a) Protein kinase C activation in mixed micelles. Mechanistic implications of phospholipid, diacylglycerol, and calcium interdependencies. J Biol Chem 261:7184–7190

    Google Scholar 

  • Hannun YA, Loomis CR, Merrill AH Jr, Bell RM (1986b) Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J Biol Chem 261:12604–12609

    Google Scholar 

  • Hannun YA, Greenberg CS, Bell RM (1987) Sphingosine inhibition of agonist-dependent secretion and activation of human platelets implies that protein kinase C is a necessary and common event of the signal transduction pathways. J Biol Chem 262:13620–13626

    Google Scholar 

  • Hansen CA, Mah S, Williamson Jr (1986) Formation and metabolism of inositol 1,3,4,5-tetrakisphosphate in liver. J Biol Chem 261:8100–8103

    Google Scholar 

  • Hansford RG (1985) Relation between mitochondrial calcium transport and control of energy metabolism. Rev Physiol Biochem Pharmacol 102:1–72

    Google Scholar 

  • Harden TK, Stephens L, Hawkins PT, Downes CP (1987) Turkey erythrocyte membranes as a model for regulation of phospholipase C by guanine nucleotides. J Biol Chem 262:9057–9061

    Google Scholar 

  • Harrington CA, Eichberg J (1983) Norepinephrine causes a 1-adrenergic receptor-mediated decrease of phosphoinositide in isolated rat liver plasma membranes supplemented with cytosol. J Biol Chem 258:2087–2090

    Google Scholar 

  • Harris KM, Kongsamut S, Miller RJ (1986) Protein kinase C-mediated regulation of calcium channels in PC-12 pheochromocytoma cells. Biochem Biophys Res Commun 134:1298–1305

    Google Scholar 

  • Haslam RJ, Davidson MML (1984a) Guanine nucleotides decrease the free [Ca2+] required for secretion of serotonin from permeabilized blood platelets. Evidence of a role for a GTP-binding protein in platelet activation. FEBS Lett 174:90–95

    Google Scholar 

  • Haslam RJ, Davidson MML (1984b) Receptor-induced diacylglycerol formation in permeabilized platelets; possible role for a GTP-binding protein. J Recept Res 4:605–629

    Google Scholar 

  • Haussinger D, Sies H (1984) Effect of phenylephrine on glutamate and glutamine metabolism in isolated perfused rat liver. Biochem J 221:651–658

    Google Scholar 

  • Hawkins PT, Stephens L, Downes CP (1986) Rapid formation of inositol 1,3,4,5-tetrakisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands may both result indirectly from receptor-stimulated release of inositol 1,4,5-trisphosphate from phosphatidylinositol 4,5-biphosphate. Biochem J 238:507–516

    Google Scholar 

  • Hawkins PT, Berrie CP, Morris AJ, Downes CP (1987) Inositol 1,2-cyclic 4,5-trisphosphate is not a product of muscarinic receptor-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis in rat parotid glands. Biochem J 243:211–218

    Google Scholar 

  • Haylett DG (1976) Effects of sympathomimetic amines on 45Ca efflux from liver slices. Br J Pharmacol 57:158–160

    Google Scholar 

  • Hems DA, McCormack JG, Denton RM (1978) Activation of pyruvate dehydrogenase in the purified rat liver by vasopressin. Biochem J 176:627–629

    Google Scholar 

  • Henne V, Soling H-D (1986) Guanosine 5′-triphosphate releases calcium from rat liver and guinea pig parotid gland endoplasmic reticulum independently of inositol 1,4,5-trisphosphate. FEBS Lett 202:267–273

    Google Scholar 

  • Henne V, Piiper A, Soling H-D (1987) Inositol 1,4,5-trisphosphate and 5′-GTP induce calcium release from different intracellular pools. FEBS Lett 218:153–158

    Google Scholar 

  • Hepler JR, Harden TK (1986) Guanine nucleotide-dependent pertussis toxin-insensitive stimulation of inositol phosphate formation by carbachol in a membrane preparation from human astrocytoma cells. Biochem J 239:141–146

    Google Scholar 

  • Hepler JR, Hughes AR, Harden TK (1987) Evidence that muscarinic cholinergic receptors selectively interact with either the cyclic AMP or inositol phosphate second-messenger response systems. Biochem J 247:793–796

    Google Scholar 

  • Hernandez-Sotomayor SMT, Garcia-Sainz JA (1984) Adrenergic regulation of ureogenesis in hepatocytes from adrenalectomized rats. FEBS Lett 166:385–388

    Google Scholar 

  • Hescheler J, Rosenthal W, Trautwein W, Schultz G (1987a) The GTP-binding protein, Go, regulates neuronal calcium channels. Nature 325:445–447

    Google Scholar 

  • Hescheler J, Rosenthal W, Wulfern M, Tang M, Yajima M, Trautwein W, Schultz G (1988) Involvement of the guanine nucleotide-binding protein, No, in the inhibitory regulation of neuronal calcium channels. Adv Second Messenger and Phosphoprotein Res 21:165–179

    Google Scholar 

  • Hescheler J, Wulfern M, Trautwein W, Schultz G (1987c) Angiotensin II-induced stimulation of voltage-dependent calcium channels in an adrenal cortical cell line. Naunyn-Schmiedebergs Arch Pharmacol 335(Suppl):R34

    Google Scholar 

  • Hesketh TR, Smith GA, Moore JP, Taylor MV, Metcalfe JC (1983) Free cytoplasmic calcium concentration and the mitogenic stimulation of lymphocytes. J Biol Chem 258:4876–4882

    Google Scholar 

  • Heslop JP, Irvine RF, Tashjian AH, Berridge MJ (1985) Inositol tetrakis-and pentakisphosphates in GH4 cells. J Exp Biol 119:395–401

    Google Scholar 

  • Heslop JP, Blakeley DM, Brown KD, Irvine RF, Berridge MJ (1986) Effects of bombesin and insulin on inositol (1,4,5)trisphosphate and inositol (1,3,4)trisphosphate formation in Swiss 3T3 cells. Cell 47:703–709

    Google Scholar 

  • Higashida H, Streaty RA, Klee W, Nirenberg M (1986) Bradykinin-activated transmembrane signals are coupled via No or Ni to production of inositol 1,4,5-trisphosphate, a second messenger in NG108-15 neuroblastoma-glioma hybrid cells. Proc Natl Acad Sci USA 83:942–946

    Google Scholar 

  • Hinkle PM, Phillips WJ (1984) Thyrotropin-releasing hormone stimulates GTP hydrolysis by membranes from GH4C1 rat pituitary tumor cells. Proc Natl Acad Sci USA 81:6183–6187

    Google Scholar 

  • Hirata M, Kukita M, Sasaguri T, Suematsu E, Hashimoto T, Koga T (1985) Increase in Ca2+ permeabilization of intracellular Ca2+ store membrane of saponin-treated guinea pig peritoneal macrophages by inositol 1,4,5-trisphosphate. J Biochem 97:1575–1582

    Google Scholar 

  • Ho AK, Klein DC (1987) Activation of a 1-adrenoceptors, protein kinase C, or treatment with intracellular free Ca2+ elevating agents increases pineal phospholipase A2 activity. J Biol Chem 262:11764–11770

    Google Scholar 

  • Ho AK, Chik CL, Klein DC (1987) Protein kinase C is involved in adrenergic stimulation of pineal cGMP accumulation. J Biol Chem 262:10059–10064

    Google Scholar 

  • Hoffman BB, Mullikin-Kilpatrick D, Lefkowitz RJ (1980) Heterogeneity of radioligand binding to a-adrenergic receptors. J Biol Chem 255:4645–4652

    Google Scholar 

  • Hoffman SL, Majerus PW (1982) Identification and properties of two distinct phosphatidylinositol-specific phospholipase C enzymes from sheep seminal vesicles. J Biol Chem 257:6461–6469

    Google Scholar 

  • Hokin MR, Hokin LE (1953) Enzyme secretion and the incorporation of 32P into phospholipids of pancreas slices. J Biol Chem 203:967–977

    Google Scholar 

  • Hollingsworth EB, Sears EB, Daly JW (1985) An activator of protein kinase C (phorbol-12-myristate-13-acetate) augments 2-chloroadenosine-elicited accumulation of cyclic AMP in guinea pig cerebral cortical particulate preparations. FEBS Lett 184:339–342

    Google Scholar 

  • Holub BJ, Kuksis A (1978) Metabolism of molecular species of diacylglycerophospholipids. Adv Lipid Res 16:1–125

    Google Scholar 

  • Holz GG, Rane SG, Dunlap K (1986) GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature 319:670–672

    Google Scholar 

  • Houslay MD, Bojanic D, Gawler D, O'Hagan S, Wilson A (1986) Thrombin, unlike vasopressin, appears to stimulate two distinct guanine nucleotide regulatory proteins in human platelets. Biochem J 238:109–113

    Google Scholar 

  • Hrbolich JK, Culty M, Haslam RJ (1987) Activation of phospholipase C associated with isolated rabbit platelet membranes by guanosine 5′-[γ-thio]triphosphate and by thrombin in the presence of GTP. Biochem J 243:457–465

    Google Scholar 

  • Huang K-P, Nakabayashi H, Huang FL (1986) Isozymic forms of rat brain Ca2+-activated and phospholipid-dependent protein kinase. Proc Natl Acad Sci USA 83:8535–8539

    Google Scholar 

  • Huerta-Bahena J, Garcia-Sainz JA (1983) Inositol administration restores the sensitivity of liver cells formed during liver regeneration to alpha1-adrenergic amines, vasopressin and angiotensin II. Biochim Biophys Acta 763:125–128

    Google Scholar 

  • Huerta-Bahena J, Garcia-Sainz JA (1984) Effect of inositol and tri-iodothyronine on the hormonal responsiveness of hepatocytes obtained from partially hepatectomized rats. Biochem J 223:925–928

    Google Scholar 

  • Huerta-Bahena J, Vallalobos-Molina R, Garcia-Sainz JA (1983) Roles of alpha1-and beta-adrenergic receptors in adrenergic responsiveness of liver cells formed after partial hepatectomy. Biochim Biophys Acta 763:112–119

    Google Scholar 

  • Hughes AR, Martin MW, Harden TK (1984) Pertussis toxin differentiates between two mechanisms of attenuation of cyclic AMP accumulation by muscarinic cholinergic receptors. Proc Natl Acad Sci USA 81:5680–5684

    Google Scholar 

  • Hughes BP, Barritt GJ (1987) The stimulation by sodium fluoride of plasma membrane Ca2+ inflow in isolated hepatocytes. Biochem J 245:41–47

    Google Scholar 

  • Hughes BP, Rye K-A, Pickford LB, Barritt GJ, Chalmers AH (1984) A transient increase in diacylglycerols is associated with the action of vasopressin on hepatocytes. Biochem J 222:535–540

    Google Scholar 

  • Hughes BP, Milton SE, Barritt GJ, Auld AM (1986) Studies with verapamil and nifedipine provide evidence for the presence in the liver cell plasma membrane of two types of Ca2+ inflow transporter which are dissimilar to potential-operated Ca2+ channels. Biochem Pharmacol 35:3045–3052

    Google Scholar 

  • Hurley JB, Simon MI, Teplow DB, Robishaw JD, Gilman AG (1984) Homologies between signal-transducing G-proteins and ras gene products. Science 226:860–862

    Google Scholar 

  • Hutson NJ, Brumley FT, Assimacopoulos FD, Harper SC, Exton JH (1976) Studies on the a-adrenergic activation of hepatic glucose output. J Biol Chem 251:5200–5208

    Google Scholar 

  • Hutton JC, Peshavaria M, Brocklehurst KW (1984) Phorbol ester stimulation of insulin release and secretory-granule protein phosphorylation in a transplantable rat insulinoma. Biochem J 224:483–490

    Google Scholar 

  • Ikebe M, Inagaki M, Kanamaru K, Hidaka H (1985) Phosphorylation of smooth muscle myosin light-chain kinase by Ca2+-activated, phospholipid-dependent protein kinase. J Biol Chem 260:4547–4550

    Google Scholar 

  • Imai A, Gershengorn MC (1987) Independent phosphatidylinositol synthesis in pituitary plasma membrane and endoplasmic reticulum. Nature 325:726–728

    Google Scholar 

  • Imazu M, Strickland WG, Chrisman TD, Exton JH (1984) Phosphorylation and inactivation of liver glycogen synthase by liver protein kinases. J Biol Chem 259:1813–1821

    Google Scholar 

  • Imboden JB, Stobo JD (1985) Transmembrane signalling by the T-cell antigen receptor. J Exp Med 161:446–456

    Google Scholar 

  • Imboden JB, Shoback DM, Pattison G, Stobo JD (1986) Cholera toxin inhibits the T-cell antigen receptor-mediated increases in inositol trisphosphate and cytoplasmic free calcium. Proc Natl Acad Sci USA 83:5673–5677

    Google Scholar 

  • Inhorn RC, Majerus PW (1987) Inositol polyphosphate 1-phosphatase from calf brain. J Biol Chem 262:15946–15952

    Google Scholar 

  • Inhorn RC, Bansal VS, Majerus PW (1987) Pathway for inositol 1,3,4-trisphosphate and 1,4-bisphosphate metabolism. Proc Natl Acad Sci USA 84:2170–2174

    Google Scholar 

  • Inoue M, Kishimoto A, Takai Y, Nishizuka Y (1977) Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues. J Biol Chem 252:7610–7616

    Google Scholar 

  • Irvine RF, Moor RM (1986) Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Biochem J 240:917–920

    Google Scholar 

  • Irvine RF, Brown KD, Berridge MJ (1984a) Specificity of inositol trisphosphate-induced calcium release from permeabilized Swiss-mouse 3T3 cells. Biochem J 221:269–272

    Google Scholar 

  • Irvine RF, Letcher AJ, Dawson RMC (1984b) Phosphatidylinositol 4,5-bisphosphate phosphodiesterase and phosphomonoesterase activities of rat brain. Biochem J 218:177–185

    Google Scholar 

  • Irvine RF, Letcher AJ, Lander DJ, Downes CP (1984c) Inositol trisphosphates in carbacholstimulated rat parotid glands. Biochem J 223:237–243

    Google Scholar 

  • Irvine RF, Anggard EE, Letcher AJ, Downes CP (1985) Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands. Biochem J 229:505–511

    Google Scholar 

  • Irvine RF, Letcher AJ, Heslop JP, Berridge MJ (1986a) The inositol tris/tetrakisphosphate pathway — demonstration of Ins(1,4,5)P3 3-kinase activity in animal tissues. Nature 320:631–634

    Google Scholar 

  • Irvine RF, Letcher AJ, Lander DJ, Berridge MJ (1986b) Specificity of inositol phosphate-stimulated Ca2+ mobilization from Swiss-mouse 3T3 cells. Biochem J 240:301–304

    Google Scholar 

  • Irvine RF, Letcher AJ, Lander DJ, Heslop JP, Berridge MJ (1987) Inositol (3,4) bisphosphate and inositol (1,3) bisphosphate in GH4 cells — evidence for complex breakdown of inositol (1,3,4) trisphosphate. Biochem Biophys Res Commun 143:353–359

    Google Scholar 

  • Irving HR, Exton JH (1987) Phosphatidylcholine breakdown in rat liver plasma membranes: roles of guanine nucleotides and P2-purinergic agonists. J Biol Chem 262:3440–3443

    Google Scholar 

  • Ishii H, Connolly TM, Bross TE, Majerus PW (1986) Inositol cyclic trisphosphate [inositol 1,2-(cyclic)-4,5-trisphosphate] is formed upon thrombin stimulation of human platelets. Proc Natl Acad Sci USA 83:6397–6401

    Google Scholar 

  • Ishitoya J, Yamakawa A, Takenawa T (1987) Translocation of diacylglycerol kinase in response to chemotactic peptide and phorbol ester in neutrophils. Biochem Biophys Res Commun 144:1025–1030

    Google Scholar 

  • Itoh H, Okajima F, Ui M (1984) Conversion of adrenergic mechanism from an a-to a β-type during primary culture of rat hepatocytes. J Biol Chem 259:15464–15473

    Google Scholar 

  • Itoh H, Kozasa T, Nagata S, Nakamura S, Katada T, Ui M, Iwai S, Ohtsuka E, Kawasaki H, Suzuki K, Kaziro Y (1986) Molecular cloning and sequence determination of cDNAs for a subunits of the guanine nucleotide-binding proteins Gs, Gi, and Go from rat brain. Proc Natl Acad Sci USA 83:3776–3780

    Google Scholar 

  • Iyengar R, Rich KA, Herberg JT, Grenet D, Mumby S, Codina J (1987) Identification of a new GTP-binding protein. J Biol Chem 262:9239–9245

    Google Scholar 

  • Jackowski S, Rettenmier CW, Sherr CJ, Rock CO (1986) A guanine nucleotide-dependent phosphatidylinositol 4,5-diphosphate phospholipase C in cells transformed by the v-fms and v-fes oncogenes. J Biol Chem 261:4978–4985

    Google Scholar 

  • Jacobs S, Sahyoun NE, Saltiel AR, Cuatrecasas P (1983) Phorbol esters stimulate the phosphorylation of receptors for insulin and somatomedin-C. Proc Natl Acad Sci USA 80:6211–6213

    Google Scholar 

  • Jaken S, Kiley SC (1987) Purification and characterization of three types of protein kinase C from rabbit brain cytosol. Proc Natl Acad Sci USA 84:4418–4422

    Google Scholar 

  • Jakob A, Diem S (1975) Metabolic responses of perfused rat livers to alpha-and beta-adrenergic agonists, glucagon and cyclic AMP. Biochim Biophys Acta 404:57–66

    Google Scholar 

  • Jakobs KH, Bauer S, Watanabe Y (1985) Modulation of adenylate cyclase of human platelets by phorbol ester. Impairment of the hormone-sensitive inhibitory pathway. Eur J Biochem 151:425–430

    Google Scholar 

  • Jean T, Klee CB (1986) Calcium modulation of inositol 1,4,5-trisphosphate-induced calcium release from neuroblastoma X glioma hybrid (NG108-15) microsomes. J Biol Chem 261:16414–16420

    Google Scholar 

  • Jenkinson DH, Haylett DG, Koller K, Burgess G (1978) Classification and actions of liver cell adrenoceptors. In: Szabadi E (ed) Recent advances in the pharmacology of adrenoceptors. Elsevier/North-Holland, New York, pp 23–33

    Google Scholar 

  • Johnson RD, Minneman KP (1986) Characterization of a 1-adrenoceptors which increase cyclic AMP accumulation in rat cerebral cortex. Eur J Pharmacol 129:293–305

    Google Scholar 

  • Johnson RD, Minneman KP (1987) Differentiation of a 1-adrenergic receptors linked to phosphatidylinositol turnover and cyclic AMP accumulation in rat brain. Mol Pharmacol 31:239–246

    Google Scholar 

  • Jones DJ, McKenna LF (1980) Alpha-adrenergic receptor-mediated formation of cyclic AMP in rat spinal cord. J Cyclic Nucleotide Res 6:133–141

    Google Scholar 

  • Jones LM, Michell RH (1978) Stimulus-response coupling at a-adrenergic receptors. Biochem Soc Trans 6:673–688

    Google Scholar 

  • Joseph SK, Williams RJ (1985) Subcellular localization and some properties of the enzymes hydrolysing inositol polyphosphates in rat liver. FEBS Lett 180:150–154

    Google Scholar 

  • Joseph SK, Williamson JR (1983) The origin, quantitation, and kinetics of intracellular calcium mobilization by vasopressin and phenylephrine in hepatocytes. J Biol Chem 258:10425–10432

    Google Scholar 

  • Joseph SK, Williamson JR (1986) Characteristics of inositol trisphosphate-mediated Ca2+ release from permeabilized hepatocytes. J Biol Chem 261:14658–14664

    Google Scholar 

  • Joseph SK, Thomas AP, Williams RJ, Irvine RF, Williamson JR (1984a) Myoinositol 1,4,5-trisphosphate: a second messenger for the hormonal mobilization of intracellular Ca2+ in liver. J Biol Chem 259:3077–3081

    Google Scholar 

  • Joseph SK, Williamson RJ, Corkey BE, Matschinsky FM, Williamson JR (1984b) The effect of inositol trisphosphate on Ca2+ fluxes in insulin-secreting tumor cells. J Biol Chem 259:12952–12955

    Google Scholar 

  • Joseph SK, Coll KE, Thomas AP, Rubin R, Williamson JR (1985) The role of extracellular Ca2+ in the response of the hepatocyte to Ca2+-dependent hormones. J Biol Chem 260:12508–12515

    Google Scholar 

  • Joseph SK, Hansen CA, Williamson JR (1987) Inositol 1,3,4,5-tetrakisphosphate increases the duration of the inositol 1,4,5-trisphosphate-mediated Ca2+ transient. FEBS Lett 219:125–129

    Google Scholar 

  • Juhl H, Sheorain VS, Schworer CM, Jett MF, Soderling TR (1983) Phosphorylation site specificities of glycogen synthase kinases: determination by peptide mapping using high-performance liquid chromatography. Arch Biochem Biophys 222:518–526

    Google Scholar 

  • Kaczmarek LK (1987) The role of protein kinase C in the regulation of ion channels and neurotransmitter release. Trends Neurol Sci 10:30–34

    Google Scholar 

  • Kaibuchi K, Takai Y, Nishizuka Y (1981) Cooperative roles of various membrane phospholipids in the activation of calcium-activated, phospholipid-dependent protein kinase. J Biol Chem 256:7146–7149

    Google Scholar 

  • Kaibuchi K, Takai Y, Sawamura M, Hoshijima M, Fujikura T, Nishizuka Y (1983) Synergistic functions of protein phosphorylation and calcium mobilization in platelet activation. J Biol Chem 258:6701–6704

    Google Scholar 

  • Kaibuchi K, Tsuda T, Kikuchi A, Tanimoto T, Yamashita T, Takai Y (1986) Possible involvement of protein kinase C and calcium ion in growth factor-induced expression of c-myc oncogene in Swiss 3T3 fibroblasts. J Biol Chem 261:1187–1192

    Google Scholar 

  • Kamagai H, Nishida E (1979) The interactions between calcium-dependent regulator protein of cyclic nucleotide phosphodiesterase and microtubule proteins. J Biochem (Tokyo) 85:1267–1274

    Google Scholar 

  • Kanaho Y, Moss J, Vaughan M (1985) Mechanism of inhibition of transducin GTPase activity by fluoride and aluminum. J Biol Chem 260:11493–11497

    Google Scholar 

  • Katada T, Bokoch GM, Northup JK, Ui M, Gilman AG (1984) The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Properties and function of the purified protein. J Biol Chem 259:3568–3577

    Google Scholar 

  • Katada T, Gilman AG, Watanabe Y, Bauer S, Jakobs KH (1985) Protein kinase C phosphorylates the inhibitory guanine nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur J Biochem 151:431–437

    Google Scholar 

  • Katada T, Oinamu M, Kusakabe K, Ui M (1987) A new GTP-binding protein in brain tissues serving as the specific substrates of islet-activating protein, pertussis toxin. FEBS Lett 213:353–358

    Google Scholar 

  • Katakami Y, Kaibuchi K, Sawamura M, Takai Y, Nishizuka Y (1984) Synergistic action of protein kinase C and calcium for histamine release from rat peritoneal mast cells. Biochem Biophys Res Commun 121:573–578

    Google Scholar 

  • Kato M, Kawai S, Takenawa T (1987) Altered signal transduction in erb-B-transformed cells. J Biol Chem 262:5696–5704

    Google Scholar 

  • Kawahara Y, Takai Y, Minakuchi R, Sano K, Nishizuka Y (1980) Phospholipid turnover as a possible transmembrane signal for protein phosphorylation during human platelet activation by thrombin. Biochem Biophys Res Commun 97:309–317

    Google Scholar 

  • Kelly K, Cochran BH, Stiles CD, Leder P (1983) Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35:603–610

    Google Scholar 

  • Kennedy MB, Greengard P (1981) Two calcium/calmodulin-dependent protein kinases, which are highly concentrated in brain, phosphorylate protein I at distinct sites. Proc Natl Acad Sci USA 78:1293–1297

    Google Scholar 

  • Kessar P, Crompton M (1981) The a-adrenergic-mediated activation of Ca2+ influx into cardiac mitochondria. Biochem J 200:379–388

    Google Scholar 

  • Kienast J, Arnout J, Pfliegler G, Deckmyn H, Hoet B, Vermylen J (1987) Sodium fluoride mimics effects of both agonists and antagonists on intact human platelets by simultaneous modulation of phospholipase C and adenylate cyclase activity. Blood 69:859–866

    Google Scholar 

  • Kikkawa U, Takai Y, Minakuchi R, Inohara S, Nishizuka Y (1982) Calcium-activated, phospholipid-dependent protein kinase from rat brain. J Biol Chem 257:13341–13348

    Google Scholar 

  • Kikkawa U, Takai Y, Tanaka Y, Miyake R, Nishizuka Y (1983) Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters. J Biol Chem 258:11442–11445

    Google Scholar 

  • Kikuchi A, Kozawa D, Kaibuchi K, Katada T, Ui M, Takai Y (1986) Direct evidence for involvement of a guanine nucleotide-binding protein in chemotactic peptide-stimulated formation of inositol bisphosphate and trisphosphate in differentiated human leukemic (HL-60) cells. J Biol Chem 261:11558–11562

    Google Scholar 

  • Kimura S, Kugai N, Tada R, Kojima I, Abe K, Ogata E (1982) Sources of calcium mobilized by a-adrenergic stimulation in perfused rat liver. Horm Metab Res 14:133–138

    Google Scholar 

  • Kimura S, Nagasaki K, Adachi I, Yamaguchi K, Fujiki H, Abe K (1984) Stimulation of hepatic glycogenolysis by 12-0-tetradecanoylphorbol-13-acetate (TPA) via a calcium-requiring process. Biochem Biophys Res Commun 122:1057–1064

    Google Scholar 

  • King CE, Stephens LR, Hawkins PT, Guy GR, Michell RH (1987) Multiple metabolic pools of phosphoinositides and phosphatidate in human erythrocytes incubated in a medium that permits rapid transmembrane exchange of phosphate. Biochem J 244:209–217

    Google Scholar 

  • Kirk CJ, Verrinder TR, Hems DA (1977) Rapid stimulation, by vasopressin and adrenaline, or inorganic phosphate incorporation into phosphatidylinositol in isolated hepatocytes. FEBS Lett 83:267–271

    Google Scholar 

  • Kirk CJ, Creba JA, Downes CP, Michell RH (1981) Hormone-stimulated metabolism of inositol lipids and its relationship to hepatic receptor function. Biochem Soc Trans 9:377–379

    Google Scholar 

  • Kishimoto A, Takai Y, Mori T, Kikkawa U, Nishizuka Y (1980) Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover. J Biol Chem 255:2273–2276

    Google Scholar 

  • Klee CB, Vanaman TC (1982) Calmodulin. Adv Protein Chem 35:213–321

    Google Scholar 

  • Kleineke J, Soling HD (1985) Mitochondrial and extramitochondrial Ca2+ pools in the perfused rat liver: mitochondria are not the origin of calcium mobilized by vasopressin. J Biol Chem 260:1040–1045

    Google Scholar 

  • Kleineke J, Soling H-D (1987) The Ca2+-dependent actions of the a-adrenergic agonist phenylephrine on hepatic glycogenolysis differ from those of vasopressin and angiotensin. Eur J Biochem 162:143–150

    Google Scholar 

  • Knopf JL, Lee M-H, Sultzman LA, Kriz RW, Loomis CR, Hewick RM, Bell RM (1986) Cloning and expression of multiple protein kinase C cDNAs. Cell 46:491–502

    Google Scholar 

  • Kojima I, Shibata H, Ogata E (1986) Pertussis toxin blocks angiotensin II-induced calcium influx but not inositol trisphosphate production in adrenal glomerulosa cells. FEBS Lett 204:347–351

    Google Scholar 

  • Kolesnick RN, Paley AE (1987) 1,2-Diacylglycerols and phorbol esters stimulate phosphatidylcholine metabolism in GH3 pituitary cells. J Biol Chem 262:9204–9210

    Google Scholar 

  • Korchak HM, Rutherford LE, Weissmann G (1984) Stimulus-response coupling in the human neutrophil. I. Kinetic analysis of changes in calcium permeability. J Biol Chem 259:4070–4075

    Google Scholar 

  • Kozawa O, Hoshijima M, Tanimoto T, Ohmori T, Takai Y (1987) Similar physical and kinetic properties of rat brain synaptic membrane and cytosol phosphoinositide phospholipases C. Biochem Biophys Res Commun 145:218–227

    Google Scholar 

  • Kraft AS, Anderson WB (1983) Phorbol esters increase the amount of Ca2+, phospholipid-dependent protein kinase associated with plasma membrane. Nature 301:621–623

    Google Scholar 

  • Kraft AS, Anderson WB, Cooper HL, Sando JJ (1982) Decrease in cytosolic calcium/phospholipid-dependent protein kinase activity following phorbol ester treatment of EL4 thymoma cells. J Biol Chem 257:13193–13196

    Google Scholar 

  • Kruijer W, Cooper JA, Hunter T, Verma IM (1984) Platelet-derived growth factor induces rapid but transient expression of the c-fos gene and protein. Nature 312:711–716

    Google Scholar 

  • Kuno M, Gardner P (1987) Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes. Nature 326:301–304

    Google Scholar 

  • Kunos G, Kan WH, Greguski R, Venter JC (1983) Selective affinity labeling and molecular characterization of hepatic α 1-adrenergic receptors with [3H]phenoxybenzamine. J Biol Chem 258:326–332

    Google Scholar 

  • Kunos G, Hirata F, Ishac EJN, Tchakarov L (1984) Time-dependent conversion of α 1-to β-adrenoceptor-mediated glycogenolysis in isolated rat liver cells: role of membrane phospholipase A2. Proc Natl Acad Sci USA 81:6178–6182

    Google Scholar 

  • Kuo JF, Andersson RGG, Wise BC, Mackerlova L, Salomonsson I, Brackett NL, Katoh N, Shoji M, Wrenn RW (1980) Calcium-dependent protein kinase: widespread occurrence in various tissues and phyla of the animal kingdom and comparison of effects of phospholipid, calmodulin, and trifluoperazine. Proc Natl Acad Sci USA 77:1039–1043

    Google Scholar 

  • Kuret J, Schulman H (1984) Purification and characterization of a Ca2+/calmodulin-dependent protein kinase from rat brain. Biochemistry 23:5495–5504

    Google Scholar 

  • Labarca R, Janowsky A, Patel J, Paul SM (1984) Phorbol esters inhibit agonist-induced [3H] inositol-1-phosphate accumulation in rat hippocampal slices. Biochem Biophys Res Commun 123:703–709

    Google Scholar 

  • Lacal JC, De la Pena P, Moscat J, Garcia-Barreno P, Anderson PS, Aaronson SA (1987) Rapid stimulation of diacylglycerol production in Xenopus oocytes by microinjection of H-ras p21. Science 238:533–536

    Google Scholar 

  • Lacal JC, Moscat J, Aaronson SA (1976b) Novel source of 1,2-diacylglycerol in cells transformed by Ha-ras oncogene. Nature 330:269–272

    Google Scholar 

  • Lad PM, Olson CV, Smiley PA (1985) Association of the N-formyl-Met-Leu-Phe receptor in human neutrophils with a GTP-binding protein sensitive to pertussis toxin. Proc Natl Acad Sci USA 82:869–873

    Google Scholar 

  • Lambert TL, Kent RS, Whorton AR (1986) Bradykinin stimulation of inositol polyphosphate production in porcine aortic endothelial cells. J Biol Chem 261:15288–15293

    Google Scholar 

  • Landt M, McDonald JM (1984) Characterization of calmodulin-activated protein kinase activity of rat adipocyte endoplasmic reticulum fraction. Int J Biochem 16:161–169

    Google Scholar 

  • Landt M, McDaniel ML, Bry CG, Kotagal N, Colca JR, Lacy PE, McDonald JM (1982) Calmodulin-activated protein kinase activity in rat pancreatic islet-cell membranes. Arch Biochem Biophys 213:148–154

    Google Scholar 

  • Langer SZ (1974) Presynaptic regulation of catecholamine release (commentary). Biochem Pharmacol 23:1793–1800

    Google Scholar 

  • Langer SZ (1977) Presynaptic receptors and their role in the regulation of transmitter release. Br J Pharmacol 60:481–497

    Google Scholar 

  • Lapetina EG, Reep B, Ganong BR, Bell RM (1985) Exogenous sn-1,2-diacylglycerols containing saturated fatty acids function as bioregulators of protein kinase C in human platelets. J Biol Chem 260:1358–1361

    Google Scholar 

  • Lee LS, Weinstein IB (1978) Tumor-promoting phorbol esters inhibit binding of epidermal growth factor to cellular receptors. Science 202:313–315

    Google Scholar 

  • Lee LS, Weinstein IB (1979) Mechanism of tumor-promoter inhibition of cellular binding of epidermal growth factor. Proc Natl Acad Sci USA 76:5168–5172

    Google Scholar 

  • Lee M-H, Bell RM (1986) The lipid-binding, regulatory domain of protein kinase C. J Biol Chem 261:14867–14870

    Google Scholar 

  • Leeb-Lundberg LMF, Dickinson KEJ, Heald SL, Wikberg JES, Lefkowitz RJ, Caron MG (1984) Photoaffinity labeling of mammalian α 1-adrenergic receptors. J Biol Chem 259:2579–2587

    Google Scholar 

  • Leeb-Lundberg LMF, Cotecchia S, Lomasney JW, Debernadis JF, Lefkowitz RJ, Caron MG (1985) Phorbol esters promote α 1-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism. Proc Natl Acad Sci USA 82:5651–5655

    Google Scholar 

  • Leeb-Lundberg LMF, Cotecchia S, DeBlasi A, Caron MG, Lefkowitz RJ (1987) Regulation of adrenergic function by phosphorylation. J Biol Chem 262:3098–3105

    Google Scholar 

  • LePeuch CJ, Haiech J, Demaille JG (1979) Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cAMP-dependent and calcium-calmodulin-dependent phosphorylations. Biochemistry 18:5150–5157

    Google Scholar 

  • Levine L, Moskowitz MA (1979) α-and β-adrenergic stimulation of arachidonic acid metabolism in cells in culture. Proc Natl Acad Sci USA 76:6632–6636

    Google Scholar 

  • Lew PD, Monod A, Krause K-H, Waldvogel FA, Biden TJ, Schlegel W (1986) The role of cytosolic free calcium in the generation of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in HL-60 cells. J Biol Chem 261:13121–13127

    Google Scholar 

  • Lewis DL, Weight FF, Luini A (1986) A guanine nucleotide-binding protein mediates the inhibition of voltage-dependent calcium current by somatostatin in a pituitary cell line. Proc Natl Acad Sci USA 83:9035–9039

    Google Scholar 

  • Lin SH, Fain JN (1981) Vasopressin and epinephrine stimulation of phosphatidylinositol breakdown in the plasma membrane of rat hepatocytes. Life Sci 29:1905–1912

    Google Scholar 

  • Lin SH, Wallace MA, Fain JN (1983) Regulation of Ca2+-Mg2+-ATPase activity in hepatocyte plasma membranes by vasopressin and phenylephrine. Endocrinology 113:2268–2275

    Google Scholar 

  • Liscovitch M, Blusztajn JK, Freese A, Wurtman RJ (1987) Stimulation of choline release from NG108-15 cells by 12-0-tetradecanoylphorbol 13-acetate. Biochem J 241:81–86

    Google Scholar 

  • Litosch I (1987) Guanine nucleotide and NaF stimulation of phospholipase C activity in rat cerebral-cortical membranes. Biochem J 244:35–40

    Google Scholar 

  • Litosch I, Fain JN (1985) 5-Methyltryptamine stimulates phospholipase C-mediated breakdown of exogenous phosphoinositides by blowfly salivary gland membranes. J Biol Chem 260:16052–16055

    Google Scholar 

  • Litosch I, Lin SH, Fain JN (1983) Rapid changes in hepatocyte phosphoinositides induced by vasopressin. J Biol Chem 258:13727–13732

    Google Scholar 

  • Litosch I, Wallis C, Fain JN (1985) 5-Hydroxytryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary glands. J Biol Chem 260:5464–5471

    Google Scholar 

  • Llinas R, McGuiness TL, Leonard CS, Sugimoro M, Greengard P (1985) Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse. Proc Natl Acad Sci USA 82:3035–3039

    Google Scholar 

  • Lo WWY, Hughes J (1987a) Pertussis toxin distinguishes between muscarinic receptor-mediated inhibition of adenylate cyclase and stimulation of phosphoinositide hydrolysis in Flow 9000 cells. FEBS Lett 220:155–158

    Google Scholar 

  • Lo WWY, Hughes J (1987b) A novel cholera toxin-sensitive G-protein (Gc) regulatory receptor-mediated phosphoinositide signalling in human pituitary cloned cells. FEBS Lett 220:327–331

    Google Scholar 

  • Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE (1987) The βγ subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325:321–326

    Google Scholar 

  • Lomasney JW, Leeb-Lundberg LMF, Cotecchia S, Regan JW, DeBernadis JF, Caron MG, Lefkowitz RJ (1986) Mammalian α 1-adrenergic receptor. Purification and characterization of the native receptor ligand-binding subunit. J Biol Chem 261:7710–7716

    Google Scholar 

  • Low MG, Carroll RC, Weglicki WB (1984) Multiple forms of phosphoinositide-specific phospholipase C of different relative molecular masses in animal tissues. Biochem J 221:813–820

    Google Scholar 

  • Low MG, Carroll RC, Cox AC (1986) Characterization of multiple forms of phosphoinositidespecific phospholipase C purified from human platelets. Biochem J 237:139–145

    Google Scholar 

  • Lucas DO, Bajjalich SM, Kowalchyk JA, Martin TFJ (1985) Direct stimulation by thyrotropin-releasing hormone of polyphosphoinositide hydrolysis in GH3 cell membranes by a guanine nucleotide-modulated mechanism. Biochem Biophys Res Commun 132:721–728

    Google Scholar 

  • Lundberg GA, Jergil B, Sundler R (1986) Phosphatidylinositol-4-phosphate kinase from rat brain. Eur J Biochem 161:257–262

    Google Scholar 

  • Lynch CJ, Blackmore PF, Charest R, Exton JH (1985a) The relationships between receptor binding capacity for norepinephrine, angiotension II and vasopressin and release of inositol trisphosphate, Ca2+ mobilization and phosphorylase activation in rat liver. Mol Pharmacol 28:93–99

    Google Scholar 

  • Lynch CJ, Charest R, Blackmore PF, Exton JH (1985b) Studies on the hepatic α 1-adrenergic receptor. Modulation of guanine nucleotide effects by calcium temperature and age. J Biol Chem 260:1593–1600

    Google Scholar 

  • Lynch CJ, Charest R, Bocckino SB, Exton JH, Blackmore PF (1985c) Inhibition of hepatic α 1-adrenergic effects and binding by phorbol myristate acetate. J Biol Chem 260:2844–2851

    Google Scholar 

  • Lynch CJ, Sobo GE, Exton JH (1986a) Studies on the hepatic α 1-adrenergic receptor. An endogenous Ca2+-sensitive protease converts the α 1-adrenergic receptor to a guanine nucleotide-insensitive form. Biochim Biophys Acta 885:110–120

    Google Scholar 

  • Lynch CJ, Prpic V, Blackmore PF, Exton JH (1986b) Effect of isolet-activating pertussis toxin on the binding characteristics of Ca2+-mobilizing hormones and on agonist activation of phosphorylase in hepatocytes. Mol Pharmacol 29:196–203

    Google Scholar 

  • Lynch CJ, Wilson PB, Blackmore PF, Exton JH (1986c) The hormone-sensitive hepatic Na+ pump. Evidence for regulation by diacylglycerol and tumor promotors. J Biol Chem 261:14551–14556

    Google Scholar 

  • Lynch CJ, Bocckino SB, Blackmore PF, Exton JH (1987) Calcium-mobilizing hormones and phorbol myristate acetate mediate heterologous desensitization of the hormone-sensitive hepatic Na+/K+ pump. Biochem J 248:807–814

    Google Scholar 

  • MacDonald ML, Mack KF, Glomset JA (1987) Regulation of phosphoinositide phosphorylation in Swiss 3T3 cells stimulated by platelet-derived growth factor. J Biol Chem 262:1105–1110

    Google Scholar 

  • MacIntyre DE, McNicol A, Drummond AH (1985) Tumour-promoting phorbol esters inhibit agonist-induced phosphatidate formation and Ca2+ flux in human platelets. FEBS Lett 180:160–164

    Google Scholar 

  • MacPhee CH, Drummond AH (1984) Thyrotropin-releasing hormone stimulates rapid breakdown of phosphatidylinositol 4,5-bisphosphate and phosphatidylinostiol 4-phosphate in GH3 pituitary tumor cells. Mol Pharmacol 25:193–200

    Google Scholar 

  • Magnaldo I, L'Allemain G, Chambard JC, Moenner M, Barritault D, Pouyssegur J (1986) The mitogenic signaling pathway of fibroblast growth factor is not mediated through phosphoinositide hydrolysis and protein kinase C activation in hamster fibroblasts. J Biol Chem 261:16916–16922

    Google Scholar 

  • Magnaldo I, Talwar H, Anderson WB, Pouyssegur J (1987) Evidence for a GTP-binding protein coupling thrombin receptor to PIP2-phospholipase C in membranes of hamster fibroblasts. FEBS Lett 210:6–10

    Google Scholar 

  • Makowske M, Birnbaum MJ, Ballester R, Rosen OM (1986) A cDNA-encoding protein kinase C identifies two species of mRNA in brain and GH3 cells. J Biol Chem 261:13389–13392

    Google Scholar 

  • Malaisse WJ, Dunlop ME, Mathias PCF, Malaisse-Lagae F, Sener A (1985) Stimulation of protein kinase C and insulin release by 1-oleoyl-2-acetyl-glycerol. Eur J Biochem 149:23–27

    Google Scholar 

  • Malbon CC (1980) Liver cell adenylate cyclase and β-adrenergic receptors. J Biol Chem 255:8692–8699

    Google Scholar 

  • Malbon CC, Lo Presti JJ (1981) Hyperthyroidism impairs the activation of glycogen phosphorylase by epinephrine in rat hepatocytes. J Biol Chem 256:12199–12204

    Google Scholar 

  • Malbon CC, Li SY, Fain JN (1978) Hormonal activlation of glycogen phosphorylase in hepatocytes from hypothyroid rats. J Biol Chem 253:8820–8825

    Google Scholar 

  • Malbon CC, Graziano MP, Johnson GL (1984) Fat cell β-adrenergic receptor in the hypothyroid rat. J Biol Chem 259:3254–3260

    Google Scholar 

  • Malenka RC, Madison DV, Andruda R, Nicoll RA (1986) Phorbol esters mimic some cholinergic actions in hippocampal pyramidal neurons. J Neurosci 6:475–480

    Google Scholar 

  • Manne V, Kung H-F (1987) Characterization of phosphoinositide-specific phospholipase C from human platelets. Biochem J 243:763–771

    Google Scholar 

  • Manning DR, Fraser BA, Kahn RA, Gilman AG (1984) ADP-ribosylation of transducin by isletactivating protein. Identification of asparagine as the site of ADP-ribosyation. J Biol Chem 259:749–756

    Google Scholar 

  • Marc S, Leiber D, Harbon S (1986) Carbachol and oxytocin stimulate the generation of inositol phosphates in the guinea pig myometrium. FEBS Lett 201:9–14

    Google Scholar 

  • Marcum JM, Dedman JR, Brinkley BR, Means AR (1978) Control of microtubule assembly-disassembly by calcium-dependent regulator protein. Proc Natl Acad Sci USA 75:3771–3775

    Google Scholar 

  • Marier SH, Putney JW Jr, Van de Walle CM (1978) Control of calcium channels by membrane receptors in rat parotid gland. J Physiol (Lond) 279:141–151

    Google Scholar 

  • Martin MW, Evans T, Harden TK (1985) Further evidence that muscarinic cholinergic receptors of 1321N1 astrocytoma cells couple to a guanine nucleotide-regulatory protein that is not Ni. Biochem J 229:539–544

    Google Scholar 

  • Martin TFJ (1983) Thyrotropin-releasing hormone rapidly activates the phosphodiesterase hydrolysis of polyphosphoinositides in GH3 pituitary cells. J Biol Chem 258:14816–14822

    Google Scholar 

  • Martin TFJ, Bajjalieh SM, Lucas DO, Kowalchyk JA (1986a) Thyrotropin-releasing hormone stimulation of polyphosphoinositide hydrolysis in GH3 cell membranes is GTP dependent but insensitive to cholera or pertussis toxin. J Biol Chem 261:10141–10149

    Google Scholar 

  • Martin TFJ, Lucas DO, Bajjalieh SM, Kowalchyk JA (1986b) Thyrotropin-releasing hormone activates a Ca2+-dependent polyphosphoinositide phosphodiesterase in permeable GH3 cells. J Biol Chem 261:2918–2927

    Google Scholar 

  • Masters SB, Harden TK, Brown JH (1984) Relationships between phosphoinositide and calcium responses to muscarinic agonists in astrocytoma cells. Mol Pharmacol 26:149–155

    Google Scholar 

  • Masters SB, Martin MW, Harden TK, Brown JH (1985a) Pertussis toxin does not inhibit muscarinic receptor-mediated phosphoinositide hydrolysis or calcium mobilization. Biochem J 227:933–937

    Google Scholar 

  • Masters SB, Quinn MT, Brown JH (1985b) Agonist-induced desensitization of muscarinic receptor-mediated calcium efflux without concomitant desensitization of phosphoinositide hydrolysis. Mol Pharmacol 27:325–332

    Google Scholar 

  • Matozaki T, Sakamoto C, Nagao M, Baba S (1986) Phorbol ester or diacylglycerol modulates somatostatin binding to its receptors on rat pancreatic acinar cell membranes. J Biol Chem 261:1414–1420

    Google Scholar 

  • Mauco G, Chap H, Douste-Blazy L (1983) Platelet-activating factor (PAF-acether) promotes an early degradation of phosphatidylinositol-4,5-bisphosphate in rabbit platelets. FEBS Lett 153:361–365

    Google Scholar 

  • Mauco G, Fauvel J, Chap H, Douste-Blazy L (1984) Studies on enzymes related to diacylglycerol production in activated platelets. Biochem Biophys Acta 796:169–177

    Google Scholar 

  • Mauger JP, Poggioli J, Guesdon F, Claret M (1984) Noradrenaline, vasopressin and angiotensin increase Ca2+ influx by opening a common pool of Ca2+ channels in isolated rat liver cells. Biochem J 221:121–127

    Google Scholar 

  • May WS, Jacobs S, Cuatrecasas P (1984) Association of phorbol ester-induced hyperphosphorylation and reversible regulation of transferrin membrane receptors in HL60 cells. Proc Natl Acad Sci USA 81:2016–2020

    Google Scholar 

  • May WS Jr, Sahoyn N, Wolf M, Cuatrecases P (1985) Role of intracellular calcium mobilization in the regulation of protein kinase C-mediated membrane processes. Nature 317:549–551

    Google Scholar 

  • McCormack JG (1985a) Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive enzymes from rat liver and within intact rat liver mitochondria. Biochem J 231:581–595

    Google Scholar 

  • McCormack JG (1985b) Studies on the activation of rat liver pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase by adrenaline and glucagon. Biochem J 231:597–608

    Google Scholar 

  • McCormack JG (1985c) Evidence that adrenaline activates key oxidative enzymes in rat liver by increasing intramitochondrial [Ca2+]i. FEBS Lett 180:259–264

    Google Scholar 

  • McCormack JG, Denton RM (1981a) Comparative study of regulation by Ca2+ of activities of 2-oxoglutarate dehydrogenase complex and NAD+-isocitrate dehydrogenase from a variety of sources. Biochem J 196:619–624

    Google Scholar 

  • McCormack JG, Denton RM (1981b) The activation of pyruvate dehydrogenase in perfused rat heart by adrenaline and other inotropic agents. Biochem J 194:639–643

    Google Scholar 

  • McCormack JG, Denton RM (1984) Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat heart. Biochem J 218:235–247

    Google Scholar 

  • McCormack JG, Edgell NJ, Denton RM (1982) Studies on the interactions of Ca2+ and pyruvate in regulation of rat heart pyruvate dehydrogenase activity. Biochem J 202:419–427

    Google Scholar 

  • McGuinness TL, Lai Y, Greengard P, Woodgett JR, Cohen P (1983) A multifunctional calmodulin-dependent protein kinase: similarities between skeletal muscle glycogen synthase kinase and a brain synapsin I kinase. FEBS Lett 163:329–334

    Google Scholar 

  • McGuinness TL, Lai Y, Greengard P (1985) Ca2+/calmodulin-dependent protein kinase II. Isozymic forms from rat forebrain and cerebellum. J Biol Chem 260:1669–1704

    Google Scholar 

  • Means AR, Dedman JR (1980) Calmodulin — an intracellular calcium receptor. Nature 285:73–77

    Google Scholar 

  • Meeker RB, Harden TK (1982) Muscarinic cholinergic receptor-mediated activation of phosphodiesterase. Mol Pharmacol 22:310–319

    Google Scholar 

  • Meier KE, Snavely MD, Brown SL, Brown JH, Insel PA (1983) α 1-β 2-Adrenergic receptor expression in the Madin-Darby canine kidney epithelial cell line. J Cell Biol 97:405–415

    Google Scholar 

  • Meier KE, Sternfeld DR, Insel PA (1984) Alpha1-and beta2-adrenergic receptors co-expressed on cloned MDCK cells are distinct glycoproteins. Biochem Biophys Res Commun 118:73–81

    Google Scholar 

  • Meier KE, Sperling DM, Insel PA (1985) Agonist-mediated regulation of α 1-and β 2-adrenergic receptors in cloned MDCK cells. Am J Physiol 249:C69–C77

    Google Scholar 

  • Melin P-M, Sundler R, Jergil B (1986) Phospholipase C in rat liver plasma membranes. FEBS Lett 198:85–88

    Google Scholar 

  • Merrill AH Jr, Sereni AM, Stevens VL, Hannun YA, Bell RM, Kinkade JM Jr (1986) Inhibition of phorbol ester-dependent differentiation of human promyelocytic leukemic (HL-60) cells by sphinganine and other long-chain bases. J Biol Chem 261:12610–12615

    Google Scholar 

  • Merritt JE, Rink TJ (1987) Rapid increases in cytosolic free calcium in response to muscarinic stimulation of rat parotid acinar cells. J Biol Chem 262:4958–4960

    Google Scholar 

  • Merritt JE, Taylor CW, Rubin RP, Putney JW Jr (1986a) Evidence suggesting that a novel guanine nucleotide regulatory protein couples receptors to phospholipase C in exocrine pancreas. Biochem J 236:337–343

    Google Scholar 

  • Merritt JE, Taylor CW, Rubin RP, Putney JW Jr (1986b) Isomers of inositol trisphosphate in exocrine pancreas. Biochem J 238:825–829

    Google Scholar 

  • Michel T, Winslow JW, Smith JA, Seidman JG, Neer EJ (1986) Molecular cloning and characterization of cDNA encoding the GTP-binding protein α i and identification of a related protein, α h. Proc Natl Acad Sci USA 83:7663–7667

    Google Scholar 

  • Michell RH (1975) Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 20:339–344

    Google Scholar 

  • Michell RH (1979) Inositol phospholipids in membrane function. Trends Biochem Sci 40:128–131

    Google Scholar 

  • Michell RH, Kirk CJ, Jones LM, Downes CP, Creba JA (1981) Stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells: defined characteristics and unanswered questions. Philos Trans R Soc Lond [Biol] 296:123–138

    Google Scholar 

  • Miller BE, Nelson DL (1977) Calcium fluxes in isolated acinar cells from rat parotid: effect of adrenergic and cholinergic stimulation. J Biol Chem 252:3629–3636

    Google Scholar 

  • Mine T, Kojima I, Kimura S, Ogata E (1987) Assessment of the role of Ca2+ mobilization from intracellular pool(s), using dantrolene, in the glycogenolytic action of α-adrenergic stimulation in perfused rat liver. Biochim Biophys Acta 927:229–234

    Google Scholar 

  • Molina y Vedia LM, Lapetina EG (1986) Phorbol 12,13-dibutyrate and 1-oleoyl-2-acetyldiacyl-glycerol stimulate inositol trisphosphate dephosphorylation in human platelets. J Biol Chem 261:10493–10495

    Google Scholar 

  • Monaco ME, Woods D (1983) Characterization of the hormone-sensitive phosphatidylinositol pool in WRK-1 cells. J Biol Chem 258:15125–15129

    Google Scholar 

  • Moon SO, Palfrey HC, King C (1984) Phorbol esters potentiate tyrosine phosphorylation of epidermal growth factor receptors in A431 membranes by a calcium-independent mechanism. Proc Natl Acad Sci USA 81:2298–2302

    Google Scholar 

  • Moore JP, Todd JA, Hesketh TR, Metcalfe JC (1986) c-fos and c-myc Gene activation, ionic signal, and DNA synthesis in thymocytes. J Biol Chem 261:8158–8162

    Google Scholar 

  • Morgan NG, Shuman EA, Eston JH, Blackmore PF (1982) Stimulation of hepatic glycogenolysis by α 1-and α 2-adrenergic agonsis. J Biol Chem 257:13907–13910

    Google Scholar 

  • Morgan NG, Blackmore PF, Exton JH (1983a) Age-related changes in the control of hepatic cyclic AMP levels by α 1-and β 2-adrenergic receptors in male rats. J Biol Chem 258:5103–5109

    Google Scholar 

  • Morgan NG, Blackmore PF, Exton JH (1983b) Modulation of the α 1-adrenergic control of hepatocyte calcium redistribution by increases in cyclic AMP. J Biol Chem 258:5110–5116

    Google Scholar 

  • Morgan NG, Exton JH, Blackmore PF (1983c) Angiotension II inhibits hepatic cAMP accumulation induced by glucagon and epinephrine and their metabolic effects. FEBS Lett 153:77–80

    Google Scholar 

  • Morgan NG, Shipp CC, Exton JH (1983d) Studies on the mechanism of inhibition of hepatic cAMP accumulation by vasopressin. FEBS Lett 163:277–281

    Google Scholar 

  • Morgan NG, Waynick LE, Exton JH (1983e) Characterisation of the α 1-adrenergic control of hepatic cAMP in male rats. Eur J Pharmacol 96:1–10

    Google Scholar 

  • Morgan NG, Rumford GM, Montague W (1985) Studies on the role of inositol trisphosphate in the regulation of insulin secretion from isolated rat islets of Langerhans. Biochem J 228:713–718

    Google Scholar 

  • Morgan RO, Chang JP, Catt KJ (1987) Novel aspects of gonadotropin-releasing hormone action on inositol polyphosphate metabolism in cultured pituitary gonadotrophs. J Biol Chem 262:1166–1171

    Google Scholar 

  • Mori T, Takai Y, Yu B, Takahashi J, Nishizuka Y, Fujikura T (1982) Specificity of the fatty acyl moierties of diacylglycerol for the activation of calcium-activated, phospholipid-dependent protein kinase. J Biochem 91:427–431

    Google Scholar 

  • Morrow AL, Creese I (1986) Characterization of α 1-adrenergic receptor subtypes in rat brain: a reevaluation of [3H]WB4101 and [3H]prazosin binding. Mol Pharmacol 29:321–330

    Google Scholar 

  • Muallem S, Schoeffield M, Pandol S, Sachs G (1985) Inositol trisphosphate modification of ion transport in rough endoplasmic reticulum. Proc Natl Acad Sci USA 82:4433–4437

    Google Scholar 

  • Mullaney JM, Chueh S-H, Ghosh TK, Gill DL (1987) Intracellular calcium uptake activated by GTP. J Biol Chem 262:13865–13872

    Google Scholar 

  • Murayama T, Ui M (1985) Receptor-mediated inhibition of adenylate cyclase and stimulation of arachidonic acid release in 3T3 fibroblasts. J Biol Chem 260:7226–7233

    Google Scholar 

  • Murphy E, Coll K, Rich TL, Williamson JR (1980) Hormonal effects on calcium homeostasis in isolated hepatocytes. J Biol Chem 255:6600–6608

    Google Scholar 

  • Nabika T, Velletri PA, Lovenberg W, Beaven MA (1985) Increase in cytosolic calcium and phosphoinositide metabolism induced by angiotensin II and [arg]vasopressin in vascular smooth muscle cells. J Biol Chem 260:4661–4670

    Google Scholar 

  • Naccache PH, Molski TFP, Borgeaut P, White JR, Sha'afi RI (1985) Phorbol esters inhibit the fMet-Leu-Phe-and leukotriene B4-stimulated calcium mobilization and enzyme secretion in rabbit neutrophils. J Biol Chem 260:2125–2131

    Google Scholar 

  • Nadler E, Gillo B, Lass Y, Oron Y (1986) Acetylcholine-and inositol 1,4,5-trisphosphate-induced calcium mobilization in Xenopus laevis oocytes. FEBS Lett 199:208–212

    Google Scholar 

  • Nagano M, Ishibashi H, McCully V, Cottam GL (1980) Epinephrine-stimulated phosphorylation of pyruvate kinase in hepatocytes. Arch Biochem Biophys 203:271–281

    Google Scholar 

  • Nairn AC, Bhagat B, Palfrey HC (1985a) Identification of calmodulin-dependent protein kinase III and its major M r 100 000 substrate in mammalian tissues. Proc Natl Acad Sci USA 82:7939–7943

    Google Scholar 

  • Nairn AC, Hemmings HC Jr, Greengard P (1985b) Protein kinases in the brain. Annu Rev Biochem 54:931–976

    Google Scholar 

  • Nakabayashi H, Chan K-F J, Huang K-P (1987) Role of protein kinase C in the regulation of rat liver glycogen synthase. Arch Biochem Biophys 252:81–90

    Google Scholar 

  • Nakamura T, Ui M (1983) Suppression of passive cutaneous anaphylaxis by pertussis toxin, an islet-activating protein, as a result of inhibition of histamine release from mast cells. Biochem Pharmacol 32:3435–3441

    Google Scholar 

  • Nakamura T, Ui M (1985) Stimultaneous inhibitions of inositol phospholipid breakdown, arachidonic acid release, and histamine secretion in mast cells by islet-activating protein, pertussis toxin. J Biol Chem 260:3584–3593

    Google Scholar 

  • Nakanishi H, Nomura H, Kikkawa V, Kishimoto A, Nishizuka Y (1985) Rat brain and liver-soluble phospholipase C: resolution of two forms with different requirements for calcium. Biochem Biophys Res Commun 132:582–590

    Google Scholar 

  • Nanberg E, Putney JW Jr (1986) α 1-Adrenergic activation of brown adipocytes leads to an increased formation of inositol polyphosphates. FEBS Lett 195:319–322

    Google Scholar 

  • Nasmith PE, Grinstein S (1987) Phorbol ester-induced changes in cytoplasmic Ca2+ in human neutrophils. Involvement of a pertussis-sensitive G-protein. J Biol Chem 262:13558–13566

    Google Scholar 

  • Nestler EJ, Greengard P (1983) Protein phosphorylation in the brain. Nature 305:583–588

    Google Scholar 

  • Nestler EJ, Walaas SI, Greengard P (1984) Neuronal phosphoproteins: physiological and clinical implications. Science 225:1357–1364

    Google Scholar 

  • Nicholls DG (1978) The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem J 176:463–474

    Google Scholar 

  • Nicholls D, Akerman K (1982) Mitochondrial calcium transport. Biochim Biophys Acta 683:57–88

    Google Scholar 

  • Niedel JE, Kuhn LJ, Vanderbark GR (1983) Phorbol diester receptor copurifies with protein kinase C. Proc Natl Acad Sci USA 80:36–40

    Google Scholar 

  • Niggli V, Penniston JT, Carafoli E (1979) Purification of the (Ca2+-Mg2+)-ATPase from human erythrocyte membranes using a calmodulin affinity column. J Biol Chem 254:9955–9958

    Google Scholar 

  • Nishikawa M, Shirakawa S, Adelstein RS (1985) Phosphorylation of smooth muscle myosin light-chain kinase by protein kinase C: comparative study of the phosphorylated sites. J Biol Chem 260:8978–8983

    Google Scholar 

  • Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308:693–698

    Google Scholar 

  • Nosek TM, Williams MF, Zeigler ST, Godt RE (1986) Inositol trisphosphate enhances calcium release in skinned cardiac and skeletal muscle. Am J Physiol 250:C807–C811

    Google Scholar 

  • Nukada T, Tanabe T, Takahishi H, Noda M, Haga K, Haga T, Ichiyama A, Kanagawa K, Hiranaga M, Matsuo H, Numa S (1986) Primary structure of the α-subunit of bovine adenylate cyclase-inhibiting G-protein deduced from the cDNA sequence. FEBS Lett 197:305–310

    Google Scholar 

  • Ochs R (1984) Glutamine metabolism of isolated rat hepatocytes: evidence for catecholamine activation of α-ketoglutarate dehydrogenase. J Biol Chem 259:13004–13010

    Google Scholar 

  • Ohno S, Kawasaki H, Imajoh S, Suzuki K, Inagaki M, Yokokura H, Sakoh T, Hidaka H (1987) Tissue-specific expression of three distinct types of rabbit protein kinase C. Nature 325:161–166

    Google Scholar 

  • Oinuma M, Katada T, Ui M (1987) A new GTP-binding protein in differentiated human leukemic (HL-60) cells serving as the specific substrate of islet-activating protein, pertussis toxin. J Biol Chem 262:8347–8353

    Google Scholar 

  • Okajima F, Ui M (1982) Conversion of adrenergic regulation of glycogen phosphorylase and synthase from an α to a β type during primary culture of rat hepatocytes. Arch Biochem Biophys 213:658–668

    Google Scholar 

  • Okajima F, Ui M (1984) ADP-Ribosylation of the specific membrane protein by islet-activating protein, pertussis toxin, associated with inhibition of a chemotactic peptide-induced arachidonate release in neutrophils. J Biol Chem 295:13863–13871

    Google Scholar 

  • Okajima F, Katada T, Ui M (1985) Coupling of guanine nucleotide regulatory protein to chemotactic peptide receptors in neutrophil membranes and its uncoupling by islet-activating protein, pertussis toxin. J Biol Chem 260:6761–6768

    Google Scholar 

  • Okajima F, Tokumitsu Y, Kondo Y, Ui M (1987) P2-Purinergic receptors are coupled to two signal transduction systems leading to inhibition of cAMP generation and to production of inositol trisphosphate in rat hepatocytes. J Biol Chem 262:13483–13490

    Google Scholar 

  • Ono Y, Kurokawa T, Kawahara K, Nishimura O, Marumoto R, Igarashi K, Sugino Y, Kikkawa U, Ogita K, Nishizuka Y (1986) Cloning of rat brain protein kinase C complementary DNA. FEBS Lett 203:111–115

    Google Scholar 

  • Ono Y, Fujii T, Ogita K, Kikkawa U, Igarishi K, Nishizuka Y (1988) The structure, expression and properties of additional members of the protein kinase C family. J Biol Chem 263:6927–6932

    Google Scholar 

  • Orellana SA, Solski PA, Brown JH (1985) Phorbol ester inhibits phosphoinositide hydrolysis and calcium mobilization in cultured astrocytoma cells. J Biol Chem 260:5236–5239

    Google Scholar 

  • Orellano S, Solski PA, Brown JH (1987) Guanosine 5′-0-(thiotriphosphate)-dependent inositol trisphosphate formation in membranes is inhibited by phorbol ester and protein kinase C. J Biol Chem 262:1638–1643

    Google Scholar 

  • Oron Y, Dascal N, Nadler E, Lupu M (1985) Inositol 1,4,5-trisphosphate mimics muscarinic response in Xenopus oocytes. Nature 313:141–143

    Google Scholar 

  • O'Rourke FA, Halenda SP, Zavoico GB, Feinstein MB (1985) Inositol 1,4,5-trisphosphate releases Ca2+ from a Ca2+-transporting membrane vesicle fraction derived from human platelets. J Biol Chem 260:956–962

    Google Scholar 

  • Osborne R, Tashjian AH Jr (1981) Tumor-promoting phorbol esters affect production of prolactin and growth hormone by rat pituitary cells. Endocrinology 108:1164–1170

    Google Scholar 

  • Oviasu OA, Whitton PD (1984) Hormonal control of pyruvate dehydrogenase activity in rat liver. Biochem J 224:181–186

    Google Scholar 

  • Palfrey HC, Rothlein JE, Greengard P (1983) Calmodulin-dependent protein kinase and associated substrates in Torpedo electric organ. J Biol Chem 256:496–503

    Google Scholar 

  • Pandol SJ, Schoeffield MS (1986) 1,2-Diacylglycerol, protein kinase C, and pancreatic enzyme secretion. J Biol Chem 261:4438–4444

    Google Scholar 

  • Parker I, Miledi R (1987) Inositol trisphosphate activates a voltage-dependent calcium influx in Xenopus oocytes. Proc R Soc Lond [Biol] 231:27–36

    Google Scholar 

  • Parker JC, Barritt GJ, Wadsworth JC (1983) A kinetic investigation of the effects of adrenaline on 45Ca2+ exchange in isolated hepatocytes at different Ca2+ concentrations, at 20° and in the presence of inhibitors of mitochondrial Ca2+ transport. Biochem J 216:51–62

    Google Scholar 

  • Parker J, Daniel LW, Waite M (1987) Evidence of protein kinase C involvement in phorbol diester-stimulated arachidonic acid release and prostaglandin synthesis. J Biol Chem 262:5385–5393

    Google Scholar 

  • Parker PJ, Coussens L, Totty N, Rhee L, Young S, Chen E, Stabel S, Waterfield MD, Ullrich A (1986) The complete primary structure of protein kinase C — the major phorbol ester reeceptor. Science 233:853–859

    Google Scholar 

  • Paris S, Pouyssegur J (1987) Further evidence for a phospholipase C-coupled G-protein in hamster fibroblasts. J Biol Chem 262:1970–1976

    Google Scholar 

  • Parod RJ, Putney JW Jr (1978) The role of calcium in the receptor-mediated control of potassium permeability in rat lacrimal gland. J Physiol (Lond) 281:371–382

    Google Scholar 

  • Parod RJ, Putney JW Jr (1979) Stimulation of 45Ca efflux from rat lacrimal gland slices by carbachol and epinephrine. Life Sci 25:2211–2215

    Google Scholar 

  • Paudel HK, Carlson GM (1987) Inhibition of the catalytic subunit of phosphorylase kinase by its α/β subunits. J Biol Chem 262:11912–11915

    Google Scholar 

  • Payne ME, Soderling TR (1980) Calmodulin-dependent glycogen synthase kinase. J Biol Chem 255:8054–8056

    Google Scholar 

  • Payne ME, Schworer CM, Soderling TR (1983) Purification and characterization of rabbit liver calmodulin-dependent glycogen synthase kinase. J Biol Chem 258:2376–2382

    Google Scholar 

  • Pelech SL, Meier KE, Krebs EG (1986) Rapid microassay for protein kinase C translocation in Swiss 3T3 cells. Biochemistry 25:8348–8353

    Google Scholar 

  • Penniston J (1983) Plasma membrane Ca2+-ATPases as active CA2+ pumps. In: Cheung WY (ed) Calcium and cell function, vol IV. Academic, New York, pp 99–149

    Google Scholar 

  • Perkins JP, Moore MM (1973) Characterization of the adrenergic receptors mediating a rise in cyclic 3′,5′-adenosine monophosphate in rat cerebral cortex. J Pharmacol Exp Ther 185:371–378

    Google Scholar 

  • Pfeilschifter J, Bauer C (1986) Pertussis toxin abolishes angiotensin II-induced phosphoinasitide hydrolysis and prostaglandin synthesis in rat renal mesangial cells. Biochem J 236:289–294

    Google Scholar 

  • Pickford LB, Polverino AJ, Barritt GJ (1987) Evidence from studies employing radioactively labelled fatty acids that the stimulation of flux through the diacylglycerol pool is an early action of vasopressin on hepatocytes. Biochem J 245:211–216

    Google Scholar 

  • Picton C, Klee CB, Cohen P (1980) Phosphorylase kinase from rabbit skeletal muscle: identification of calmodulin-binding subunits. Eur J Biochem 111:553–561

    Google Scholar 

  • Pike LJ, Eakes AT (1987) Epidermal growth factor stimulates the production of phosphatidylinositol monophosphate and the breakdown of polyphosphoinositides in A431 cells. J Biol Chem 262:1644–1651

    Google Scholar 

  • Pocotte SL, Holz RW (1986) Effects of phorbol ester on tyrosine hydroxylase phosphorylation and activation in cultured bovine adrenal chromaffin cells. J Biol Chem 261:1873–1877

    Google Scholar 

  • Pocotte SL, Frye RA, Senter RA, Terbush DR, Lee SA, Holz RW (1985) Effects of phorbol ester on catecholamine secretion and protein phosphorylation in adrenal medullary cell cultures. Proc Natl Acad Sci USA 82:930–934

    Google Scholar 

  • Poggioli J, Putney JW Jr (1982) Net calcium fluxes in rat parotid acinar cells: evidence for a hormone-sensitive calcium pool in or near the plasma membrane. Pflugers Arch 392:239–243

    Google Scholar 

  • Poggioli J, Berthon B, Claret M (1980) Calcium movements in in situ mitochondria following activation of α-adrenergic receptors in rat liver cells. FEBS Lett 115:243–246

    Google Scholar 

  • Poggioli J, Mauger J-P, Guesdon F, Claret M (1985) A regulatory calcium-binding site for calcium channel in isolated rat hepatocytes. J Biol Chem 260:3289–3294

    Google Scholar 

  • Poggioli J, Mauger J-P, Claret M (1986a) Effects of cyclic AMP-dependent hormones and Ca2+-mobilizing hormones on Ca2+ influx and polyphosphoinositide metabolism in isolated rat hepatocytes. Biochem J 235:663–669

    Google Scholar 

  • Poggioli J, Sulpice JC, Vassort G (1986b) Inositol phosphate production following α1-adrenergic, muscarinic or electrical stimulation in isolated rat heart. FEBS Lett 206:292–298

    Google Scholar 

  • Pollock WK, Sage SO, Rink JJ (1987) Stimulation of Ca2+ efflux from fura-2-loaded platelets activated by thrombin or phorbol myristate acetate. FEBS Lett 210:132–136

    Google Scholar 

  • Pozzan T, Arslan P, Tsien RY, Rink TJ (1982) Anti-immunoglobulin, cytoplasmic free calcium, and capping in B-lymphocytes. J Cell Biol 94:335–340

    Google Scholar 

  • Pozzan T, DiVirgilio F, Vicentini LM, Meldolesi J (1986) Activation of muscarinic receptors in PC12 cells. Biochem J 234:547–553

    Google Scholar 

  • Preiksaitis HG, Kunos G (1979) Adrenoceptor-mediated activation of liver glycogen phosphorylase: effects of thyroid state. Life Sci 24:35–41

    Google Scholar 

  • Preiksaitis HG, Kan WH, Kunos G (1982) Decreased α1-adrenoceptor responsiveness and density in liver cells of thyroidectomized rats. J Biol Chem 257:4321–4327

    Google Scholar 

  • Preiss J, Loomis CR, Bishop WR, Stein R, Niedel JE, Bell RM (1986) Quantitative measurement of sn-1,2-diacylglycerols present in platelets, hepatocytes, and ras-and sis-transformed normal rat kidney cells. J Biol Chem 261:8597–8600

    Google Scholar 

  • Preiss JE, Bell RM, Niedel JE (1987) Diacylglycerol mass measurements in stimulated HL-60 phagocytes. J Immunol 138:1542–1545

    Google Scholar 

  • Prentki MM, Biden TJ, Janjic D, Irvine RF, Berridge MJ, Wollheim CB (1984a) Rapid mobilization of Ca2+ from rat insulinoma microsomes by inositol-1,4,5-trisphosphate. Nature 309:562–564

    Google Scholar 

  • Prentki M, Wollheim CB, Lew PD (1984b) Ca2+ homeostatis in permeabilized human neutrophils. Characterization of Ca2+-sequestering pools and the action of inositol 1,4,5-trisphosphate. J Biol Chem 259:13777–13782

    Google Scholar 

  • Prentki M, Corkey BE, Matschinsky FM (1985) Inositol 1,4,5-trisphosphate and the endoplasmic reticulum Ca2+ cycle of a rat insulinoma cell line. J Biol Chem 260:9185–9190

    Google Scholar 

  • Pribluda VS, Metzger H (1987) Calcium-independent phosphoinositide breakdown in rat basophilic leukemia cells. J Biol Chem 262:11449–11454

    Google Scholar 

  • Prpic V, Blackmore PF, Exton JH (1982) Phosphatidylinositol breakdown induced by vasopressin and epinephrine in hepatocytes is calcium dependent. J Biol Chem 257:11323–11331

    Google Scholar 

  • Prpic V, Green KC, Blackmore PF, Exton JH (1984) Vasopressin-, angiotensin II-, and α1-adrenergic-induced inhibition of Ca2+ transport by rat liver plasma membrane vesicles. J Biol Chem 259:1382–1385

    Google Scholar 

  • Pushpendran CK, Corvera S, Garcia-Sainz JA (1984) Effect of insulin on alpha1-adrenergic actions in hepatocytes from euthyroid and hypothyroid rats. Biochem Biophys Res Commun 118:451–459

    Google Scholar 

  • Putney JW Jr (1976) Biphasic modulation of potassium release in rat parotid gland by carbachol and phenylephrine. J Pharmacol Exp Ther 198:375–384

    Google Scholar 

  • Putney JW Jr (1977) Muscarinic, alpha-adrenergic and peptide receptors regulate the same calcium influx sites in the parotid gland. J Physiol (Lond) 268:139–149

    Google Scholar 

  • Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12

    Google Scholar 

  • Putney JW jr, Burgess GM, Halenda SP, McKinney JS, Rubin RP (1983) Effects of secretagogues on [32P]phosphatidylinositol 4,5-bisphosphate metabolism in the exocrine pancreas. Biochem J 212:483–488

    Google Scholar 

  • Putney JW, McKinney JS, Aub DL, Leslie BA (1984) Phorbol ester-induced protein secretion in rat parotid gland. Mol Pharmacol 26:261–266

    Google Scholar 

  • Ragab-Thomas JM-F, Hullin F, Chap H, Douste-Blazy L (1987) Pathways of arachidonic acid liberation in thrombin-and calcium ionophore A23187-stimulated human endothelial cells: respective roles of phospholipids and triacylglycerol and evidence for diacylglycerol generation from phosphatidylcholine. Biochim Biophys Acta 917:388–397

    Google Scholar 

  • Rasmussen H, Forder J, Kojima I, Scriabine A (1984) TPA-induced contraction of isolated rabbit vascular smooth muscle. Biochem Biophys Res Commun 122:776–784

    Google Scholar 

  • Rebecchi MJ, Gershengorn MC (1983a) Thyroliberin stimulates rapid hydrolysis of phosphatidylinositol 4,5-bisphosphate by a phosphodiesterase in rat mammotropic pituitary cells. Biochem J 216:287–294

    Google Scholar 

  • Rebecchi MJ, Rosen OM (1987a) Stimulation of polyphosphoinositide hydrolysis by thrombin in membranes from human fibroblasts. Biochem J 245:49–57

    Google Scholar 

  • Rebecchi MJ, Rosen OM (1987b) Purification of a phosphoinositide-specific phospholipase C from bovine brain. J Biol Chem 262:12526–12532

    Google Scholar 

  • Reinhart PH, Taylor WM, Bygrave FL (1982) Calcium ion fluxes induced by the action of α-adrenergic agonists in perfused rat liver. Biochem J 208:619–630

    Google Scholar 

  • Reinhart PH, Taylor WM, Bygrave FL (1984a) The contribution of both extracellular and intracellular calcium to the action of α-adrenergic agonists in perfused rat liver. Biochem J 220:35–42

    Google Scholar 

  • Reinhart PH, Taylor WM, Bygrave FL (1984b) The action of a-adrenergic agonists on plasmamembrane calcium fluxes in perfused rat liver. Biochem J 220:43–50

    Google Scholar 

  • Reinhart PH, Taylor WM, Bygrave FL (1984c) The role of calcium ions in the mechanism of action of α-adrenergic agonists in rat liver. Biochem J 223:1–13

    Google Scholar 

  • Reinhart PH, Taylor WM, Bygrave FL (1984d) The mechanism of α-adrenergic agonist action in liver. Biol Rev 59:511–557

    Google Scholar 

  • Renard D, Poggioli J, Berthon B, Claret M (1987) How far does phospholipase C activity depend on the cell calcium concentration? Biochem J 243:391–398

    Google Scholar 

  • Reuter H (1983) Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301:569–574

    Google Scholar 

  • Reynolds EE, Dubyak GR (1985) Activation of calcium mobilization and calcium influx by alpha1-adrenergic receptors in a smooth muscle cell line. Biochem Biophys Res Commun 130:627–632

    Google Scholar 

  • Rhodes D, Pripic V, Exton JH, Blackmore PF (1983) Stimulation of phosphatidylinositol 4,5-bisphosphate hydrolysis in hepatocytes by vasopressin. J Biol Chem 258:2770–2773

    Google Scholar 

  • Rink TJ, Sage SO (1985) Stopped-flow fluorescence measurements of fura-2-loaded human platelets. J Physiol (Lond) 369:115P

    Google Scholar 

  • Rink TJ, Sanchez A, Hallam TJ (1983) Diacylglycerol and phorbol ester stimulate secretion without raising cytoplasmic free calcium in human platelets. Nature 305:317–319

    Google Scholar 

  • Rittenhouse SE (1983) Human platelets contain phospholipase C that hydrolyzes polyphosphoinositides. Proc Natl Acad Sci USA 80:5417–5420

    Google Scholar 

  • Rittenhouse SE, Sasson JP (1985) Mass changes in myoinositol trisphosphate in human platelets stimulated by thrombin: inhibitory effects of phorbol ester. J Biol Chem 260:8657–8660

    Google Scholar 

  • Rittenhouse-Simmons S (1979) Production of diglyceride from phosphatidylinositol in activated human platelets. J Clin Invest 63:580–587

    Google Scholar 

  • Roach PJ, Goldman M (1983) Modification of glycogen synthase activity in isolated rat hepatocytes by tumor-promoting phorbol esters: evidence for differential regulation of glycogen synthase and phosphorylase. Proc Natl Acad Sci USA 80:7170–7172

    Google Scholar 

  • Roach PJ, DePaoli-Roach AA, Larner J (1978) Ca2+-stimulated phosphorylation of muscle glycogen synthase by phosphorylase b kinase. J Cyclic Nucleotide Res 4:245–257

    Google Scholar 

  • Rock CO, Jackowski S (1987) Thrombin and nucleotide-activated phosphatidylinositol 4,5-bisphosphate phospholipase C in human platelet membranes. J Biol Chem 262:5492–5498

    Google Scholar 

  • Rosenthal W, Schultz G (1987) Modulations of voltage-dependent ion channels by extracellular signals. Trends Pharmacol Sci 8:351–354

    Google Scholar 

  • Rossier MF, Krause K-H, Lew PD, Capponi AM, Vallotton MB (1987) Control of cytosolic free calcium by intracellular organelles in bovine adrenal glomerulosa cells. J Biol Chem 262:4053–4058

    Google Scholar 

  • Rubin RP, Godfrey PP, Chapman DA, Putney JW Jr (1984) Secretagogue-induced formation of inositol phosphates in rat exocrine pancreas. Biochem J 219:655–659

    Google Scholar 

  • Ruegg JC (1982) Vascular smooth muscle: intracellular aspects of adrenergic receptor contraction coupling. Experientia 38:1400–1404

    Google Scholar 

  • Ryu SH, Cho KS, Lee K-Y, Suh P-G, Rhee SG (1987a) Purification and characterization of two immunologically distinct phosphoinositide-specific phospholipases C from bovine brain. J Biol Chem 262:12511–12518

    Google Scholar 

  • Ryu SH, Lee SY, Lee K-Y, Rhee SG (1987b) Catalytic properties of inositol trisphosphate kinase: activation by Ca2+ and calmodulin. FASEB J 1:388–393

    Google Scholar 

  • Sage SO, Rink TJ (1987) The kinetics of changes in intracellular calcium concentration in fura-2-loaded human platelets. J Biol Chem 262:16364–16369

    Google Scholar 

  • Sano K, Takai Y, Yamanishi J, Nishizuka Y (1983) A role of calcium-activated phospholipid-dependent protein kinase in human platelet activation. J Biol Chem 258:2010–2013

    Google Scholar 

  • Sasaguri T, Hirata M, Kuriyama H (1985) Dependence on Ca2+ of the activities of phosphati-dylinositol 4,5-bisphosphate phosphodiesterase and inositol 1,4,5-trisphosphate phosphatase in smooth muscles of the porcine coronary artery. Biochem J 231:497–503

    Google Scholar 

  • Sasaki K, Sato M (1987) A single GTP-binding protein regulates K+ channels coupled with dopamine, histamine and acetylcholine receptors. Nature 325:259–262

    Google Scholar 

  • Sasaki T, Hasegawa-Sasaki H (1987) Activation of polyphosphoinositide phospholipase C by guanosine 5′-0-(3-thio)triphosphate and fluoroaluminate in membranes prepared from a human T-cell leukemia line, JURKAT. FEBS Lett 218:87–92

    Google Scholar 

  • Schacht J, Agranoff BW (1972) Effects of acetylcholine on labeling of phosphatidate and phosphoinositides by [32P]orthophosphate in nerve. J Biol Chem 247:774–777

    Google Scholar 

  • Schimmel RJ, McCarthy L, Dzierzanowski D (1985) Effects of pertussis toxin treatment on metabolism in hamster brown adipocytes. Am J Physiol 249:C456–C463

    Google Scholar 

  • Schlondorff D, Satriano JA, DeCandido S (1986) Different concentrations of pertussis toxin have opposite effects on agonist-induced PGE2 formation in mesangial cells. Biochem Biophys Res Commun 141:39–45

    Google Scholar 

  • Schmitz W, Scholz H, Scholz J, Steinfath M, Lohse M, Puurunen J, Schwabe V (1987) Pertussis toxin does not inhibit the α 1-adrenoceptor-mediated effect on inositol phosphate production in heart. Eur J Pharmacol 134:377–378

    Google Scholar 

  • Schrey MP, Read AM, Steer PJ (1987) Stimulation of phospholipid hydrolysis and arachidonic acid metabolism in human uterine decidua cells by phorbol ester. Biochem J 246:705–713

    Google Scholar 

  • Schulman H (1984a) Phosphorylation of microtubule-associated proteins by a Ca2+/calmodulin-dependent protein kinase. J Cell Biol 99:11–19

    Google Scholar 

  • Schulman H (1984b) Calcium-dependent protein kinases and neuronal function. Trends Pharmacol Sci 5:188–192

    Google Scholar 

  • Schulman H, Greengard P (1978a) Stimulation of brain membrane protein phosphorylation by calcium and an endogenous heat-stable protein. Nature 271:478–479

    Google Scholar 

  • Schulman H, Greengard P (1978b) Ca2+-dependent protein phosphorylation system in membranes from various tissues, and its activation by “calcium-dependent regulator”. Proc Natl Acad Sci USA 75:5432–5436

    Google Scholar 

  • Schultz J, Daly JW (1973) Adenosine 3′,5′-monophosphate in guinea pig cerebral cortical slices: effects of α-and β-adrenergic agents, histamine, serotonin and adenosine. J Neurochem 21:573–579

    Google Scholar 

  • Schwartz KR, Carter EA, Homcy CJ, Graham RM (1986a) Agonist interactions at hepatic α 1-and β-adrenergic receptors: affinity-state regulation by guanine nucleotides and temperature. Biochemistry 25:7782–7788

    Google Scholar 

  • Schwartz KR, Lanier SM, Sena LM, Carter EA, Graham RM, Homcy CJ (1986b) Agonist-induced isomerization of α 1-adrenergic receptor: kinetic analysis using broken-cell and solubilized preparations. Biochemistry 25:2697–2702

    Google Scholar 

  • Schworer CM, Soderling TR (1983) Substrate specificity of liver calmodulin-dependent glycogen synthase kinase. Biochem Biophys Res Commun 116:412–416

    Google Scholar 

  • Schworer CM, El-Maghrabi MR, Pilkis SJ, Soderling TR (1985) Phosphorylation of L-type pyruvate kinase by a Ca2+/calmodulin-dependent protein kinase. J Biol Chem 260:13018–13022

    Google Scholar 

  • Scott RH, Dolphin AC (1986) Regulation of calcium currents by a GTP analogue: potentiation of (-)-baclofen-mediated inhibition. Neurosci Lett 69:59–64

    Google Scholar 

  • Seidman CE, Hess HJ, Homcy CJ, Graham RM (1984) Photoaffinity labeling of the α 1-adrenergic receptor using an 125I-labeled aryl azide analogue of prazosin. Biochemistry 23:3765–3770

    Google Scholar 

  • Sekar MC, Dixon JF, Hokin LE (1987) The formation of inositol 1,2-cyclic 4,5-trisphosphate and inositol 1,2-cyclic 4-bisphosphate on stimulation of mouse pancreatic minilobules with carbamylcholine. J Biol Chem 262:340–344

    Google Scholar 

  • Seyfred MA, Wells WW (1984) Subcellular site and mechanism of vasopressin-stimulated hydrolysis of phosphoinositides in rat hepatocytes. J Biol Chem 259:7666–7672

    Google Scholar 

  • Seyfred MA, Farrell LE, Wells WW (1984) Characterization of d-myo-inositol 1,4,5-trisphosphate phosphatase in rat liver plasma membranes. J Biol Chem 259:13204–13208

    Google Scholar 

  • Sha'afi RI, White JR, Molski TFP, Shefcyk J, Volpi M, Naccache PH, Feinstein MB (1983) Phorbol 12-myristate 13-acetate activates rabbit neutrophils without an apparent rise in the level of intracellular free calcium. Biochem Biophys Res Commun 114:638–645

    Google Scholar 

  • Sharkey NA, Leach KL, Blumberg PM (1984) Competitive inhibition by diacylglycerol of specific phorbol ester binding. Proc Natl Acad Sci USA 81:607–610

    Google Scholar 

  • Shears SB, Kirk CJ (1984a) Determination of mitochondrial calcium content in hepatocytes by a rapid cellular-fractionation technique. α-Adrenergic agonists do not mobilize mitochondrial Ca2+. Biochem J 219:383–389

    Google Scholar 

  • Shears SB, Kirk CJ (1984b) Determination of mitochondrial calcium content in hepatocytes by a rapid cellular fractionation technique. Vasopressin stimulates mitochondrial Ca2+ uptake. Biochem J 220:417–421

    Google Scholar 

  • Shears SB, Storey DJ, Morris AJ, Cubitt AB, Parry JB, Michell RH, Kirk CJ (1987a) Dephosphorylation of myoinositol 1,4,5-trisphosphate and myoinositol 1,3,4-trisphosphate. Biochem J 242:393–402

    Google Scholar 

  • Shears SB, Parry JB, Tang EKY, Irvine RF, Michell RH (1987b) Metabolism of d-myo-inositol 1,3,4,5-tetrakisphosphate by rat liver, including the synthesis of a novel isomer of myo-inositol tetrakisphosphate. Biochem J 246:139–147

    Google Scholar 

  • Shenolikar S, Cohen PTW, Cohen P, Nairn AC, Perry SV (1979) The role of calmodulin in the structure and regulation of phosphorylase kinase from rabbit skeletal muscle. Eur J Biochem 100:329–337

    Google Scholar 

  • Shenolikar S, Lickteig R, Hardie DG, Soderling TR, Hanley RM, Kelly PT (1986) Calmodulin-dependent multifunctional protein kinase. Evidence for isoenzyme forms in mammalian tissues. Eur J Biochem 161:739–747

    Google Scholar 

  • Shoyab M, De Larco JE, Todaro GJ (1979) Biologically active phorbol esters specifically alter affinity of epidermal growth factor membrane receptors. Nature 279:387–391

    Google Scholar 

  • Shreeve SM, Fraser CM, Venter JC (1985) Molecular comparison of α 1-and α 2-adrenergic receptors suggests that these proteins are structurally related “isoreceptors”. Proc Natl Acad Sci USA 82:4842–4846

    Google Scholar 

  • Shukla SD (1982) Phosphatidylinositol-specific phospholipases C. Life Sci 30:1323–1335

    Google Scholar 

  • Sies H, Graf P, Crane D (1983) Decreased flux through pyruvate dehydrogenase during calcium ion movements induced by vasopressin, α-adrenergic agonists and the ionophore A23187 in perfused rat liver. Biochem J 212:271–278

    Google Scholar 

  • Slack BE, Bell JE, Benos DJ (1986) Inositol-1,4,5-trisphosphate injection mimics fertilization potentials in sea urchin eggs. Am J Physiol 250:C340–C344

    Google Scholar 

  • Slivka SR, Insel PA (1987) α1-Adrenergic receptor-mediated phosphoinositide hydrolysis and prostaglandin E2 formation in Madin-Darby canine kidney cells. J Biol Chem 262:4200–4207

    Google Scholar 

  • Smith CD, Lane BC, Kusaka I, Verghese MW, Snyderman R (1985) Chemoattractant receptor-induced hydrolysis of phosphatidylinositol 4,5-bisphosphate in human polymorphonuclear leukocyte membranes. J Biol Chem 260:5875–5878

    Google Scholar 

  • Smith CD, Uhing RJ, Snyderman R (1987) Nucleotide regulatory protein-mediated activation of phospholipase C in human polymorphonuclear leukocytes is disrupted by phorbol esters. J Biol Chem 262:6121–6127

    Google Scholar 

  • Smith JB, Smith L, Brown ER, Barnes D, Sabir MA, Davis JS, Farese RV (1984) Angiotensin II rapidly increases phosphatidate-phosphoinositide synthesis and phosphoinositide hydrolysis and mobilizes intracellular calcium in cultured arterial muscle cells. Proc Natl Acad Sci USA 81:7812–7816

    Google Scholar 

  • Smith JB, Smith L, Higgins BL (1985) Temperature and nucleotide dependence of calcium release by myoinositol 1,4,5-trisphosphate in cultured vascular smooth muscle cells. J Biol Chem 260:14413–14416

    Google Scholar 

  • Snavely MD, Insel PA (1982) Characterization of alpha-adrenergic receptor subtypes in the rat renal cortex. Mol Pharmacol 22:532–546

    Google Scholar 

  • Snavely MD, Mahan LC, O'Connor DT, Insel PA (1983) Selective down-regulation of adrenergic receptor subtypes in tissues from rats with pheochromocytoma. Endocrinology 113:354–360

    Google Scholar 

  • Soloff MS, Sweet P (1982) Oxytocin inhibition of (Ca2+ + Mg2+)-ATPase activity in rat myometrial plasma membranes. J Biol Chem 257:10687–10693

    Google Scholar 

  • Somlyo AP, Bond M, Somylo AV (1985a) Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo. Nature 314:622–625

    Google Scholar 

  • Somlyo AV, Bond M, Somlyo AP, Scarpa A (1985b) Inositol trisphosphate-induced calcium release and contraction in vascular smooth muscle. Proc Natl Acad Sci USA 82:5231–5235

    Google Scholar 

  • Spat A, Bradford PG, McKinney JS, Rubin RP, Putney JW Jr (1986a) A saturable receptor for 32P-inositol-1,4,5-trisphosphate in hepatocytes and neutrophils. Nature 319:514–516

    Google Scholar 

  • Spat A, Fabiato A, Rubin RP (1986b) Binding of inositol trisphosphate by a liver microsomal fraction. Biochem J 223:929–932

    Google Scholar 

  • Sperti G, Colucci WS (1987) Phorbol ester-stimulated transmembrane calcium flux in A7r5 vascular smooth muscle cells. Mol Pharmacol 32:37–42

    Google Scholar 

  • Staddon JM, McGivan JD (1985) Ca2+-dependent activation of oxoglutarate dehydrogenase by vasopressin in isolated hepatocytes. Biochem J 225:327–333

    Google Scholar 

  • Starke K (1977) Regulation of noradrenaline release by presynaptic receptor systems. Rev Physiol Biochem Pharmacol 77:1–124

    Google Scholar 

  • Steinberg SF, Chow YK, Robinson RB, Bilezikian JP (1987) A pertussis toxin substrate regulates α1-adrenergic-dependent phosphatidylinositol hydrolysis in cultured myocytes. Endocrinology 120:1889–1895

    Google Scholar 

  • Sternweis PC, Gilman AG (1982) Aluminum: a requirement for activation of the regulatory component of adenylate cyclase by fluoride. Proc Natl Acad Sci USA 79:4888–4891

    Google Scholar 

  • Sternweis PC, Robishaw JD (1984) Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain. J Biol Chem 259:13806–13813

    Google Scholar 

  • Stewart SJ, Prpic V, Powers FS, Bocckino SB, Isaacks RE, Exton JH (1986) Perturbation of the human T-cell antigen receptor-T3 complex leads to the production of inositol tetrakisphosphate: evidence for conversion from inositol trisphosphate. Proc Natl Acad Sci USA 83:6098–6102

    Google Scholar 

  • Stewart SJ, Kelley LL, Powers FS (1987) Production of inositol pentakisphosphate in a human T lymphocyte cell line. Biochem Biophys Res Commun 145:895–902

    Google Scholar 

  • Stiles GL, Hoffman BB, Hubbard M, Caron MG, Lefkowitz RJ (1983) Guanine nucleotides and alpha1-adrenergic receptors in the heart. Biochem Pharmacol 32:69–71

    Google Scholar 

  • Stoehr SJ, Smolen JE, Holz RW, Agranoff BW (1986) Inositol trisphosphate mobilizes intracellular calcium in permeabilized adrenal chromaffin cells. J Neurochem 46:637–640

    Google Scholar 

  • Storey DJ, Shears SB, Kirk CJ, Michell RH (1984) Stepwise enzymatic dephosphorylation of inositol 1,4,5-trisphosphate to inositol in liver. Nature 312:374–376

    Google Scholar 

  • Storm H, Van Hardeveld C, Kasenaar AAH (1984) The influence of hypothyroidism on the adrenergic stimulation of glycogenolysis in perfused rat liver. Biochim Biophys Acta 798:350–360

    Google Scholar 

  • Stossel TP (1984) Contribution of actin to the structure of the cytoplasmic matrix. J Cell Biol 99:15s–21s

    Google Scholar 

  • Straub RE, Gershengorn MC (1986) Thyrotropin-releasing hormone and GTP activate inositol trisphosphate formation in membranes isolated from rat pituitary cells. J Biol Chem 261:2712–2717

    Google Scholar 

  • Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol 1,4,5-triphosphate. Nature 306:67–69

    Google Scholar 

  • Streb H, Bayerdorffer E, Haase W, Irvine RF, Schulz I (1984) Effect of inositol-1,4,5-trisphosphate in isolated subcellular fractions of rat pancreas. J Membr Biol 81:241–253

    Google Scholar 

  • Streb H, Heslop JP, Irvine RF, Schulz I, Berridge MJ (1985) Relationship between secretagogue-induced Ca2+ release and inositol polyphosphate production in permeabilized pancreatic acinar cells. J Biol Chem 260:7309–7315

    Google Scholar 

  • Strickland WG, Blackmore PF, Exton JH (1980) The role of calcium in alpha-adrenergic inactivation of glycogen synthase in rat hepatocytes and its inhibition by insulin. Diabetes 29:617–622

    Google Scholar 

  • Strickland WG, Imazu M, Chrisman TD, Exton JH (1983) Regulation of rat liver glycogen synthase: roles of Ca2+, phosphorylase kinase, and phosphorylase a. J Biol Chem 258:5490–5497

    Google Scholar 

  • Strnad CF, Parente JE, Wong K (1986) Use of fluoride ion as a probe for the guanine nucleotide-binding protein involved in the phosphoinositide-dependent neutrophil transduction pathway. FEBS Lett 206:20–24

    Google Scholar 

  • Strong JA, Fox AP, Tsien RW, Kaczmarek LK (1987) Stimulation of protein kinase C recruits covert calcium channels in Aplysia bag cell neurons. Nature 325:714–717

    Google Scholar 

  • Studer RK, Borle AB (1982) Differences between male and female rats in the regulation of hepatic glycogenolysis: the relative role of calcium and cAMP in phosphorylase activation by catecholamines. J Biol Chem 257:7987–7993

    Google Scholar 

  • Studer RK, Borle AB (1983) Sex difference in cellular calcium metabolism of rat hepatocytes and in α-adrenergic activation of glycogen phosphorylase. Biochim Biophys Acta 762:302–314

    Google Scholar 

  • Studer RK, Borle AB (1984) Effect of adrenalectomy on cellular calcium metabolism and on the response to adrenergic stimulation of hepatocytes isolated from male and female rats. Biochim Biophys Acta 804:377–385

    Google Scholar 

  • Stull JT, Manning DR, High CW, Blumenthal DK (1980) Phosphorylation of contractile proteins in heart and skeletal muscle. Fed Proc 39:1552–1557

    Google Scholar 

  • Stull JT, Nunnally MH, Michnoff CH (1986) Calmodulin-dependent protein kinases. Academic Press NY. Enzyme 17:113–166

    Google Scholar 

  • Stumpo DJ, Blackshear PF (1986) Insulin and growth factor effects on c-fos expression in normal and protein kinase C-deficient 3T3-L1 fibroblasts and adipocytes. Proc Natl Acad Sci USA 83:9453–9457

    Google Scholar 

  • Suematsu E, Hirata M, Hashimoto T, Kuriyama H (1984) Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery. Biochem Biophys Res Commun 120:481–485

    Google Scholar 

  • Sugano T, Shiota M, Khono H, Shimada M, Oshino N (1980) Effects of calcium ions on the activation of gluconeogenesis by norepinephrine in perfused rat liver. J Biochem (Tokyo) 87:465–472

    Google Scholar 

  • Sugden D, Vanecek J, Klein DC, Thomas TP, Anderson WB (1985) Activation of protein kinase C potentiates isoprenaline-induced cyclic AMP accumulation in rat pinealocytes. Nature 314:359–361

    Google Scholar 

  • Sugden LA, Sugden D, Klein DC (1986) Essential role of calcium influx in the adrenergic regulation of cAMP and cGMP in rat pinealocytes. J Biol Chem 261:11608–11612

    Google Scholar 

  • Sugden LA, Sugden D, Klein DC (1987) a-Adrenergic receptor activation elevates cytosolic calcium in rat pinealocytes by increasing net influx. J Biol Chem 262:741–745

    Google Scholar 

  • Sugden MC, Watts DI (1983) Stimulation of [1-14C]oleate oxidation to 14CO2 in isolated rat hepatocytes by the catecholamines, vasopressin and angiotensin. Biochem J 212:85–91

    Google Scholar 

  • Sugden MC, Tordoff AFC, Ilic V, Williamson DH (1980) a-Adrenergic stimulation of [1-14C]oleate oxidation to 14CO2 in isolated rat hepatocytes. FEBS Lett 120:80–84

    Google Scholar 

  • Szuts EZ, Wood SF, Reid MS, Fein A (1986) Light stimulates the rapid formation of inositol trisphosphate in squid retinas. Biochem J 240:929–932

    Google Scholar 

  • Tada M, Katz AM (1982) Phosphorylation of the sarcoplasmic reticulum and sarcolemma. Annu Rev Physiol 44:401–423

    Google Scholar 

  • Tada M, Ohmori F, Yamada M, Abe H (1979) Mechanism of the stimulation of Ca2+-dependent ATPase of cardiac sarcoplasmic reticulum by adenosine 3′:5′-monophosphate-dependent protein kinase. J Biol Chem 254:319–326

    Google Scholar 

  • Takai Y, Kishimoto A, Iwasa Y, Kawahara Y, Mori T, Nishizuka Y (1979a) Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. J Biol Chem 254:3692–3695

    Google Scholar 

  • Takai Y, Kishimoto A, Kikkawa U, Mori T, Nishizuka Y (1979b) Unsaturated diacylglycerol as a possible messenger for activation of calcium-activated, phospholipid-dependent protein kinase system. Biochem Biophys Res Commun 91:1218–1224

    Google Scholar 

  • Takuwa N, Takuwa Y, Rasmussen H (1987) A tumor promoter, 12-0-tetradecanoylphorbol 13-acetate, increases cellular 1,2-diacylglycerol content through a mechanism other than phosphoinositide hydrolysis in Swiss-mouse 3T3 fibroblasts. Biochem J 243:647–653

    Google Scholar 

  • Tan K-N, Tashjian AH Jr (1984) Voltage-dependent calcium channels in pituitary cells in culture. J Biol Chem 259:427–434

    Google Scholar 

  • Tarver AP, King WG, Rittenhouse SE (1987) Inositol 1,4,5-trisphosphate and inositol 1,2-cyclic 4,5-trisphosphate are minor components of total mass of inositol trisphosphate in thrombin-stimulated platelets. J Biol Chem 262:17268–17271

    Google Scholar 

  • Tashjian AH Jr, Heslop JP, Berridge MJ (1987) Subsecond and second changes in inositol polyphosphates in GH4C1 cells induced by thyrotropin releasing hormone. Biochem J 243:305–308

    Google Scholar 

  • Taylor CW, Putney JW Jr (1985) Size of inositol 1,4,5-trisphosphate-sensitive calcium pool in guinea-pig hepatocytes. Biochem J 232:435–438

    Google Scholar 

  • Taylor CW, Merritt JE, Putney JW, Rubin RP (1986) A guanine nucleotide-dependent regulatory protein couples substance P receptors to phospholipase C in rat parotid gland. Biochem Biophys Res Commun 136:362–368

    Google Scholar 

  • Taylor SJ, Exton JH (1987) Guanine nucleotide and hormone regulation of polyphosphoinositide phospholipase C activity of rat liver plasma membranes: divalent cation and phospholipid requirements. Biochem J 248:791–799

    Google Scholar 

  • Taylor WM, Prpic V, Exton JH, Bygrave FL (1980) Stable changes to calcium fluxes in mitochondria isolated from rat livers perfused with a-adrenergic agonists and with glucagon. Biochem J 188:443–450

    Google Scholar 

  • Taylor WM, Reinhart PH, Bygrave FL (1983) Stimulation by a-adrenergic agonists of Ca2+ fluxes, mitochondrial oxidation and gluconeogenesis in perfused rat liver. Biochem J 212:555–565

    Google Scholar 

  • Terman BI, Slivka SR, Hughes RJ, Insel PA (1987) a 1-Adrenergic receptor-linked guanine nucleotide-binding protein in muscle and kidney epithelial cells. Mol Pharmacol 31:12–20

    Google Scholar 

  • Thevenod F, Streb H, Ullrich KJ, Schulz I (1986) Inositol trisphosphate releases Ca2+ from a nonmitochondrial store site in permeabilized rat cortical kidney cells. Kidney Int 29:695–702

    Google Scholar 

  • Thieleczek R, Heilmeyer LMG (1986) Inositol 1,4,5-trisphosphate enhances Ca2+ sensitivity of the contractile mechanism of chemically skinned rabbit skeletal muscle fibres. Biochem Biophys Res Commun 135:662–669

    Google Scholar 

  • Thomas AP, Marks JS, Coll KE, Williamson JR (1983) Quantitation and early kinetics of inositol lipid changes induced by vasopressin in isolated and cultured hepatocytes. J Biol Chem 258:5716–5725

    Google Scholar 

  • Thomas AP, Alexander J, Williamson JR (1984) Relationship between inositol polyphosphate production and the increase of cytosolic free Ca2+ induced by vasopressin in isolated hepatocytes. J Biol Chem 259:5574–5584

    Google Scholar 

  • Thomopoulos P, Testa U, Gourdin MF, Hervy C, Titeaux M, Vaincheaker W (1982) Inhibition of insulin receptor binding by phorbol esters. Eur J Biochem 129:389–393

    Google Scholar 

  • Tilly BC, Van Paridon PA, Verlaan I, Wirtz KWA, DeLaat SW, Moolenaar WH (1987) Inositol phosphate metabolism in bradykinin-stimulated human A431 carcinoma cells. Biochem J 244:129–135

    Google Scholar 

  • Tolbert MEM, Butcher FR, Fain JN (1973) Lack of correlation between catecholamine effects of cyclic adenosine 3′:5′-monophosphate and gluconeogenesis in isolated rat liver cells. J Biol Chem 248:5686–5692

    Google Scholar 

  • Tolbert MEM, White AC, Aspry K, Cutts J, Fain JN (1980) Stimulation by vasopressin and a-catecholamines of phosphatidylinositol formation in isolated rat liver parenchymal cells. J Biol Chem 255:1938–1944

    Google Scholar 

  • Trimble ER, Bruzzone R, Mechan CJ, Biden TJ (1987) Rapid increases in inositol 1,4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate and cytosolic free Ca2+ in agonist-stimulated pancreatic acini of the rat. Biochem J 242:289–292

    Google Scholar 

  • Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19:2396–2404

    Google Scholar 

  • Tsien RY, Pozzan T, Rink TJ (1982) Calcium homeostasis on intact lymphocytes: cytoplasmic free calcium monitored with a new intracellularly trapped fluorescent indicator. J Cell Biol 94:325–334

    Google Scholar 

  • Tsien RY, Pozzan T, Rink TJ (1984) Measuring and manipulating cytosolic Ca2+ with trapped indicators. Trends Biochem Sci 9:263–266

    Google Scholar 

  • Uchida T, Ito H, Baum BJ, Roth GS, Filburn CR, Sacktor B (1982) Alpha1-adrenergic stimulation of phosphatidylinositol-phosphatidic acid turnover in rat parotid cells. Mol Pharmacol 21:128–132

    Google Scholar 

  • Ueda T, Chueh S-H, Noel MW, Gill DL (1986) Influence of inositol 1,4,5-trisphosphate and guanine nucleotides in intracellular calcium release within the N1E-115 neuronal cell line. J Biol Chem 261:3184–3192

    Google Scholar 

  • Uhing RJ, Jiang H, Prpic V, Exton JH (1985) Regulation of a liver plasma membrane phospho-inositide phosphodiesterase by guanine nucleotides and calcium. FEBS Lett 188:317–320

    Google Scholar 

  • Uhing RJ, Prpic V, Jiang H, Exton JH (1986) Hormone-stimulated polyphosphosphoinositide breakdown in rat liver plasma membranes: roles of guanine nucleotides and calcium. J Biol Chem 261:2140–2146

    Google Scholar 

  • Uhing RJ, Polakis PG, Snyderman R (1987) Isolation of GTP-binding proteins from myeloid HL-60 cells. J Biol Chem 262:15575–15579

    Google Scholar 

  • Ui M, Exton JH, Park CR (1973) Effects of glucagon on glutamate metabolism in the perfused rat liver. J Biol Chem 248:5350–5359

    Google Scholar 

  • Vandenberg CA, Montal M (1984) Light-regulated biochemical events in invertebrate photoreceptors. 2. Light-regulated phosphorylation of rhodopsin and phosphoinositides in squid photoreceptor membranes. Biochemistry 23:2347–2353

    Google Scholar 

  • Van de Werve G, Proietto J, Jeanrenaud B (1985) Control of glycogen phosphorylase interconversion by phorbol esters, diacylglycerols, Ca2+ and hormones in isolated rat hepatocytes. Biochem J 231:511–516

    Google Scholar 

  • Van Dop C, Yamanaka G, Steinberg F, Sekura RD, Manclark CR, Stryer L, Bourne HR (1984) ADP-Ribosylation of transducin by pertussis toxin blocks the light-stimulated hydrolysis of GTP and cGMP in retinal photoreceptors. J Biol Chem 259:23–26

    Google Scholar 

  • Vanecek J, Sugden D, Weller JL, Klein DC (1985) Atypical synergistic a 1-and β-adrenergic regulation of adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate in rat pinealocytes. Endocrinology 116:2167–2173

    Google Scholar 

  • Varsanyi M, Heilmeyer LMG Jr (1981) Phosphorylation of the 100 000 M r Ca2+ transport ATPase by Ca2+ or cyclic AMP-dependent and-independent protein kinases. FEBS Lett 131:223–228

    Google Scholar 

  • Venter JC, Eddy B, Hall LM, Fraser CM (1984a) Monoclonal antibodies detect the conservation of muscarinic cholinergic receptor structure from Drosophila to human brain and detect possible structural homology with a 1-adrenergic receptors. Proc Natl Acad Sci USA 81:272–276

    Google Scholar 

  • Venter JC, Horne P, Eddy B, Gregusta R, Fraser CM (1984 b) Alpha1-adrenergic receptor structure. Mol Pharmacol 26:196–205

    Google Scholar 

  • Vergara J, Tsien RY, Delay M (1985) Inositol 1,4,5-trisphosphate: a possible chemical link in excitation-contraction coupling in muscle. Proc Natl Acad Sci USA 82:6352–6356

    Google Scholar 

  • Verghese MW, Smith CD, Snyderman R (1985) Potential role for a guanine nucleotide regulatory protein in chemoattractant receptor-mediated polyphosphoinositide metabolism, Ca2+ mobilization and cellular respiration by leukocytes. Biochem Biophys Res Commun 127:450–457

    Google Scholar 

  • Vickers JD, Kinlough-Rathbone RL, Mustard JF (1984) Changes in the platelet phosphoinositides during the first minute after stimulation of washed rabbit platelets with thrombin. Biochem J 219:25–31

    Google Scholar 

  • Vincentini LM, Ambrosini A, DiVirgilio F, Pozzan T, Meldolesi J (1985a) Muscarinic receptor-induced phosphoinositide hydrolysis at resting cytosolic Ca2+ concentration in PC12 cells. J Cell Biol 100:1330–1333

    Google Scholar 

  • Vincentini LM, DiVirgilio F, Ambrosini A, Pozzan T, Meldolesi J (1985 b) Tumor promoter phorbol 12-myristate, 13-acetate inhibits phosphoinositol hydrolysis and cytosolic Ca2+ rise induced by activation of muscarinic receptors in PC12 cells. Biochem Biophys Res Commun 127:310–317

    Google Scholar 

  • Volpe P, Krause K-H, Hashimoto S, Zorzato F, Pozzan T, Meldolesi J, Lew DP (1988) “Calciosome”, a cytoplasmic organelle: the inositol 1,4,5-trisphosphate-sensitive Ca2+ store of nonmuscle cells? Proc Natl Acad Sci USA 85:1091–1095

    Google Scholar 

  • Volpe J, Salviati G, DiVirgilio R, Pozzan T (1985) Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle. Nature 316:347–349

    Google Scholar 

  • Volpi M, Yassin R, Naccache PH, Sha'afi RI (1983) Chemotactic factors cause rapid decreases in phosphatidylinositol, 4,5-bisphosphate and phosphatidylinositol 4-monophosphate in rabbit neutrophils. Biochem Biophys Res Commun 112:957–964

    Google Scholar 

  • Volpi M, Naccache PH, Molski TFP, Shefcyk J, Huang C-K, Marsh ML, Munoz J, Becker EL, Sha'afi RI (1985) Pertussis toxin inhibits fMet-Leu-Phe-but not phorbol ester-stimulated changes in rabbit neutrophils. Proc Natl Acad Sci USA 82:2708–2712

    Google Scholar 

  • Vulliet PR, Woodgett JR, Cohen P (1984) Phosphorylation of tryosine hydroxylase by calmodulin-dependent multiprotein kinase. J Biol Chem 259:13680–13683

    Google Scholar 

  • Waisman DM, Gimble JM, Goodman DB, Rasmussen H (1981) Studies on the Ca2+ transport mechanism of human erythrocyte inside-out plasma membrane vesicles. J Biol Chem 256:415–424

    Google Scholar 

  • Wakelam MJO, Davies SA, Houslay MD, McKay I, Marshall CJ, Hall A (1986) Normal p21n-ras couples bombesin and other growth factor receptors to inositol phosphate production. Nature 323:173–176

    Google Scholar 

  • Waldo GL, Evans T, Fraser ED, Northup JK, Martin MW, Harden TK (1987) Identification and purification from bovine brain of a guanine nucleotide-binding protein distinct from Gs, Gi and Go. Biochem J 246:431–439

    Google Scholar 

  • Walker DH, Pike LJ (1987) Phosphatidylinositol kinase is activated in membranes derived from cells treated with epidermal growth factor. Proc Natl Acad Sci USA 84:7513–7517

    Google Scholar 

  • Wallace MA, Fain JN (1985) Guanosine 5′-0-thiotriphosphate stimulates phospholipase C activity in plasma membranes of rat hepatocytes. J Biol Chem 260:9527–9530

    Google Scholar 

  • Wallace MA, Randazzo P, Li SY, Fain JN (1982) Direct stimulation of phosphatidylinositol degradation by addition of vasopressin to purified rat liver plasma membranes. Endocrinology 111:341–343

    Google Scholar 

  • Wallace MA, Poggioli J, Giraud F, Claret M (1983) Norepinephrine-induced loss of phosphatidylinositol from isolated rat liver plasma membrane. FEBS Lett 156:239–243

    Google Scholar 

  • Watkins PA, Moss J, Burns DL, Hewlett EL, Vaughan M (1984) Inhibition of bovine outer rod segment GTPase by Bordetella pertussis toxin. J Biol Chem 259:1378–1381

    Google Scholar 

  • Ways DK, Dodd RC, Earp HS (1987) Dissimilar effects of phorbol ester and diacylglycerol derivative on protein kinase activity in the monoblastoid U937 cells. Cancer Res 47:3344–3350

    Google Scholar 

  • Weiss SJ, Putney JW Jr (1978) Does calcium mediate the increase in potassium permeability due to phenylephrine or angiotensin II in the liver? J Pharmacol Exp Ther 207:669–676

    Google Scholar 

  • Weiss SJ, McKinney JS, Putney JW Jr (1982) Receptor-mediated net breakdown of phosphatidylinositol 4,5-bisphosphate in parotid acinar cells. Biochem J 206:555–560

    Google Scholar 

  • West RE Jr, Moss J, Vaughan M, Liu T, Liu T-Y (1985) Pertussis toxin-catalyzed ADP-ribosylation of transducin. J Biol Chem 260:14428–14430

    Google Scholar 

  • Whitaker M, Irvine RF (1984) Inositol 1,4,5-trisphosphate microinjection activates sea urchin eggs. Nature 312:636–639

    Google Scholar 

  • White JR, Huang CK, Hill JM, Naccache PH, Becker EL, Sha'afi RI (1984) Effect of phorbol 12-myr 13-acetate and its analogue 4a-phorbol 12,13-didecanoate on protein phosphate and lysosomal enzyme release in rabbit neutrophils. J Biol Chem 259:8605–8611

    Google Scholar 

  • Williamson DH, Ilic V, Tordoff AFC, Ellington EV (1980) Interactions between vasopressin and glucagon on ketogenesis and oleate metabolism in isolated hepatocytes from fed rats. Biochem J 186:621–624

    Google Scholar 

  • Williamson JR, Cooper RH, Hoek JB (1981) Role of calcium in the hormonal regulation of liver metabolism. Biochim Biophys Acta 639:243–295

    Google Scholar 

  • Wilson DB, Bross TE, Hofmann SL, Majerus PW (1984) Hydrolysis of polyphosphoinositides by purified sheep seminal vesicle phospholipase C enzymes. J Biol Chem 259:11718–11724

    Google Scholar 

  • Wilson DB, Connolly TM, Bross TE, Majerus PW, Sherman WR, Tyler AN, Rubin LJ, Brown JE (1985) Isolation and characterization of the inositol cyclic phosphate products of polyphosphoinositide cleavage by phospholipase C. J Biol Chem 260:13496–13501

    Google Scholar 

  • Wilson E, Olcott MC, Bell RM, Merrill AH Jr, Lambeth JD (1986) Inhibition of the oxidative burst in human neutrophils by sphingoid long-chain bases. J Biol Chem 261:12616–12623

    Google Scholar 

  • Wirthensohn G, Lefrank S, Guder WG (1984) Phospholipid metabolism in rat kidney cortical tubules. II. Effects of hormones on 32P incorporation. Biochim Biophys Acta 795:401–410

    Google Scholar 

  • Wolf BA, Comens PG, Ackermann KE, Sherman WR, McDaniel ML (1985) The digitonin-permeabilized pancreatic islet model. Biochem J 227:965–969

    Google Scholar 

  • Wolf BA, Florholmen J, Colca JR, McDaniel ML (1987) GTP mobilization of Ca2+ from the endoplasmic reticulum of islets. Biochem J 242:137–141

    Google Scholar 

  • Wolf M, LeVine H III, May WS Jr, Cuatrecasas P, Sahyoun N (1985) A model for intracellular translocation of protein kinase C involving synergism between Ca2+ and phorbol esters. Nature 317:546–551

    Google Scholar 

  • Wolfe BB, Harden K, Molinoff PB (1976) β-Adrenergic receptors in rat liver: effects of adrenalectomy. Proc Natl Acad Sci USA 73:1343–1347

    Google Scholar 

  • Wolfman A, Macara IG (1987) Elevated levels of diacylglycerol and decreased phorbol ester sensitivity in ras-transformed fibroblasts. Nature 325:359–361

    Google Scholar 

  • Woodgett JR, Hunter T (1987a) Immunological evidence for two physiological forms of protein kinase C. Mol Cell Biol 7:85–96

    Google Scholar 

  • Woodgett JR, Hunter T (1987b) Isolation and characteriaation of two distinct forms of protein kinase C. J Biol Chem 262:4836–4843

    Google Scholar 

  • Woodgett JR, Davison MT, Cohen P (1983) The calmodulin-dependent glycogen synthase kinase from rabbit skeletal muscle: purification, subunit structure and substrate specificity. Eur J Biochem 136:481–487

    Google Scholar 

  • Woodgett JR, Cohen P, Yamauchi T, Fujisawa H (1984) Comparison of calmodulin-dependent glycogen synthase kinase from skeletal muscle and calmodulin-dependent protein kinase-II from brain. FEBS Lett 163:329–334

    Google Scholar 

  • Woods NM, Cuthbertson KSR, Cobbold P (1986) Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. Nature 319:600–602

    Google Scholar 

  • Woods NM, Cuthbertson KSR, Cobbold P (1987) Agonist-induced oscillations in cytoplasmic free calcium concentration in single rat hepatocytes. Cell Calcium 8:79–100

    Google Scholar 

  • Wooten MW, Wrenn RW (1984) Phorbol ester induces intracellular translocation of phospholipid/Ca2+-dependent protein kinase and stimulates amylase secretion in isolated pancreatic acini. FEBS Lett 171:183–186

    Google Scholar 

  • Worley PF, Baraban JM, Supattapone S, Wilson VS, Snyder SH (1987) Characterization of inositol trisphosphate binding in brain. J Biol Chem 262:12132–12136

    Google Scholar 

  • Xuan Y-T, Su Y-F, Chang K-J, Watkins WD (1987) A pertussis/cholera toxin-sensitive G-protein may mediate vasopressin-induced inositol phosphate formation in smooth muscle cell. Biochem Biophys Res Commun 146:898–906

    Google Scholar 

  • Yamada S, Yamamura HI, Roeske WR (1980) The regulation of cardiac a 1-adrenergic receptors by guanine nucleotides and by muscarinic cholinergic agonists. Eur J Pharmacol 63:239–241

    Google Scholar 

  • Yamaguchi DT, Kleeman CR, Muallem S (1987) Protein kinase C-activated calcium channel in the osteoblast-like clonal osteosarcoma cell line UMR-106. J Biol Chem 262:14967–14973

    Google Scholar 

  • Yamamoto H, Fukunaga K, Tanaka E, Miyamoto E (1983) Ca2+-and calmodulin-dependent phosphorylation of microtubule-associated protein 2 and factor, and inhibition of microtubule assembly. J Neurochem 41:1119–1125

    Google Scholar 

  • Yamanishi J, Takai Y, Kaibuchi K, Sano K, Castagna M, Nishizuka Y (1983) Synergistic functions of phorbol ester and calcium in serotonin release from human platelets. Biochem Biophys Res Commun 112:778–786

    Google Scholar 

  • Yamauchi T, Fujisawa H (1986) Further comparison of calmodulin-dependent protein kinase II from brain and calmodulin-dependent glycogen synthase kinase from skeletal muscle. Biochim Biophys Acta 886:57–63

    Google Scholar 

  • Yamauchi T, Nakata H, Fujisawa H (1981) A new activator protein that activates tryptophan 5-mono-oxygenase and tyrosine 3-mono-oxygenase in the presence of Ca2+-, calmodulin-dependent protein kinase. J Biol Chem 256:5404–5409

    Google Scholar 

  • Yano K, Nakashima S, Nozawa Y (1983) Coupling of polyphosphoinositide breakdown with calcium efflux in formyl-methionyl-leucyl-phenylalanine-stimulated rabbit neutrophils. FEBS Lett 161:296–300

    Google Scholar 

  • Yatani A, Codina J, Brown AM, Birnbaumer L (1987) Direct activation of mammalian atrial muscarinic potassium channels by GTP regulatory protein Gk. Science 235:207–211

    Google Scholar 

  • Yin HL, Stossel TP (1982) Calcium control of actin network structure by gelsolin. In: Cheung WY (ed) Calcium and cell function, vol II. Academic, New York, pp 325–337

    Google Scholar 

  • Zawalich W, Brown C, Rasmussen H (1983) Insulin secretion: combined effects of phorbol ester and A23187. Biochem Biophys Res Commun 117:448–455

    Google Scholar 

  • Zurini M, Krebs J, Penniston JT, Carafoli E (1984) Controlled proteolysis of the purified Ca2+-ATPase of the erythrocyte membrane. J Biol Chem 259:618–627

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag

About this chapter

Cite this chapter

Exton, J.H. (1988). The roles of calcium and phosphoinositides in the mechanisms of α 1-adrenergic and other agonists. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 111. Reviews of Physiology, Biochemistry and Pharmacology, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0033873

Download citation

  • DOI: https://doi.org/10.1007/BFb0033873

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19156-8

  • Online ISBN: 978-3-540-39128-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics