Skip to main content

Regulation of blood pressure by central neurotransmitters and neuropeptides

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 111

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 111))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ader J-P, Postema F, Korf J (1979) Contribution of the locus coeruleus to the adrenergic innervation of the rat spinal cord: a biochemical study. J Neural Transm 44:159–173

    Google Scholar 

  • Ader J-P, Room P, Postema F, Korf J (1980) Bilaterally diverging axon collaterals and contralateral projections from rat locus coeruleus neurons demonstrated by fluorescent retrograde double labeling and norepinephrine metabolism. J Neural Transm 49:207–218

    Google Scholar 

  • Agnati LF, Fuxe K, Benfenati K, Battistini N, Härfstrand A, Tatemoto K, Hökfelt T, Mutt V (1983) Neuropeptide Y in vitro selectively increases the number of a 2-adrenergic binding sites in membranes of the medulla oblongata of the rat. Acta Physiol Scand 118:293–295

    Google Scholar 

  • Alexander RS (1946) Tonic and reflex functions of medullary sympathetic cardiovascular centers. J Neurophysiol 9:205–217

    Google Scholar 

  • Allen YS, Roberts GW, Bloom SR, Crow TJ, Polak JM (1984) Neuropeptide Y in the stria terminalis: evidence for an amygdalofugal projection. Brain Res 321:357–362

    Google Scholar 

  • Allen JM, Godfrey NP, Yeats JC, Bing RF, Bloom SR (1986) Neuropeptide Y in renovascular models of hypertension in the rat. Clin Sci 70:485–488

    Google Scholar 

  • Andén NE, Dahlström A, Fuxe K, Larsson K, Olson L, Ungerstedt U (1966) Ascending monoamine neurons to the telencephalon and diencephalon. Physiol Scand 67:313–326

    Google Scholar 

  • Andén NE, Grabowska M, Strömbom U (1976) Different a-adrenoceptors in the central nervous system mediating biochemical and functional effects of clonidine and receptor blocking agents. Naunyn-Schmiedebergs Arch Pharmacol 292:43–52

    Google Scholar 

  • Andrade R, Aghajanian GK (1982) Single cell activity in the noradrenergic A-5 region: responses to drugs and peripheral manipulations of blood pressure. Brain Res 242:125–135

    Google Scholar 

  • Antonaccio MJ, Halley J (1977) Clonidine hypotension: lack of effect of bilateral lesions of the nucleus solitary tract in anaesthetized cats. Neuropharmacology 16:431–433

    Google Scholar 

  • Antonaccio MJ, Taylor DG (1977) Involvement of central GABA receptors in the regulation of blood pressure and heart rate of anaesthetized cats. Eur J Pharmacol 46:283–287

    Google Scholar 

  • Antonaccio MJ, Kerwin L, Taylor DG (1978) Reductions in blood pressure, heart rate and renal sympathetic nerve discharge in cats after the central administration of muscimol, a GABA agonist. Neuropharmacology 17:783–791

    Google Scholar 

  • Appel NM, Kiritsy-Roy JA, Van Loon GR (1986) Mu receptors at discrete hypothalamic and brainstem sites mediate opioid peptide-induced increases in central sympathetic outflow. Brain Res 378:8–20

    Google Scholar 

  • Armitage AK, Hall GH (1967) Effects of nicotine on the systemic blood pressure when injected into the cerebral ventricles of cats. Int J Neuropharmacol 6:143–149

    Google Scholar 

  • Armitage AK, Hall GH, Milton AS, Morrison CF (1967) Effects of nicotine injected into and perfused through the cerebral ventricles of the cat. Ann NY Acad Sci 142:27–39

    Google Scholar 

  • Armstrong DM, Ross CA, Pickel VM, Joh TH, Reis DJ (1982a) Distribution of dopamine-, noradrenaline-, and adrenaline-containing cell bodies in the rat medulla oblongata: demonstrated by the immunocytochemical localization of catecholamine biosynthetic enzymes. J Comp Neurol 212:173–187

    Google Scholar 

  • Armstrong DM, Pickel VM, Reis DJ (1982b) Electron microscopic immunocytochemical localization of substance P in the area postrema of rat. Brain Res 243:141–146

    Google Scholar 

  • Armstrong DM, Saper CB, Levey AI, Wainer BH, Terry RD (1983) Distribution of cholinergic neurons in rat brain: demonstrated by the immunocytochemical localization of choline acetyltransferase. J Comp Neurol 216:53–68

    Google Scholar 

  • Atkinson JG, Girard Y, Rokach J, Rooney CS, McFarlane CS, Rackham A, Share NN (1979) Kojic amine. A novel GABA analogue. J Med Chem 22:99–106

    Google Scholar 

  • Atkinson J, Lambas-Senas L, Parker M, Boillat N, Luthi P, Sonnay M, Seccia M, Renaud B (1986) Chronic clonidine treatment and its withdrawal: effects on blood pressure and catecholamine synthesizing enzymes in brainstem nuclei. Eur J Pharmacol 121:97–106

    Google Scholar 

  • Atlas D, Burstein Y (1984a) Isolation of an endogenous clonidine-displacing substance from rat brain. FEBS Lett 170:387–390

    Google Scholar 

  • Atlas D, Burstein Y (1984b) Isolation and partial purification of a clonidine-displacing endogenous brain substance. Eur J Biochem 144:287–293

    Google Scholar 

  • Atweh SF, Kuhar MJ (1979) Autoradiographic localization of opiate receptors in rat brain. Brain Res 124:53–67

    Google Scholar 

  • Azmitia EC, Segal M (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179:641–668

    Google Scholar 

  • Bai FE, Yamano M, Shiotani Y, Emson PC, Smith AD, Powell JF, Tohyama M (1985) An arcuato-paraventricular and-dorsomedial hypothalamic neuropeptide Y-containing system which lacks noradrenaline in the rat. Brain Res 331:172–175

    Google Scholar 

  • Banks D, Harris MC (1984) Lesions of the locus coeruleus abolish baroreceptor-induced depression of supraoptic neurons in the rat. J Physiol (Lond) 355:383–398

    Google Scholar 

  • Baratz RA, Ingraham RC (1960) Renal hemodynamics and antidiuretic hormone release associated with volume regulation. Am J Physiol 198:565–570

    Google Scholar 

  • Barnes KL, Averill DB, Ferrario CM (1984) Contribution of vasopressin to hypertension after solitary tract lesioning in the dog. J Hypert 2:33–36

    Google Scholar 

  • Basbaum AI, Clanton CH, Fields HL (1978) Three bulbospinal pathways from the rostral medulla of the cat: an autoradiographic study of pain modulating systems. J Comp Neurol 178:209–224

    Google Scholar 

  • Basso N, Ruiz P, Kurnjek ML, Cannata MA, Taquini AC (1985) The brain renin-angiotensin system and the development of DOC-salt hypertension. Clin Exp Hypertens 7:1259–1266

    Google Scholar 

  • Beckett PJ, Finch L (1982) The a 1-and a 2-adrenoceptor involvement in the central cardiovascular action of clonidine in the conscious renal hypertensive cat. Eur J Pharmacol 82:155–160

    Google Scholar 

  • Beleslin D, Bisset GW, Haldar J, Polak RL (1967) The release of vasopressin without oxytocin in response to haemorrhage. Proc Soc Exp Biol Med 166:443–458

    Google Scholar 

  • Bellet M, Elghozi JL, Meyer P, Pernollet MG, Schmitt H (1980) Central cardiovascular effects of narcotic analgetics and enkephalins in rats. Br J Pharmacol 71:365–369

    Google Scholar 

  • Benarroch EE, Pirola CJ, Alvarez AL, Nahmod VE (1981) Serotonergic and noradrenergic mechanisms involved in the cardiovascular effects of angiotensin II injected into the anterior hypothalamic preoptic region of rats. Neuropharmacology 20:9–13

    Google Scholar 

  • Benarroch EE, Balda MS, Finkielman S, Nahmod VE (1983) Neurogenic hypertension after depletion of norepinephrine in anterior hypothalamus induced by 6-hydroxydopamine administration into the ventral pons: role of serotonin. Neuropharmacology 22:29–34

    Google Scholar 

  • Benetos A, Gavras I, Gavras H (1986) Norepinephrine applied in the paraventricular hypothalamic nucleus stimulates vasopressin release. Brain Res 381:322–326

    Google Scholar 

  • Berecek KH, Mitchum TN (1986) Role of vasopressin in the cardiovascular response stimulation of the locus coeruleus. Endocrinology 118:1829–1833

    Google Scholar 

  • Berecek KH, Olpe HR, Jones RSG, Hofbauer KG (1984) Microinjection of vasopressin into the locus coeruleus of conscious rats. Am J Physiol 247:H675–H681

    Google Scholar 

  • Bhargava HN, Das S (1986) Selective proliferation of brain kappa opiate receptors in spontaneously hypertensive rats. Life Sci 39:2593–2600

    Google Scholar 

  • Bhargava KP, Bhattacharya SS, Srimal RC (1964) Central cardiovascular actions of gamma-aminobutyric acid. Br J Pharmacol 23:383–390

    Google Scholar 

  • Bhargava KP, Kulshrestha VK, Srivastava YP (1972) Central cholinergic and adrenergic mechanisms in the release of antidiuretic hormone. Br J Pharmacol 44:617–627

    Google Scholar 

  • Bhargava KP, Kulshrestha VK, Santhakumari G, Srivastava YP (1973) Mechanism of histamine-induced antidiuretic response. Br J Pharmacol 47:700–706

    Google Scholar 

  • Bhargava KP, Jain IP, Saxena AK, Sinha JN, Tangri KK (1978) Central adrenoceptors and cholinoceptors in cardiovascular control. Br J Pharmacol 63:7–15

    Google Scholar 

  • Bhawe WB (1958) Experiments on the fate of histamine and acetylcholine after their injection into the cerebral ventricles. J Physiol (Lond) 140:169–189

    Google Scholar 

  • Bisset GW, Feldberg W, Guertzenstein PG, Rocha e Silva M (1975) Vasopressin release by nicotine: the site of action. Br J Pharmacol 54:463–474

    Google Scholar 

  • Blackmore WP, Cherry GR (1955) Antidiuretic action of histamine in the dog. Am J Physiol 180:596–598

    Google Scholar 

  • Blessing WW, Reis DJ (1982) Inhibitory cardiovascular function of neurons in the caudal ventrolateral medulla of the rabbit: relationship to the area containing A1 noradrenergic cells. Brain Res 253:161–171

    Google Scholar 

  • Blessing WW, Reis DJ (1983) Evidence that GABA and glycine-like inputs inhibit vasodepressor neurons in the caudal ventrolateral medulla of the rabbit. Neurosci Lett 37:57–62

    Google Scholar 

  • Blessing WW, Willoughby JO (1985) Excitation of neuronal function in rabbit caudal ventrolateral medulla elevates plasma vasopressin. Neurosci Lett 58:189–194

    Google Scholar 

  • Blessing WW, Chalmers JP, Howe PRC (1978) Distribution of catecholamine-containing cell bodies in the rabbit central nervous system. J Comp Neurol 179:407–424

    Google Scholar 

  • Blessing WW, Goodchild AD, Dampney DAL, Chalmers JP (1981a) Cell groups in the lower brainstem of the rabbit projecting to the spinal cord, with special references to catecholamine-containing neurons. Brain Res 221:35–55

    Google Scholar 

  • Blessing WW, West MJ, Chalmers JP (1981b) Hypertension, bradycardia and pulmonary edema in the conscious rabbit after brainstem lesions coinciding with the A1 group of catecholamine neurons. Circ Res 49:949–958

    Google Scholar 

  • Blessing WW, Sved AF, Reis DJ (1982) Destruction of noradrenergic neurons in rabbit brainstem elevates plasma vasopressin, causing hypertension. Science 217:661–663

    Google Scholar 

  • Bloom FE, Battenberg ELF (1976) A rapid, simple and sensitive method for the demonstration of central catecholamine-containing neurons and axons by glyoxylic acid-induced fluorescence. J Histochem Cytochem 24:561–571

    Google Scholar 

  • Bloom FE, Hoffer BJ, Siggius GR (1971) Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum: I. Localization of the fibres and their synapses. Brain Res 25:501–521

    Google Scholar 

  • Bobillier P, Seguin S, Petitjean F, Salvert D, Touret M, Jouvet M (1976) The raphe nuclei of the cat brainstem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res 113:449–486

    Google Scholar 

  • Bogdanski DF, Weissbach H, Udenfriend S (1958) Pharmacological studies with the serotonin precursor 5-hydroxytryptophan. J Pharmacol Exp Ther 122:182–194

    Google Scholar 

  • Bolme P, Corrodi H, Fuxe K, Hökfelt T, Lidbrink P, Goldstein M (1974) Possible involvement of central adrenaline neurons in vasomotor and respiratory control. Studies with clonidine and its interactions with piperoxane and yohimbine. Eur J Pharmacol 28:89–94

    Google Scholar 

  • Bolme P, Fuxe K, Agnati LF, Bradley R, Smythies J (1978) Cardiovascular effects of morphine and opioid peptides following intracisternal administration in chloralose-anaesthetized rats. Eur J Pharmacol 48:319–324

    Google Scholar 

  • Borkowski KR, Finch L (1978) Cardiovascular changes in anaesthetized rats after the intrahypothalamic administration of adrenaline. Clin Exp Hypertens 1:279–291

    Google Scholar 

  • Bousquet P, Guertzenstein PG (1973) Localization of the central cardiovascular action of clonidine. Br J Pharmacol 49:573–579

    Google Scholar 

  • Bousquet P, Schwartz J (1983) Alpha-adrenergic drugs. Pharmacological tools for the study of the central vasomotor control. Biochem Pharmacol 32:1459–1465

    Google Scholar 

  • Bousquet P, Feldman J, Velly J, Bloch R (1975) Role of the ventral surface of the brainstem in the hypotensive action of clonidine. Eur J Pharmacol 34:151–156

    Google Scholar 

  • Bousquet P, Feldman J, Bloch R, Schwartz J (1980) Medullary cardiovascular effects of tetrodotoxin in anaesthetized cats. Eur J Pharmacol 65:293–296

    Google Scholar 

  • Bousquet P, Feldman J, Bloch R, Schwartz J (1981a) The nucleus reticularis lateralis: a region highly sensitive to clonidine. Eur J Pharmacol 69:389–392

    Google Scholar 

  • Bousquet P, Feldman J, Bloch R, Schwartz J (1981b) The central hypotensive action of baclofen in the anaesthetized cat. Eur J Pharmacol 76:193–201

    Google Scholar 

  • Bousquet P, Feldman J, Bloch R, Schwartz J (1981c) The ventromedullary hypotensive effect of muscimol in the anaesthetized cat. Clin Exp Hypertens 3:195–205

    Google Scholar 

  • Bousquet P, Feldman J, Bloch R, Schwartz J (1981d) Central cardiovascular effects of taurine: comparison with homotaurine and muscimol. J Pharmacol Exp Ther 219:213–218

    Google Scholar 

  • Bousquet P, Feldman J, Bloch R, Schwartz J (1982) Evidence for a neuromodulatory role of GABA at the first synapse of the baroreceptor reflex pathway. Effects of GABA derivatives injected into the NTS. Naunyn-Schmiedeberg's Arch Pharmacol 319:168–171

    Google Scholar 

  • Bousquet P, Feldman J, Schwartz J (1984a) Central cardiovascular effects of α-adrenergic drugs: differences between catecholamines and imidazolines. J Pharmacol Exp Ther 230:232–236

    Google Scholar 

  • Bousquet P, Feldman J, Bloch R, Schwartz J (1984b) Pharmacological analysis of the central cardiovascular effects of four GABA analogues. Naunyn-Schmiedeberg's Arch Pharmacol 325:291–297

    Google Scholar 

  • Bousquet P, Feldman J, Schwartz J (1985) The medullary cardiovascular effects of imidazolines and some GABA analogues: a review. J Auton Nerv Syst 14:263–279

    Google Scholar 

  • Bousquet P, Feldman J, Atlas D (1986) An endogenous, non-catecholamine clonidine antagonist increases mean arterial blood pressure. Eur J Pharmacol 124:167–170

    Google Scholar 

  • Bowery NG, Hill DR, Hudson AL, Doble A, Middlemiss DN, Shaw J, Turnbull M (1980) (−)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283:92–94

    Google Scholar 

  • Brattström A, Kalkoff W (1970) Der Einfluß intracisternal applizierten Vasopressins auf Höhe und Einstellung des arteriellen Druckes. Arch Int Pharmacodyn Ther 183:190–198

    Google Scholar 

  • Brennan TJ, Morris M, Haywood JR (1984) GABA agonists inhibit the vasopressin-dependent pressor effects of central angiotensin II. Neuroendocrinology 39:429–433

    Google Scholar 

  • Brezenoff HE (1972) Cardiovascular response to intrahypothalamic injections of carbachol and certain cholinesterase inhibitors. Neuropharmacology 11:637–644

    Google Scholar 

  • Brezenoff HE, Caputi AP (1980) Intracerebroventricular injection of hemicholinium-3 lowers blood pressure in conscious spontaneously hypertensive rats but not in normotensive rats. Life Sci 26:1037–1045

    Google Scholar 

  • Brezenoff HE, Jenden DJ (1969) Modification of the arterial blood pressure in rats following microinjections of drugs into the posterior hypothalamus. Int J Neuropharmacol 8:593–600

    Google Scholar 

  • Brezenoff HE, Rusin J (1974) Brain acetylcholine mediates the hypotensive response to physostigmine in the rat. Eur J Pharmacol 29:262–266

    Google Scholar 

  • Brezenoff HE, Carney K, Buccafusco JJ (1982) Potentiation of the carotid artery occlusion reflex by a cholinergic system in the posterior hypothalamic nucleus. Life Sci 30:391–400

    Google Scholar 

  • Bridges TE, Hillhouse EW, Jones MT (1976) The effect of dopamine on neurohypophysial hormone release in vivo and from the rat neural lobe and hypothalamus in vitro. J Physiol (Lond) 260:647–666

    Google Scholar 

  • Buccafusco JJ (1984) Effect of methyldopa on brain cholinergic neurons involved in cardiovascular regulation. A study in conscious spontaneously hypertensive rats. Hypertension 6:614–622

    Google Scholar 

  • Buccafusco JJ, Brezenoff HE (1978) The hypertensive response to injection of physostigmine into the hypothalamus of the unanaesthetized rat. Clin Exp Hypertens 1:219–227

    Google Scholar 

  • Buccafusco JJ, Brezenoff HE (1979) Pharmacological study of a cholinergic mechanism within the rat posterior hypothalamic nucleus which mediates a hypertensive response. Brain Res 165:295–310

    Google Scholar 

  • Buccafusco JJ, Finberg JPM, Spector S (1980) Mechanism of the antihypertensive action of clonidine on the pressor response to physostigmine. J Pharmacol Exp Ther 212:58–63

    Google Scholar 

  • Buckingham RE, Hamilton TC, Robson D (1976) Effect of intracerebroventricular 5,6-dihydroxytryptamine on blood pressure of spontaneously hypertensive rats. Eur J Pharmacol 36:431–437

    Google Scholar 

  • Buda M, De Simoni G, Gonon F, Pujol JF (1983) Catecholamine metabolism in the rat locus coeruleus as studied by in vivo differential pulse voltammetry. I. Nature and origin of contributors to the oxidation current at +0.1 V. Brain Res 273:197–206

    Google Scholar 

  • Buijs RM (1978) Intra-and extra-hypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord. Cell Tissue Res 192:423–435

    Google Scholar 

  • Buijs RM, Swaab DF (1979) Immuno-electron microscopical demonstration of vasopressin and oxytocin synapses in the limbic system of the rat. Cell Tissue Res 204:355–365

    Google Scholar 

  • Buijs RM, De Vries GJ, Van Leeuwen FW, Swaab DF (1983) Vasopressin and oxytocin: distribution and putative functions in brain. Prog Brain Res 60:115–128

    Google Scholar 

  • Buñag RD, Takeda K (1979) Sympathetic hyperresponsiveness to hypothalamic stimulation in young hypertensive rats. Am J Physiol 237:R39–R44

    Google Scholar 

  • Caffé AR, Van Leeuwen FW, Buijs RM, De Vries GJ, Geffard M (1985) Coexistence of vasopressin, neurophysin and noradrenaline immunoreactivity in medium-sized cells of the locus coeruleus and subcoeruleus in the rat. Brain Res 338:160–164

    Google Scholar 

  • Calaresu FR, Ciriello J, Caverson MM, Cechetto DF, Krukoff TL (1984) Functional neuroanatomy of central pathways controlling the circulation. In: Kotchen TA, Cuthrie CP (eds) Hypertension and the brain. Futura Publications, Mount Kisco, pp 3–21

    Google Scholar 

  • Caputi AP, Camilleri BH, Brezenoff HE (1980) Age-related hypotensive effect of atropine in unanaesthetized spontaneously hypertensive rats. Eur J Pharmacol 66:103–109

    Google Scholar 

  • Carter DA, Lightman SL (1983) Substance P microinjections into the nucleus tractus solitarius elicit a pressor response in capsaicin-treated rats. Neurosci Lett 43:253–257

    Google Scholar 

  • Carter DA, Lightman SL (1985) Selective cardiovascular and neuroendocrine effects of a κ-opioid agonist in the nucleus tractus solitarii of rats. J Physiol (Lond) 367:363–375

    Google Scholar 

  • Carter DA, Vallejo M, Lightman SL (1985) Cardiovascular effects of neuropeptide Y in the nucleus tractus solitarius of rats: relationship with noradrenaline and vasopressin. Peptides 6:421–425

    Google Scholar 

  • Casto R, Phillips MI (1984) A role for central angiotensin in regulation of blood pressure at the nucleus tractus solitarius. Clin Exp Hypertens 6:1933–1937

    Google Scholar 

  • Casto R, Phillips MI (1985) Neuropeptide action in nucleus tractus solitarius: angiotensin specificity and hypertensive rats. Am J Physiol 249:R341–R347

    Google Scholar 

  • Cavero I, Lefevre F, Roach AG (1977) Differential effects of prazosin on the pre-and postsynaptic a-adrenoceptors in the rat and dog. Br J Pharmacol 61:469P

    Google Scholar 

  • Chalmers JP, Reid JL (1972) Participation of central noradrenergic neurons in arterial baroreceptor reflexes in the rabbit. Circ Res 31:789–804

    Google Scholar 

  • Chalmers JP, Howe PRC, Provis JC, West MJ (1979a) Cardiac and central histamine in spontaneously hypertensive and stroke-prone rats. In: Meyer P, Schmitt H (eds) Nervous system and hypertension. Wiley, Chichester, pp 244–251

    Google Scholar 

  • Chalmers JP, Petty MA, Reid JL (1979b) Participation of adrenergic and noradrenergic neurones in central connections of arterial baroreceptor reflexes in the rat. Circ Res 45:516–522

    Google Scholar 

  • Chalmers JP, Howe PR, Wallmann Y, Tumuls I (1981) Adrenaline neurons and PNMT activity in the brain spinal cord of genetically hypertensive rats with DOCA-salt hypertension. Clin Sci 61:219s–221s

    Google Scholar 

  • Chalmers JP, Minson J, Denoroy L, Stead B, Howe PRC (1984) Brainstem PNMT neurons and experimental hypertension in the rat. Clin Exp Hypertens A6:243–248

    Google Scholar 

  • Chelly J, Kouyoumdjian JC, Mouille P, Huchet A-M, Schmitt H (1979) Effects of L-glutamic acid and kainic acid on central cardiovascular control. Eur J Pharmacol 60:91–94

    Google Scholar 

  • Chen C-S, Shum A Y-C, Hsu S-C, Chen C-F (1986) Turnover of central biogenic amines in two-kidney, one-clip renal hypertensive rats. Neurosci Lett 69:166–171

    Google Scholar 

  • Chiba T, Kato M (1978) Synaptic structures and quantification of catecholaminergic axons in the nucleus tractus solitarius of the rat: possible modulatory roles of catecholamines in baroreceptor reflexes. Brain Res 151:323–338

    Google Scholar 

  • Chida K, Kawamura H, Hatano M (1983) Participation of the nucleus locus coeruleus in DOCA-salt hypertensive rats. Brain Res 273:53–58

    Google Scholar 

  • Cho AK, Haslett WL, Jenden DJ (1962) The peripheral actions of oxotremorine, a metabolite of tremorine. J Pharmacol Exp Ther 138:249–257

    Google Scholar 

  • Choy VJ, Chalmers J (1984) Importance of central serotonin neurons in the hypotensive action of methyldopa in the rat. Clin Exp Pharmacol Physiol 11:37–44

    Google Scholar 

  • Chronwall BM, Chase TH, O'Donohue TL (1984) Coexistence of neuropeptide Y and somatostatin in rat and human cortical and rat hypothalamic neurons. Neurosci Lett 52:213–217

    Google Scholar 

  • Chu NS, Bloom FE (1974) The catecholamine-containing neurons in the cat dorsolateral pontine tegmentum: distribution of the cell bodies and some axonal projections. Brain Res 66:1–21

    Google Scholar 

  • Ciriello J, Calaresu FR (1977) Lateral reticular nucleus: a site of somatic and cardiovascular integration in the cat. Am J Physiol 233:R100–R109

    Google Scholar 

  • Ciriello J, Caverson MM (1986) Bidirectional cardiovascular connections between ventrolateral medulla and nucleus of the solitary tract. Brain Res 367:273–281

    Google Scholar 

  • Clark BJ, Rocha e Silva M Jr (1967) An afferent pathway for the selective release of vasopressin in response to carotid occlusion and haemorrhage in the cat. J Physiol (Lond) 191:529–542

    Google Scholar 

  • Connor HE, Drew GM (1987) Do adrenaline-containing neurones from the rostral ventrolateral medulla excite preganglionic cell bodies? J Auton Pharmacol 7:87–96

    Google Scholar 

  • Conrad LCA, Pfaff DW (1976) Efferents from the medial basal forebrain and hypothalamus in the anterior hypothalamus. J Comp Neurol 169:221–262

    Google Scholar 

  • Conrad LCA, Leonard CM, Pfaff DW (1974) Connections of the median and dorsal raphe nuclei in the rat: an autoradiographic and degenerative study. J Comp Neurol 156:179–206

    Google Scholar 

  • Conway EL, Brown MJ, Dollery CT (1984) No evidence for involvement of endogenous opioid peptides in effects of clonidine on blood pressure, heart rate and plasma norepinephrine in anaesthetized rats. J Pharmacol Exp Ther 229:803–808

    Google Scholar 

  • Coote JH, Dalton DW, Feniuk W, Humphrey PPA (1985) The location of the sympatho-inhibitory action of 5-hydroxytryptamine given intracerebroventricularly. J Physiol (Lond) 365:29P

    Google Scholar 

  • Corrêa FMA, Saavedra JM (1981) Increase in histamine concentrations in discrete hypothalamic nuclei of spontaneously hypertensive rats. Brain Res 205:445–451

    Google Scholar 

  • Corrêa FMA, Magro IAS, Peres-Polon VL, Antunes-Rodrigues J (1985) Mechanism of the CNS-mediated pressor response to intracerebroventricular injection of noradrenaline in unanaesthetized rats. Neuropharmacology 24:831–837

    Google Scholar 

  • Cowley AW, Monos E, Guyton AC (1974) Interaction of vasopressin and the baroreceptor reflex system in the regulation of arterial blood pressure in the dog. Circ Res 34:505–514

    Google Scholar 

  • Cowley AW, Switzer SJ, Guinn MM (1980) Evidence and quantification of the vasopressin arterial pressure control system in the dog. Circ Res 46:58–67

    Google Scholar 

  • Criscione L, Reis DJ, Talman WT (1983) Cholinergic mechanisms in the nucleus tractus solitarii and cardiovascular regulation in the rat. Eur J Pharmacol 88:47–55

    Google Scholar 

  • Cuello AC, Kanazawa I (1978) The distribution of substance P immunoreactive fibers in the rat central nervous system. J Comp Neurol 178:129–156

    Google Scholar 

  • Cumming P, Von Krosigk M, Reiner PB, McGeer EG, Vincent SR (1986) Absence of adrenaline neurons in the guinea pig brain: a combined immunohistochemical and high-performance liquid chromatography study. Neurosci Lett 63:125–130

    Google Scholar 

  • Curtis DR, Duggan AW, Felix D, Johnston DAR (1970) Bicuculline and central GABA receptors. Nature (Lond) 228:676–677

    Google Scholar 

  • Curtis DR, Duggan AW, Felix D, Johnston DAR (1971) Bicuculline, an antagonist of GABA and synaptic inhibition in the spinal cord of the cat. Brain Res 32:69–96

    Google Scholar 

  • Dadkar NK, Aroskar VA, Gupte RD, Dohadwalla AN (1984) Central pressor activity of cimetidine in spontaneously hypertensive rats. J Pharm Pharmacol 36:488–490

    Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence of the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brainstem neurons. Acta Physiol Scand 62 (Suppl 232):1–55

    Google Scholar 

  • Dahlström A, Fuxe K (1965) Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol Scand 64 (Suppl 247):1–36

    Google Scholar 

  • Dalton DW (1986) The cardiovascular effects of centrally administered 5-hydroxytryptamine in the conscious normotensive and hypertensive rat. J Auton Pharmacol 6:67–75

    Google Scholar 

  • Dampney RAL (1981) Brainstem mechanisms in the control of arterial pressure. Clin Exp Hypertens 3:379–391

    Google Scholar 

  • Day MD, Roach AG (1974) Central a-and β-adrenoreceptors modifying arterial blood pressure and heart rate in conscious cats. Br J Pharmacol 51:325–333

    Google Scholar 

  • Day MD, Roach AG (1977) Cardiovascular effects of carbachol and other cholinomimetics administered into the cerebral ventricles of conscious cats. Clin Exp Pharmacol Physiol 4:431–442

    Google Scholar 

  • Day TA, Renaud LP (1984) Electrophysiological evidence that noradrenergic afferents selectively facilitate the activity of supraoptic vasopressin neurons. Brain Res 303:233–240

    Google Scholar 

  • Day TA, Ro A, Renaud LP (1983) Depressor area within caudal ventrolateral medulla of the rat does not correspond to the A1 catecholamine cell group. Brain Res 279:299–302

    Google Scholar 

  • Del Bo A, Sved AF, Reis DJ (1983) Fastigial stimulation releases vasopressin in amounts that elevate arterial pressure. Am J Physiol 244:H687–H694

    Google Scholar 

  • De Jong W (1974) Noradrenaline: central inhibitory control of blood pressure and heart rate. Eur J Pharmacol 29:179–181

    Google Scholar 

  • De Jong W, Nijkamp FP (1976) Centrally induced hypotension and bradycardia after administration of a-methylnoradrenaline into the area of the nucleus tractus solitarii of the rat. Br J Pharmacol 58:593–598

    Google Scholar 

  • De Jong W, Palkovits M (1976) Hypertension after localized transection of brainstem fibres. Life Sci 18:61–64

    Google Scholar 

  • De Jong W, Petty M (1982) Chemical stimulation of the nucleus of the solitary tract and the resulting blood pressure response. J Cardiovasc Pharmacol 4:77–80

    Google Scholar 

  • De Jong W, Nijkamp FP, Bohus B (1975) Role of noradrenaline and serotonin in the central control of blood pressure in normotensive and spontaneously hypertensive rats. Arch Int Pharmacodyn Ther 213:272–284

    Google Scholar 

  • De Jong W, Petty MA, Sitsen JM (1983) Role of opioid peptides in brain mechanisms regulating blood pressure. Chest 83:306–308

    Google Scholar 

  • De Jong W, Versteeg CA, Bohus B (1984) Inhibition of pressor responses induced by electrical stimulation of the mesencephalon by vasopressin and oxytocin. Clin Exp Hypertens 6:139–147

    Google Scholar 

  • Demotes-Mainard J, Chauveau J, Rodriguez F, Vincent JD, Poulain DA (1986) Septal release of vasopressin in response to osmotic, hypovolemic and electrical stimulation in rats. Brain Res 381:314–321

    Google Scholar 

  • Dhawan BN, Singh GB, Srimal RC (1975) The effect of clonidine on some centrally evoked cardiovascular responses. In: Milliez P, Safar M (eds) Recent advances in hypertension. Boehringer, Ingelheim, pp 111–127

    Google Scholar 

  • Dietl H, Eisert A, Kraus A, Philippu A (1981) The release of endogenous catecholamines in the cat hypothalamus is affected by spinal transection and drugs which change the arterial blood pressure. J Auton Pharmacol 1:279–286

    Google Scholar 

  • Dirnhuber P, Cullumbine H (1955) The effect of anticholinesterase agents on the rat's blood pressure. Br J Pharmacol 10:15–21

    Google Scholar 

  • Dittmar C (1870) Ein neuer Beweis für die Reizbarkeit der centripetalen Endfasern des Rückenmarks. Akad Wiss Leipzig Math-Phys K1 22:18–45

    Google Scholar 

  • Doba N, Reis DJ (1973) Acute fulminating neurogenic hypertension produced by brainstem lesions in the rat. Circ Res 32:584–593

    Google Scholar 

  • Dogterom J, Winnersma-Greidanus V, De Wied D (1976) Histamine as an extremely potent releaser of vasopressin in the rat. Experientia 32:659–660

    Google Scholar 

  • Dollery CT, Reid JL (1973) Central noradrenergic neurones in the cardiovascular actions of clonidine in the rabbit. Br J Pharmacol 47:206–216

    Google Scholar 

  • Drew GM (1976) Effects of a-adrenoceptor agonists and antagonists on pre-and postsynaptically located a-adrenoceptors. Eur J Pharmacol 36:313–320

    Google Scholar 

  • Drolet G, Gauthier P (1985) Peripheral and central mechanisms of the pressor response elicited by stimulation of the locus coeruleus in the rat. Can J Physiol Pharmacol 63:599–605

    Google Scholar 

  • Duka T, Schubert P, Wuster M, Stoiber R, Herz A (1981) A selective distribution pattern of different opiate receptors in certain areas of rat brain as revealed by in vitro autoradiography. Neurosci Lett 21:119–124

    Google Scholar 

  • Dunkley B, Sanghvi I, Friedman E, Gershon S (1972) Comparison of behavioural and cardiovascular effects of L-dopa and 5-HTP in conscious dogs. Psychopharmacologia 26:161–172

    Google Scholar 

  • Echizen H, Freed CR (1984) Altered serotonin and norepinephrine metabolism in rat dorsal raphe nucleus after drug-induced hypertension. Life Sci 34:1581–1589

    Google Scholar 

  • Elam M, Yao T, Svensson TH, Thorén P (1984a) Regulation of locus coeruleus neurons and splanchnic, sympathetic nerves by cardiovascular afferents. Brain Res 290:281–287

    Google Scholar 

  • Elam R, Bergmann F, Feuerstein G (1984b) Simultaneous changes of catecholamines and of Leu-enkephalin-like immunoreactivity in plasma and cerebrospinal fluid of cats undergoing acute hemorrhage. Brain Res 303:313–317

    Google Scholar 

  • Elam M, Svensson TH, Thorén P (1985) Differentiated cardiovascular afferent regulation of locus coeruleus neurons and sympathetic nerves. Brain Res 358:77–84

    Google Scholar 

  • Elde R, Hökfelt T, Johansson O, Terenius L (1976) Immunohistochemical studies using antibodies to leucine-enkephalin: initial observations on the nervous system on the rat. Neuroscience 5:349–351

    Google Scholar 

  • Elliott JM, Stead BH, West MJ, Chalmers J (1985a) Cardiovascular effects of intracisternal 6-hydroxydopamine and of subsequent lesions of the ventrolateral medulla coinciding with the A1 group of noradrenaline cells in the rabbit. J Auton Nerv Syst 12:117–130

    Google Scholar 

  • Elliott JM, Kapoor V, Cain M, West MJ, Chalmers JP (1985b) The mechanism of hypertension and bradycardia following lesions of the caudal ventrolateral medulla in the rabbit: the role of sympathetic nerves, circulating adrenaline, vasopressin and renin. Clin Exp Hypertens A7:1059–1082

    Google Scholar 

  • Elliott KAC, Hobbiger F (1959) Gamma-aminobutyric acid: circulatory and respiratory effects in different species: re-investigation of the antistrychnine action in mice. J Physiol (Lond) 146:70–84

    Google Scholar 

  • Eriksson L, Tuomisto L (1983) Effect of naloxone on the hypotensive action of clonidine in the conscious, normotensive goat. Acta Pharmacol Toxicol 52:241–245

    Google Scholar 

  • Ernsberger P, Meeley MP, Mann JJ, Reis DJ (1987) Clonidine binds to imidazole binding sites as well as a 2-adrenoceptors in the ventrolateral medulla. Eur J Pharmacol 134:1–13

    Google Scholar 

  • Euler US von, Domeij B (1945) Nicotine-like actions of arecoline. Acta Pharmacol Kbh 1:263–269

    Google Scholar 

  • Evans AGJ, Nasmyth PA, Steward HC (1952) The fall of blood pressure caused by intravenous morphine in the rat and cat. Br J Pharmacol 7:542–552

    Google Scholar 

  • Everitt BJ, Hökfelt T, Terenius L, Tatemoto K, Mutt V, Goldstein M (1984) Differential co-existence of neuropeptide Y (NPY)-like immunoreactivity with catecholamines in the central nervous system of the rat. Neuroscience 11:443–462

    Google Scholar 

  • Faden AI, Feuerstein G (1983) Hypothalamic regulation of the cardiovascular and respiratory systems: role of specific opiate receptors. Br J Pharmacol 79:997–1002

    Google Scholar 

  • Faden AI, Holaday JW (1978) Opiate antagonists: a role in the treatment of hypovolemic shock. Science 205:317–318

    Google Scholar 

  • Falcon JC, Phillips MI, Hoffman WE, Brody MJ (1978) Effects of intraventricular angiotensin II mediated by the sympathetic nervous system. Am J Physiol 235:H392–H399

    Google Scholar 

  • Fallert M, Bucher VM (1966) Lokalisation eines blutdruckaktiven Substrats in der Medulla oblongata des Kaninchens. Helv Physiol Pharmacol Acta 24:139–163

    Google Scholar 

  • Fallert M, Polc P (1970) Blutdruckreizeffekte aus dem Locus coeruleus, dem ponto-bulbären Raphe-System und der medullären Formatio reticularis des Kaninchens. Arch Kreislaufforschg 62:153–166

    Google Scholar 

  • Fallon JH, Koizell DA, Moore RY (1978) Catecholamine innervation of the basal forebrain. II. Amygdala, suprarhinal cortex and autorhinal cortex. J Comp Neurol 180:509–532

    Google Scholar 

  • Farnebo LO, Hamberger B (1971) Drug-induced changes in the release of 3H-monoamines from field stimulated rat brain slices. Acta Physiol Scand (Suppl 371):35–44

    Google Scholar 

  • Farsang C, Kunos G (1979) Naloxone reverses the antihypertensive effect of clonidine. Br J Pharmacol 67:161–164

    Google Scholar 

  • Farsang C, Ramirez-Gonzalez MD, Mucci L, Kunos G (1980) Possible role of an endogenous opiate in the cardiovascular effects of central α-adrenoceptor stimulation in spontaneously hypertensive rats. J Pharmacol Exp Ther 214:203–208

    Google Scholar 

  • Farsang C, Kapocsi J, Juhasz I, Kunos G (1982) Possible involvement of an endogenous opioid in the antihypertensive effect of clonidine in patients with essential hypertension. Circulation 66:1268–1272

    Google Scholar 

  • Feigl EO (1964) Vasoconstriction resulting from diencephalic stimulation. Acta Physiol Scand 60:372–380

    Google Scholar 

  • Feldberg W, Guertzenstein PG (1972) A vasodepressor effect of pentobarbitone sodium. J Physiol (Lond) 224:83–103

    Google Scholar 

  • Feldberg W, Guertzenstein PG (1976) Vasodepressor effects obtained by drugs acting on the ventral surface of the brainstem. J Physiol (Lond) 258:337–355

    Google Scholar 

  • Feldberg W, Vartiainen A (1935) Further observations on the physiology and pharmacology of sympathetic ganglion. J Physiol (Lond) 83:103–128

    Google Scholar 

  • Feldberg W, Rocha e Silva M Jr (1981) Inhibition of vasopressin release to carotid occlusion by delta-aminobutyric acid and glycine. Br J Pharmacol 72:17–24

    Google Scholar 

  • Felix D, Schelling P (1982) Angiotensin-converting enzyme blockade by captopril changes angiotensin II receptors and angiotensinogen concentrations in the brain of SHR-sp and WKY rats. Neurosci Lett 34:45–50

    Google Scholar 

  • Felten DL, Rubin LR, Felten SY, Weyhenmeyer JA (1984) Anatomical alterations in locus coeruleus neurons in the adult spontaneously hypertensive rat. Brain Res Bull 13:433–436

    Google Scholar 

  • Ferrario CM, Barnes KL, Szilagyi JE, Brosnihan KB (1979) Physiological and pharmacological characterization of the area postrema pressor pathway in the normal dog. Hypertension 1:235–245

    Google Scholar 

  • Festing MFW (1984) Maintenance of hypertensive rats, with special reference to the use of genetic markers for defining rat strains. In: De Jong W (ed) Handbook of hypertension, vol 4. Elsevier, Amsterdam, pp 175–191

    Google Scholar 

  • Fety R, Renaud B (1983) Time course study of changes in the activity of the catecholamine synthesizing enzymes in the rat medulla oblongata after intraventricular injection of 6-hydroxydopamine. Brain Res 272:277–282

    Google Scholar 

  • Fety R, Lambas-Senas L, Chamba G, Renaud B (1984) Changes in tyrosine hydroxylase and dopamine-β-hydroxylase activities but not in phenylethanolamine-N-methyltransferase activity within central adrenaline neurons after 6-hydroxydopamine administration. Biochem Pharmacol 33:1887–1891

    Google Scholar 

  • Feuerstein G, Zerbe RL, Faden AI (1984) Central cardiovascular effects of vasotocin, oxytocin and vasopressin in conscious rats. J Pharmacol Exp Ther 228:348–353

    Google Scholar 

  • Filep J, Fejes-Tóth G (1986) Does vasopressin sustain blood pressure in conscious spontaneously hypertensive rats? Hypertension 8:514–519

    Google Scholar 

  • Filep J, Frölich JC, Fejes-Tóth G (1985) Effect of vasopressin blockade on blood pressure in conscious rats with malignant two-kidney Goldblatt hypertension. Clin Exp Hypertens A7:1007–1014

    Google Scholar 

  • Finch L (1975) The central hypotensive action of clonidine and Bay 1470 in cats and rats. Clin Sci Mol Med 48 (Suppl):273s–276s

    Google Scholar 

  • Finch L, Hicks PE (1976a) The cardiovascular effects of intraventricularly administered histamine in the anaesthetized rat. Naunyn-Schmiedeberg's Arch Pharmacol 293:151–157

    Google Scholar 

  • Finch L, Hicks PE (1976b) Central hypertensive action of histamine in conscious normotensive cats. Eur J Pharmacol 36:263–266

    Google Scholar 

  • Finch L, Harvey CA, Hicks PE, Owen DAA (1978) Clonidine-induced hypotension: further evidence for a central interaction with histamine H2 receptor antagonists in the rat. Neuropharmacology 17:307–313

    Google Scholar 

  • Fink GD, Bruner CA (1985) Hypertension during chronic peripheral and central infusion of angiotensin III. Am J Physiol 249:E201–E208

    Google Scholar 

  • Fleetwood-Walker SM, Coote JH (1981) The contribution of brainstem cell groups to the innervation of the sympathetic lateral cell column. Brain Res 205:141–155

    Google Scholar 

  • Fletscher A, Pradhan SN (1969) Responses to microinjection of d-tubocurarine into the hypothalamus of cats. Int J Neuropharmacol 8:373–377

    Google Scholar 

  • Florez J, Mediavilla A (1977) Respiratory and cardiovascular effects of Met-enkephalin applied to the ventral surface of the brainstem. Brain Res 138:585–590

    Google Scholar 

  • Folkow B, Johansson B, Öberg B (1959) A hypothalamic structure with a marked inhibitory effect on tonic sympathetic activity. Acta Physiol Scand 47:262–270

    Google Scholar 

  • Folkow B, Langston J, Öberg B, Prerovsky I (1964) Reactions of the different series-coupled vascular sections upon stimulation of the hypothalamic sympatho-inhibitory area. Acta Physiol Scand 61:476–483

    Google Scholar 

  • Fonnum F, Grofova I, Rinvik E, Storm-Mathisen J, Walberg F (1974) Origin and distribution of glutamate decarboxylase in substantia nigra of the cat. Brain Res 71:77–92

    Google Scholar 

  • Fonnum F, Walaas I, Iversen E (1977) Localization of GABAergic, chloninergic and aminergic structures in the mesolimbic system. J Neurochem 29:221–230

    Google Scholar 

  • Forsyth RP (1970) Hypothalamic control of the distribution of cardiac output in the unanaesthetized rhesus monkey. Circ Res 26:783–794

    Google Scholar 

  • Freed CR, Echizen H, Bhaskaran D (1985) Brain serotonin and blood pressure regulation: studies using in vivo electrochemistry and direct tissue assay. Life Sci 37:1783–1793

    Google Scholar 

  • Frisk-Holmberg M (1980) Evidence for a histamine H2-receptor involvement in clonidine's antihypertensive effects during multiple dosing. Acta Physiol Scand 108:191–193

    Google Scholar 

  • Fujino K (1984) Brain catecholamines in spontaneously hypertensive and DOCA-salt hypertensive rats. Acta Med Okayama 38:325–340

    Google Scholar 

  • Fuxe K (1965) Evidence for the existence of monoamine neurons in the central nervous system. Acta Physiol Scand 64 (Suppl 247):39–85

    Google Scholar 

  • Fuxe K, Hamberger B, Hökfelt T (1968) Distribution of noradrenaline nerve terminals in cortical areas of the rat. Brain Res 8:125–131

    Google Scholar 

  • Fuxe K, Hökfelt T, Johansson O, Jonsson G, Lidbrink P, Ljungdahl A (1974) The origin of the dopamine nerve terminals in limbic and frontal cortex. Evidence for mesocortico-dopamine neurons. Brain Res 82:349–355

    Google Scholar 

  • Fuxe K, Hökfelt T, Bolme P, Goldstein M, Johansson O, Jonsson G, Lidbrink P, Ljungdahl A, Sachs C (1975) The topography of central catecholamine pathways in relation to their possible role in blood pressure control. In: Davies DS, Reid JL (eds) Central action of drugs in blood pressure regulation. University Park Press, Baltimore, pp 8–23

    Google Scholar 

  • Fuxe K, Ganten D, Hökfelt T, Bolme P (1976) Immunohistochemical evidence for the existence of angiotensin II-containing nerve terminals in the brain and spinal cord in the rat. Neurosci Lett 2:229–234

    Google Scholar 

  • Fuxe K, Ganten D, Jonsson G, Agnati LF, Andersson K, Hökfelt T, Bolme P, Goldstein M, Hallman H, Unger T, Rascher W (1979a) Catecholamine turnover changes in hypothalamus and dorsal midline area of the caudal medulla oblongata of spontaneously hypertensive rats. Neurosci Lett 15:283–288

    Google Scholar 

  • Fuxe K, Jonsson G, Bolme P, Andersson K, Agnati LF, Goldstein M, Hökfelt T (1979b) Reduction of adrenaline turnover in cardiovascular areas of rat medulla oblongata by clonidine. Acta Physiol Scand 107:177–179

    Google Scholar 

  • Fuxe K, Ganten D, Jonsson G, Bolme P, Agnati LF, Andersson K, Goldstein M, Hökfelt T (1979c) Evidence for a selective reduction of adrenaline turnover in the dorsal midline area of the caudal medulla oblongata of young spontaneously hypertensive rats. Acta Physiol Scand 107:397–399

    Google Scholar 

  • Fuxe K, Ganten D, Bolme P, Agnati LF, Hökfelt T, Andersson K, Goldstein M, Härfstrand A, Unger T, Rascher W (1980a) The role of central catecholamine pathways in spontaneous and renal hypertension in rats. In: Fuxe K, Goldstein M, Hökfelt B, Hökfelt T (eds) Central adrenaline neurons: basic aspects and their role in cardiovascular functions. Pergamon, New York, pp 259–276

    Google Scholar 

  • Fuxe K, Andersson K, Locatelli V, Mutt V, Lundberg J, Hökfelt T, Agnati LF, Eneroth P, Bolme P (1980b) Neuropeptides and central catecholamine systems: interactions in neuroendocrine and central cardiovascular regulation. In: Costa E, Trabucchi M (eds) Neural peptides and neuronal communication. Raven, New York, pp 37–50

    Google Scholar 

  • Fuxe K, Agnati LF, Ganten D, Goldstein M, Yukimura T, Jonsson G, Bolme P, Hökfelt T, Andersson K, Härfstrand A, Unger T, Rascher W (1981) The role of noradrenaline and adrenaline neuron systems and substance P in the control of central cardiovascular functions. In: Buckley JP, Ferrario CM (eds) Central nervous system mechanisms in hypertension. Raven, New York, pp 89–113

    Google Scholar 

  • Fuxe K, Vincent M, Andersson K, Härfstrand A, Agnati LF, Sassard J, Benfenati F, Hökfelt T (1982a) Selective reduction of adrenaline turnover in the dorsal midline area of the caudal medulla oblongata and increase of hypothalamic adrenaline levels in the Lyon strain of genetically hypertensive rats. Eur J Pharmacol 77:187–191

    Google Scholar 

  • Fuxe K, Agnati LF, Rosell S, Härfstrand A, Folkers K, Lundberg JM, Andersson K, Hökfelt T (1982b) Vasopressor effects of substance P and C-terminal sequences after intracisternal injection to α-chloralose-anaesthetized rats: blockade by a substance P antagonist. Eur J Pharmacol 77:171–176

    Google Scholar 

  • Fuxe K, Yukimura T, Ganten D, Härfstrand A, Andersson K, Eneroth P, Zini I, Agnati LF, Unger T (1983a) Effects of chronic sino-aortic denervation in male rats on regional catecholamine levels and turnover and on neuroendocrine function. Eur J Pharmacol 87:145–149

    Google Scholar 

  • Fuxe K, Agnati LF, Härfstrand A, Zini I, Tatemoto K, Merlo E, Hökfelt T, Mutt V, Terenius L (1983b) Central administration of neuropeptide Y induces hypotension bradypnea and EEG synchronization in the rat. Acta Physiol Scand 118:189–192

    Google Scholar 

  • Gamrani H, Onteniente B, Seguela P, Geffard M, Calas A (1986) Gamma-aminobutyric acid-immunoreactivity in the rat hippocampus. A light and electromicroscopic study with anti-GABA antibodies. Brain Res 364:30–38

    Google Scholar 

  • Gamse R, Molnar A, Lembeck F (1979) Substance P release from spinal cord slices by capsaicin. Life Sci 25:629–636

    Google Scholar 

  • Gatti PJ, Gertner SB (1983) The effect of a vasopressin antagonist on the pressor response to histamine administered centrally. Neuropharmacology 22:895–902

    Google Scholar 

  • Gatti PJ, Hill KJ, Da Silva AMT, Norman WP, Gillis RA (1988) Central nervous system site of action for the hypotensive effect of clonidine in the cat. J Pharmacol Exp Ther 245:373–380

    Google Scholar 

  • Gauer OH, Henry JP (1963) Circulatory basis of fluid volume control. Physiol Rev 43:423–481

    Google Scholar 

  • Gauthier P (1981) Pressor responses and adrenomedullary catecholamine release during brain stimulation in the rat. Can J Physiol Pharmacol 59:485–492

    Google Scholar 

  • Gautret B, Schmitt H (1985) Central and peripheral sites for cardiovascular actions of dynorphin-(1–13) in rats. Eur J Pharmacol 111:263–266

    Google Scholar 

  • Gildenberg PL, Ferrario CM, McCubbin JW (1973) Two sites of cardiovascular action of angiotensin II in the brain of the dog. Clin Sci 44:417–420

    Google Scholar 

  • Gillis RA, Helke CJ, Hamilton BL, Norman WP, Jacobowitz DM (1980) Evidence that substance P is a neurotransmitter of baro-and chemoreceptor afferents in nucleus tractus solitarius. Brain Res 181:476–481

    Google Scholar 

  • Ginsburg M, Brown LM (1956) Effect of anaesthetics and haemorrhage on the release of neurohypophysial antidiuretic hormone. Br J Pharmacol 11:236–244

    Google Scholar 

  • Gonon F, Buda M, De Simoni G, Pujol JF (1983) Catecholamine metabolism in the rat locus coeruleus as studied by in vivo differential pulse voltammetry. II. Pharmacological and behavioural study. Brain Res 273:207–216

    Google Scholar 

  • Goodchild AK, Moon EA, Dampney RAL, Howe PRC (1984) Evidence that adrenaline neurons in the rostral ventrolateral medulla have a vasopressor function. Neurosci Lett 45:267–272

    Google Scholar 

  • Goodman RR, Snyder SH, Kuhar MJ, Young WS (1980) Differentiation of delta-and mu-opiate receptor localizations by light microscopic autoradiography. Proc Natl Acad Sci USA 77:6239–6243

    Google Scholar 

  • Gordon FJ (1986) Central opioid receptors and baroreflex control of sympathetic and cardiovascular function. J Pharmacol Exp Ther 237:428–436

    Google Scholar 

  • Gordon FJ, Brody MJ, Fink GD, Buggy J, Johnson AK (1979) Role of central catecholamines in the control of blood pressure and drinking behavior. Brain Res 178:161–173

    Google Scholar 

  • Granata AR, Woodruff GN (1982) Dopaminergic mechanisms in the nucleus tractus solitarius and effects on blood pressure. Brain Res Bull 8:483–488

    Google Scholar 

  • Granata AR, Ruggiero DA, Park DH, Joh TH, Reis DJ (1983) Lesions of epinephrine neurons in the rostral ventrolateral medulla abolish the vasodepressor components of baroreflex and cardiopulmonary reflex. Hypertension 5:V80–V84

    Google Scholar 

  • Granata AR, Kumada M, Reis DJ (1985a) Sympathoinhibition by A 1-noradrenergic neurons is mediated by neurons in the C1 area of the rostral medulla. J Auton Nerv Syst 14:387–395

    Google Scholar 

  • Granata AR, Ruggiero DA, Park DH, John TH, Reis DJ (1985b) Brainstem area with C1 epinephrine neurons mediates baroreflex vasodepressor responses. Am J Physiol 248:H547–H567

    Google Scholar 

  • Granata AR, Numao Y, Kumada M, Reis DJ (1986) A 1 noradrenergic neurons tonically inhibit sympathoexcitatory neurons of C1 area in rat brainstem. Brain Res 377:127–146

    Google Scholar 

  • Gray TS, Morley JE (1986) Neuropeptide Y: anatomical distribution and possible function in mammalian nervous system. Life Sci 38:389–401

    Google Scholar 

  • Guertzenstein PG (1973) Blood pressure effects obtained by drugs applied to the ventral surface of the brainstem. J Physiol (Lond) 229:395–408

    Google Scholar 

  • Guertzenstein PG, Silver A (1974) Fall in blood pressure produced from discrete regions of the ventral surface of the medulla by glycine and lesion. J Physiol (Lond) 242:489–503

    Google Scholar 

  • Gupta PP, Srimal RC, Dhawan BN (1972) Central cardiovascular effects of 6-hydroxydopamine. Eur J Pharmacol 20:215–223

    Google Scholar 

  • Gurll NJ, Reynolds DG, Vargish T, Lechner R (1982) Naloxone without transfusion prolongs survival and enhances cardiovascular function in hypovolemic shock. J Pharmacol Exp Ther 220:621–624

    Google Scholar 

  • Gurtu S, Sinha JH, Bhargava KP (1982) Involvement of α 2-adrenoceptors of nucleus tractus solitarius in baroreflex mediated bradycardia. Naunyn-Schmiedeberg's Arch Pharmacol 321:38–43

    Google Scholar 

  • Gurtu S, Pant KK, Sinha JN, Bhargava KP (1984) An investigation into the mechanism of cardiovascular responses elicited by electrical stimulation of locus coeruleus and subcoeruleus in the cat. Brain Res 301:59–64

    Google Scholar 

  • Gurtu S, Sharma DK, Pant KK, Sinha JN, Bhargava KP (1986) Role of medullary cholinoceptors in baroreflex bradycardia. Clin Exp Hypertens A8:1063–1079

    Google Scholar 

  • Guyenet PG (1984) Baroreceptor-mediated inhibition of A5 noradrenergic neurons. Brain Res 303:31–40

    Google Scholar 

  • Gwyn DG, Wolstencroft JH (1968) Cholinesterases in the area subpostrema. J. Comp Neurol 133:289–308

    Google Scholar 

  • Haeusler G (1973) Activation of the central pathway of the baroreceptor reflex, a possible mechanism of the hypotensive action of clonidine. Naunyn-Schmiedeberg's Arch Pharmacol 278:231–246

    Google Scholar 

  • Haeusler G (1974) Clonidine-induced inhibition of sympathetic nerve activity — no indication for a central presynaptic or an indirect sympathomimetic mode of action. Naunyn-Schmiedeberg's Arch Pharmacol 286:97–111

    Google Scholar 

  • Haeusler G (1975) Cardiovascular regulation by central adrenergic mechanisms and its alteration by hypotensive drugs. Circ Res 36, 37 (Suppl I):I–223–I–232

    Google Scholar 

  • Haeusler G, Osterwalder R (1980) Evidence suggesting a transmitter or neuromodulatory role for substance P at the first synapse of the baroreceptor reflex. Naunyn-Schmiedeberg's Arch Pharmacol 314:111–121

    Google Scholar 

  • Haeusler G, Gerold M, Thoenen H (1972a) Cardiovascular effects of 6-hydroxydopamine injected into a lateral brain ventricle of the rat. Naunyn-Schmiedeberg's Arch Pharmacol 274:211–228

    Google Scholar 

  • Haeusler G, Finch L, Thoenen H (1972b) Central adrenergic neurones and the initiation and development of experimental hypertension. Experientia 28:1200–1203

    Google Scholar 

  • Halliday RP, Buckley JP (1962) Central hypertensive effects of angiotensin. Int J Neuropharmacol 1:43–47

    Google Scholar 

  • Hamberger A, Berthold C-H, Jacobson I, Karlsson B, Lehmann A, Nyström B, Sandberg M (1985) In vivo brain dialysis of extracellular nontransmitter and putative transmitter amino acids: In: Bayon A, Drucker-Colin R (eds) In vivo perfusion and release of neuroactive substances. Academic Press, Orlando, pp 119–139

    Google Scholar 

  • Hambley JW, Johnston GAR, Shaw J (1984) Alterations in a hypothalamic GABA system in the spontaneously hypertensive rat. Neurochem Int 6:813–821

    Google Scholar 

  • Hamilton TC, Longman SD (1982) A comparison of the cardiovascular and sedative actions of the α-adrenoceptor agonists, FLA-136 and clonidine, in the rat. Br J Pharmacol 75:13–21

    Google Scholar 

  • Härfstrand A, Fuxe K, Agnati LF, Ganten D, Eneroth P, Tatemoto K, Mutt V (1984) Studies on neuropeptide-Y catecholamine interactions in central cardiovascular regulation in the α-chloralose anaesthetized rat. Evidence for a possible new way of activating the α2-adrenergic transmission line. Clin Exp Hypertens A6:1947–1950

    Google Scholar 

  • Härfstrand A, Fuxe K, Agnati LF, Benfenati F, Goldstein M (1986) Receptor autoradiographical evidence for high densities of 125I-neuropeptide Y binding sites in the nucleus tractus solitarius of the normal male rat. Acta Physiol Scand 128:195–200

    Google Scholar 

  • Hassen AH, Feuerstein G, Faden AI (1983) Differential cardiovascular effects mediated by mu-and kappa-opiate receptors in hindbrain nuclei. Peptides 4:621–625

    Google Scholar 

  • Hassen AH, Feuerstein G, Faden AI (1984) Selective cardiorespiratory effects mediated by mu-opioid receptors in the nucleus ambiguus. Neuropharmacology 23:407–415

    Google Scholar 

  • Head GA, De Jong W (1984) Effects of naloxone on the cardiovascular responses to clonidine, α-methyldopa and 6-hydroxydopamine in conscious normotensive and spontaneously hypertensive rats. Clin Exp Hypertens A6:2051–2054

    Google Scholar 

  • Head GA, Korner PI, Lewis SL, Badoer E (1983) Contribution of noradrenergic and serotonergic neurons to the circulatory effects of centrally acting clonidine and α-methyldopa in rabbits. J Cardiovasc Pharmacol 5:945–953

    Google Scholar 

  • Heikkila RE, Manzino L (1984) Behavioral properties of GBR 12909, GBR 13069 and GBR 13098: specific inhibitors of dopamine uptake. Eur J Pharmacol 103:241–248

    Google Scholar 

  • Heise A, Kroneberg G (1973) Central nervous α-adrenergic receptors and the mode of action of α-methyldopa. Naunyn-Schmiedeberg's Arch Pharmacol 279:285–300

    Google Scholar 

  • Helke CJ, Muth EA, Jacobowitz DM (1980a) Changes in central cholinergic neurons in the spontaneously hypertensive rat. Brain Res 188:425–436

    Google Scholar 

  • Helke CJ, Sohl BD, Jacobowitz DM (1980b) Choline acetyltransferase activity in discrete brain nuclei of DOCA-salt hypertensive rats. Brain Res 193:293–298

    Google Scholar 

  • Helke CJ, O'Donohue TL, Jacobowitz DM (1980c) Substance P as a baro-and chemoreceptor afferent neurotransmitter: immunocytochemical and neurochemical evidence in the rat. Peptides 1:1–9

    Google Scholar 

  • Helke CJ, Neil JJ, Massari VJ, Loewy AD (1982) Substance P neurons project from the ventral medulla to the intermediolateral cell column and ventral horn in the rat. Brain Res 243:147–152

    Google Scholar 

  • Helke CJ, Handelmann GE, Jacobowitz DM (1983) Choline acetyltransferase activity in the nucleus tractus solitarius: regulation by the afferent vagus nerve. Brain Res Bull 10:433–436

    Google Scholar 

  • Henning M, Trolin G (1975) Are spinal excitatory muscarinic receptors important for cardiovascular control? J Pharm Pharmacol 27:452–453

    Google Scholar 

  • Henning M, Stock G, Trolin G (1976) Circulatory effects of clonidine after pre-hypothalamic section in the rat. Acta Pharmacol Toxicol 38:376–381

    Google Scholar 

  • Hicks PE (1978) Central cardiovascular actions of histamine in rats: involvement of histamine H2-receptors. Clin Exp Hypertens 1:251–265

    Google Scholar 

  • Hill DR, Bowery NG (1981) 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature (Lond) 290:149–152

    Google Scholar 

  • Hilton SM, Spyer KM (1980) Central nervous regulation of vascular resistance. Annu Rev Physiol 42:399–411

    Google Scholar 

  • Hiwatari M, Johnston CI (1985) Involvement of vasopressin in the cardiovascular effects of intracerebroventricularly administered α1-adrenoceptor agonists in the conscious rat. J Hypertens 3:613–620

    Google Scholar 

  • Hökfelt T, Fuxe K, Goldstein M, Johansson O (1974) Immunochemical evidence of the existence of adrenaline neurons in rat brain. Brain Res 66:235–251

    Google Scholar 

  • Hökfelt T, Elde R, Johansson D, Terenius L, Stein L (1977) Distribution of enkephalin-like immunoreactivity in the rat central nervous system. I. Cell bodies. Neurosci Lett 5:25–31

    Google Scholar 

  • Hökfelt T, Everitt BJ, Fuxe K, Kalia M, Agnati L, Johansson O, Härfstrand A, Lundberg JM, Terenius L, Theodorsson-Norheim E, Goldstein M (1984a) Transmitter and peptide systems in areas involved in the control of blood pressure. Clin Exp Hypertens A6:23–41

    Google Scholar 

  • Hökfelt T, Everitt BJ, Theodorsson-Norheim E, Goldstein M (1984b) Occurrence of neurotensin-like immunoreactivity in subpopulations of hypothalamic, mesencephalic, and medullary catecholamine neurons. J Comp Neurol 222:543–559

    Google Scholar 

  • Hoffman WE (1979) Central cholinergic receptors in cardiovascular and antidiuretic effects in rats. Clin Exp Pharmacol Physiol 6:373–380

    Google Scholar 

  • Hoffman WE, Phillips MI (1976) A pressor response to intraventricular injections of carbachol. Brain Res 105:157–162

    Google Scholar 

  • Hoffman WE, Phillips MI (1977) Independent receptors for pressor and drinking responses to central injections of angiotensin II and carbachol. Brain Res 124:305–315

    Google Scholar 

  • Hoffman WE, Schmid PG (1978) Cardiovascular and antidiuretic effects of central histamine. Life Sci 22:1709–1714

    Google Scholar 

  • Hoffman WE, Phillips MI, Schmid PG (1977a) The role of catecholamines in central antidiuretic and pressor mechanisms. Neuropharmacology 16:563–569

    Google Scholar 

  • Hoffman WE, Phillips MI, Schmid PG (1977b) Central angiotensin II-induced responses in spontaneously hypertensive rats. Am J Physiol 232:H426–H433

    Google Scholar 

  • Holaday JW, Faden AI (1978) Naloxone reversal of endotoxin hypotension suggests role of endorphins in shock. Nature (Lond) 275:450–451

    Google Scholar 

  • Holaday JW, Faden AI (1980) Naloxone acts at central opiate receptors to reverse hypotension, hypothermia and hypoventilation in spinal shock. Brain Res 189:295–299

    Google Scholar 

  • Hough LB, Khandelwal JK, Green JP (1982) Effects of pargyline on telemethylhistamine and histamine in rat brain. Biochem Pharmacol 31:4074–4076

    Google Scholar 

  • Hough LB, Khandelwal JK, Green JP (1984) Histamine turnover in regions of rat brain. Brain Res 291:103–109

    Google Scholar 

  • Howe PRC, Costa M, Gurness JB, Chalmers JP (1980) Simultaneous demonstration of phenylethanolamine N-methyltransferase immunofluorescent and catecholamine fluorescent nerve cell bodies in the rat medulla oblongata. Neuroscience 5:2229–2238

    Google Scholar 

  • Howe PR, Kuhn DM, Minson JB, Stead BH, Chalmers JP (1983a) Evidence for a bulbospinal serotonergic pressor pathway in the rat brain. Brain Res 270:29–36

    Google Scholar 

  • Howe PR, Rogers PF, King RA, Smith RM (1983b) Elevation of blood pressure in hypertensive rats after lesioning nerves in the dorsomedial medulla oblongata. Clin Exp Pharmacol Physiol 10:273–277

    Google Scholar 

  • Howes LG, Rowe PR, Summers RJ, Louis WJ (1983) Age related changes in noradrenaline content in brain regions of spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. Clin Exp Hypertens A5:857–874

    Google Scholar 

  • Howes LG, Rowe PR, Summers RJ, Louis WJ (1984) Age related changes of catecholamines and their metabolites in central nervous system regions of spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. Clin Exp Hypertens A6:2263–2277

    Google Scholar 

  • Hukuhara T, Otsuka Y, Takeda R, Sakai F (1968) Die zentralen Wirkungen des 2-(2,6-dichlorphenylamino)-2-imidazolin-hydrochlorids. Arzneim Forsch 18:1147–1153

    Google Scholar 

  • Hwang BH, Wu J-Y (1984) Ultrastructural studies on catecholaminergic terminals and GABA-ergic neurons in nucleus tractus solitarius of the rat medulla oblongata. Brain Res 302:57–67

    Google Scholar 

  • Iijima T, Philippu A (1980) Failure of isoprenaline and β-receptor blocking drugs to modify depressor response and bradycardia induced by electrical stimulation of the anterior hypothalamus of cats. Naunyn-Schmiedeberg's Arch Pharmacol 312:27–30

    Google Scholar 

  • Imada T, Takayanagi R, Inagami T (1985) Changes in the content of atrial natriuretic factor with the progression of hypertension in spontaneously hypertensive rats. Biochem Biophys Res Commun 133:759–765

    Google Scholar 

  • Imai Y, Nolan PL, Johnston CI (1983) Restoration of suppressed baroreflex sensitivity in rats with hereditary diabetes insipidus (Brattleboro rats) by arginine-vasopressin and DDAVP. Circ Res 53:140–149

    Google Scholar 

  • Ingenito AJ, Barrett JP, Procita L (1972) Direct and reflexly mediated effects of nicotine on the peripheral circulation. Eur J Pharmacol 17:375–385

    Google Scholar 

  • Ishibashi S, Nicolaidis S (1981) Hypertension induced by electrical stimulation of the subfornical organ. Brain Res Bull 6:135–139

    Google Scholar 

  • Itaya Y, Suzuki H, Matsukawa S, Kondo K, Saruta T (1986) Central renin-angiotensin system and the pathogenesis of DOCA-salt hypertension in rats. Am J Physiol 251:H261–H268

    Google Scholar 

  • Ito A, Schanberg SM (1972) Central nervous system mechanisms responsible for blood pressure elevation induced by p-chlorophenylalanine. J Pharmacol Exp Ther 181:65–74

    Google Scholar 

  • Iwai JM, Friedman R, Tassinari L (1980) Genetic influence on brain catecholamines: high brain noradrenaline in salt-sensitive rats. Clin Sci 59 (Suppl 6):263s–265s

    Google Scholar 

  • Izdebska E, Jodkowski J, Trzebski A (1982) Central influence of vasopressin on baroreceptor reflex in normotensive rats and its lack on spontaneously hypertensive rats (SHR). Experientia 38:594–595

    Google Scholar 

  • Jancsó G, Such G (1985) Evidence for a capsaicin-sensitive vasomotor mechanism in the ventral medullary chemosensitive area of the cat. Naunyn-Schmiedeberg's Arch Pharmacol 329:56–62

    Google Scholar 

  • Jennes L, Stumpf WE, Kalivas PW (1982) Neurotensin: topographical distribution in rat brain by immunochemistry. J Comp Neurol 210:211–224

    Google Scholar 

  • Johnston GAR, Hailstone MH, Freeman CG (1980) Baclofen: stereoselective inhibition of excitant amino-acid release. J Pharm Pharmacol 32:230–231

    Google Scholar 

  • Jones DL (1984) Injections of phentolamine into the anterior hypothalamus-preoptic area of rats blocks both pressor and drinking responses produced by central administration of angiotensin II. Brain Res Bull 13:127–133

    Google Scholar 

  • Jones BE, Moore RY (1977) Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study. Brain Res 127:23–53

    Google Scholar 

  • Jonsson G, Fuxe K, Hökfelt T, Goldstein M (1976) Resistance of central phenylethanolamine-N-methyltransferase containing neurons to 6-hydroxydopamine. Med Biol 54:421–426

    Google Scholar 

  • Joy MD, Lowe RD (1970) Evidence that the area postrema mediates the central cardiovascular response to angiotensin II. Nature (Lond) 228:1303–1304

    Google Scholar 

  • Juskevich JC, Robinson DS, Whitehorn D (1978) Effect of hypothalamic stimulation in spontaneously hypertensive and Wistar-Kyoto rats. Eur J Pharmacol 51:429–439

    Google Scholar 

  • Kabat H, Magoun HW, Ranson SW (1935) Electrical stimulation of points in the forebrain and midbrain. Arch Neurol 34:931–955

    Google Scholar 

  • Kalia M, Fuxe K, Hökfelt T, Johansson O, Lang R, Ganten D, Cuello C, Terenius L (1984) Distribution of neuropeptide immunoreactive nerve terminals within the subnuclei of the nucleus of the tractus solitarius of the rat. J Comp Neurol 222:409–444

    Google Scholar 

  • Kapp BS, Gallagher M, Underwood MD, McNall CL, Whitehorn D (1982) Cardiovascular responses elicited by electrical stimulation of the amygdala central nucleus in the rabbit. Brain Res 234:251–262

    Google Scholar 

  • Karplus JP, Kreidl A (1918) Gehirn und Sympathicus. IV. Mitteilung. Pflügers Arch ges Physiol 171:192–200

    Google Scholar 

  • Karplus JP, Kreidl A (1927) Gehirn und Sympathicus. VII. Mitteilung. Über Beziehungen der Hypothalamuszentren zu Blutdruck und innerer Sekretion. Pflügers Arch ges Physiol 215:667–670

    Google Scholar 

  • Karppanen H, Paakkari I, Paakkari P, Huotari R, Orma A-L (1976) Possible involvement of central histamine H2-receptors in the hypotensive effect of clonidine. Nature (Lond) 259:587–588

    Google Scholar 

  • Karppanen H, Paakkari I, Paakkari P (1977) Further evidence for central histamine H2-receptor involvement in the hypotensive effect of clonidine in the rat. Eur J Pharmacol 42:299–302

    Google Scholar 

  • Kawasaki H, Takasaki K (1986) Central a 2-adrenoceptor-mediated hypertensive response to clonidine in conscious, normotensive rats. J Pharmacol Exp Ther 236:810–818

    Google Scholar 

  • Kimura T, Share L, Wang BC, Crofton JT (1981) The role of central adrenoreceptors in the control of vasopressin release and blood pressure. Endocrinology 108:1829–1836

    Google Scholar 

  • Kiritsy-Roy JA, Appel NM, Bobbit FG, Van Loon GR (1986) Effects of mu-opioid receptor stimulation in the hypothalamic paraventricular nucleus on basal and stress-induced catecholamine secretion and cardiovascular responses. J Pharmacol Exp Ther 239:814–822

    Google Scholar 

  • Klein MC, Gertner SB (1981) Evidence for a role of endogenous histamine in central cardiovascular regulation: inhibition of histamine-N-methyltransferase by SKF 91488. J Pharmacol Exp Ther 216:315–320

    Google Scholar 

  • Knepel W, Nutto D, Anhut H, Hertting G (1980) Naloxone promotes stimulus-evoked vasopressin release in vivo. Eur J Pharmacol 65:449–450

    Google Scholar 

  • Knepel W, Nutto D, Anhut H, Hertting G (1982a) Vasopressin and β-endorphin release after osmotic and non-osmotic stimuli. Effect of naloxone and dexamethasone. Eur J Pharmacol 77:299–306

    Google Scholar 

  • Knepel W, Nutto D, Hertting G (1982b) Evidence for inhibition by β-endorphin of vasopressin release during foot shock-induced stress in the rat. Neuroendocrinology 34:353–356

    Google Scholar 

  • Knott PJ, Andrews D, Mueller KJ (1985) Voltammetry measurement in vivo of neurotransmitter release in the freely moving rat. In: Bayon A, Drucker-Colin R (eds) In vivo perfusion and release of neuroactive substances. Academic Press, Orlando, pp 141–158

    Google Scholar 

  • Kobayashi RM, Palkovits M, Kopin IJ, Jacobowitz DM (1974) Biochemical mapping of noradrenergic nerves arising from the rat locus coeruleus. Brain Res 77:269–279

    Google Scholar 

  • Kobayashi RM, Brownstein M, Saavedra JM, Palkovits M (1975) Choline acetyltransferase content in discrete regions of the rat brainstem. J Neurochem 24:637–640

    Google Scholar 

  • Kobilansky C, Lanzinger I, Philippu A (1988) Release of endogenous catecholamines in the nucleus tractus solitarii during experimentally induced blood pressure changes. Naunyn-Schmiedeberg's Arch Pharmacol 337:125–130

    Google Scholar 

  • Kobinger W (1967) Über den Wirkungsmechanismus einer neuen antihypertensiven Substanz mit Imidazolinstruktur. Naunyn-Schmiedebergs Arch Pharmak Exp Path 258:48–58

    Google Scholar 

  • Kobinger W (1978) Central alpha-adrenergic systems as target for hypotensive drugs. Rev Physiol Biochem Pharmacol 81:39–100

    Google Scholar 

  • Kobinger W, Pichler L (1975) The central modulatory effect of clonidine on the cardiodepressor reflex after suppression of synthesis and storage of noradrenaline. Eur J Pharmacol 30:56–62

    Google Scholar 

  • Kobinger W, Pichler L (1976) Centrally induced reduction in sympathetic tone — a postsynaptic a-adrenoceptor-stimulating action of imidazolines. Eur J Pharmacol 40:311–320

    Google Scholar 

  • Kobinger W, Walland A (1967) Investigations into the mechanism of the hypotensive effect of 2-(2,6-di-chlorphenylamino)-2-imidazoline-HCl. Eur J Pharmacol 2:155–162

    Google Scholar 

  • Koda LY, Bloom FE (1983) Distribution of catecholamine-containing cell bodies and blood vessels in the rat nucleus tractus solitarius. Brain Res 289:71–78

    Google Scholar 

  • Korner PI, Oliver JR, Reynoldson JA, Head GA, Carson VJ, Walker MMcD (1978) Cardiovascular and behavioral effects of intracisternal 6-hydoxydopamine in the rabbit. Eur J Pharmacol 53:83–93

    Google Scholar 

  • Kouchich FJ, Quock RM, Tseng LF (1984) Dynorphin-(1–13)-like immunoreactivity in central nervous system and pituitary gland of spontaneously hypertensive rats. Clin Exp Hypertens 6:699–708

    Google Scholar 

  • Koulu M, Saavedra JM, Niwa M, Linnoila M (1986a) Increased catecholamine metabolism in the locus coeruleus of young spontaneously hypertensive rats. Brain Res 369:361–364

    Google Scholar 

  • Koulu M, Saavedra JM, Bjelogrlic N, Niwa M, Agren H, Linnoila M (1986b) Serotonin turnover in discrete hypothalamic nuclei and mesencephalic raphe nuclei of young and adult spontaneously hypertensive rats. Brain Res 379:257–263

    Google Scholar 

  • Koulu M, Saavedra JM, Niwa M, Scheinin M, Linnoila M (1986c) Association between increased serotonin metabolism in rat brainstem nuclei and development of spontaneous hypertension. Brain Res 371:177–181

    Google Scholar 

  • Krstić MK, Djurković D (1976) Hypertension mediated by the activation of the rat brain 5-hydroxytryptamine receptor sites. Experientia 32:1187–1188

    Google Scholar 

  • Krstić MK, Djurković D (1978) Cardiovascular response to intracerebroventricular administration of acetylcholine in rats. Neuropharmacology 17:341–347

    Google Scholar 

  • Krstić MK, Djurković D (1980) Analysis of cardiovascular responses to central administration of 5-hydroxytryptamine in rats. Neuropharmacology 19:455–463

    Google Scholar 

  • Krstíc MK, Djurkovíc D (1981) Comparison of the cardiovascular responses to intracerebroventricular administration of tryptamine, 5-hydroxytryptamine tryptophan and 5-hydroxytryptophan in rats. Arch Int Physiol Biochim 89:385–391

    Google Scholar 

  • Kruszynski M, Lammek B, Manning M (1980) (1-(β-Mercapto-β,β-cyclopentamethylenepropionic acid), 2-(0-methyltyrosine)-arginine-vasopressin and (1-(β-mercapto-β,β-cyclopentamethylenepropionic acid), 2-(0-methyltyrosine)-arginine-vasopressin, two highly potent antagonists of the vasopressor response to arginine-vasopressin. J Med Chem 23:364–368

    Google Scholar 

  • Kubo T, Amano H (1986) Vasopressin-induced pressor responses in rats to bilateral electrolytic lesioning of the caudal portion of the nucleus tractus solitarii. Brain Res 363:183–187

    Google Scholar 

  • Kubo T, Kihara M (1988) Evidence of N-methyl-D-aspartate receptor-mediated modulation of the aortic baroreceptor reflex in the rat nucleus tractus solitarii. Neurosci Lett 87:69–74

    Google Scholar 

  • Kubo T, Misu Y (1981a) Pharmacological characterisation of the alpha-adrenoceptors responsible for a decrease of blood pressure in the nucleus tractus solitarii of the rat. Naunyn-Schmiedeberg's Arch Pharmacol 317:120–125

    Google Scholar 

  • Kubo T, Misu Y (1981b) Changes in arterial blood pressure after microinjections of nicotine into the dorsal area of the medulla oblongata of the rat. Neuropharmacology 20:521–524

    Google Scholar 

  • Kubo T, Misu Y (1981c) Cardiovascular response to microinjection of physostigmine and choline into the dorsal medullary site of the rat. Neuropharmacology 20:1091–1095

    Google Scholar 

  • Kubo T, Tatsumi M (1979) Increased pressor response to physostigmine in spontaneously hypertensive rats. Naunyn-Schmiedeberg's Arch Pharmacol 306:81–83

    Google Scholar 

  • Kubo T, Amano H, Katsumata M, Misu Y (1985a) Involvement of central catecholamines in mediation of pressor responses of the rat to carotid occlusion. Naunyn-Schmiedeberg's Arch Pharmacol 328:348–350

    Google Scholar 

  • Kubo T, Amano H, Misu Y (1985b) Caudal ventrolateral medulla. A region responsible for the mediation of vasopressin-induced pressor responses. Naunyn-Schmiedeberg's Arch Pharmacol 328:368–372

    Google Scholar 

  • Kubo T, Goshima Y, Ueda H, Misu Y (1986a) Diminished alpha2-adrenoceptor-mediated modulation of noradrenergic neurotransmission in the posterior hypothalamus of spontaneously hypertensive rats. Neurosci Lett 65:29–34

    Google Scholar 

  • Kubo T, Nagura J, Kihara M, Misu Y (1986b) Cardiovascular effects of L-glutamate and gamma-aminobutyric acid injected into the rostral ventrolateral medulla in normotensive and spontaneously hypertensive rats. Arch Int Pharmacodyn Ther 279:150–161

    Google Scholar 

  • Kubo T, Kihara M, Hata H, Misu Y (1987) Cardiovascular effects in rats of alpha1-and alpha2-adrenergic agents injected into the nucleus tractus solitarii. Naunyn-Schmiedeberg's Arch Pharmacol 335:274–277

    Google Scholar 

  • Kubo T, Amano H, Misu Y (1988) Regional changes in brain noradrenergic activity elicited by a decrease in blood pressure. J Pharmacobio-Dyn 11:198–201

    Google Scholar 

  • Kubota Y, Takagi H, Morishima Y, Powell JF, Smith AD (1985) Synaptic interaction between catecholaminergic neurons and substance P-immunoreactive axons in the caudal part of the nucleus of the solitary tract of the rat: demonstration by the electron microscopic mirror technique. Brain Res 333:188–192

    Google Scholar 

  • Kuhn ER (1974) Cholinergic and adrenergic release mechanisms for vasopressin in the male rat: a study with injections of neurotransmitters and blocking agents into the third ventricle. Neuroendocrinology 16:255–264

    Google Scholar 

  • Kuhn DM, Wolf WA, Lovenberg W (1980) Pressor effects of electrical stimulation of the dorsal and median raphe nuclei in anesthetized rats. J Pharmacol Exp Ther 214:403–409

    Google Scholar 

  • Kumada M, Dampney RAL, Reis DJ (1975) The trigeminal depressor response: a cardiovascular reflex originating from the trigeminal system. Brain Res 92:485–489

    Google Scholar 

  • Kurtz TW, Morris RC Jr (1987) Biological variability in Wistar-Kyoto rats. Implications for research with the spontaneously hypertensive rat. Hypertension 10:127–131

    Google Scholar 

  • Kurumatani H, Kobyashi F, Kushiro T, Murakami A, Najiwara N (1982) The effects of intracerebroventricular administration of 5-hydroxytryptamine in blood pressure, heart rate and plasma noradrenaline in conscious spontaneously hypertensive rats and Wistar rats. Jap Heart J 23:439–442

    Google Scholar 

  • Laguzzi R, Reis DJ, Talman WT (1984) Modulation of cardiovascular and electrocortical activity through serotonergic mechanisms in the nucleus tractus solitarius of the rat. Brain Res 304:321–328

    Google Scholar 

  • Lambert G, Friedman E, Gershon S (1976) Centrally-mediated cardiovascular response to 5-HT. Life Sci 17:915–920

    Google Scholar 

  • Lang WJ, Rush ML (1973) Cardiovascular responses to injections of cholinomimetic drugs into the cerebral ventricles of unanaesthetized dogs. Br J Pharmacol 47:196–205

    Google Scholar 

  • Lang RE, Brückner UB, Kempf B, Rascher W, Sturm V, Unger T, Speck G, Ganten D (1982) Opioid peptides and blood pressure regulation. Clin Exp Hypert A4:249–269

    Google Scholar 

  • Lappe RW, Dinish JL, Bex F, Michalak K, Wendt RL (1986) Effects of atrial natriuretic factor on drinking responses to central angiotensin II. Pharmacol Biochem Behav 24:1573–1576

    Google Scholar 

  • Laubie M, Schmitt H (1977) Sites of action of clonidine: centrally mediated increase in vagal tone, centrally mediated hypotensive and sympathoinhibitory effects. Prog Brain Res 47:337–348

    Google Scholar 

  • Laubie M, Schmitt H (1983) Origin of the hypotensive and sympathoinhibitory effect of morphinomimetic agents. Eur J Pharmacol 91:431–440

    Google Scholar 

  • Laubie M, Schmitt H, Canellas J, Roquebert J, Demichel P (1973) Action hypotensive et bradycardisante du dextromoramide: origine centrale, role des barorecepteurs et du système autonome. J Pharmacol (Paris) 4:369–384

    Google Scholar 

  • Laubie M, Schmitt H, Canellas J, Roquebert J, Demichel P (1974) Centrally mediated bradycardia and hypotension induced by narcotic analgesics: dextromoramide and fentanyl. Eur J Pharmacol 28:66–75

    Google Scholar 

  • Laubie M, Schmitt H, Drouillat M (1976) Action of clonidine on the baroreceptor pathway and medullary sites mediating vagal bradycardia. Eur J Pharmacol 38:293–303

    Google Scholar 

  • Laubie M, Schmitt H, Drouillat M (1977a) Central sites and mechanisms of the hypotensive and bradycardic effects of the narcotic analgesic agent fentanyl. Naunyn-Schmiedeberg's Arch Pharmacol 296:255–261

    Google Scholar 

  • Laubie M, Schmitt H, Vincent M, Remond G (1977b) Central cardiovascular effects of morphinomimetic peptides in dogs. Eur J Pharmacol 46:67–71

    Google Scholar 

  • Laurent S, Schmitt H (1983) Opposite central cardiovascular effects of various morphine-like drugs and opiate peptides in the rat. Eur Heart J 4 (Suppl G):61–65

    Google Scholar 

  • Laycock JF, Penn W, Shirley DG, Walter SJ (1979) The role of vasopressin in blood pressure regulation immediately following acute haemorrhage in the rat. J Physiol (Lond) 296:267–275

    Google Scholar 

  • Léger L, Wiklund L, Descarries L, Persson M (1979) Description of an indolaminergic cell component in the cat locus coeruleus: a fluorescence histochemical and radioautographic study. Brain Res 168:43–56

    Google Scholar 

  • Léger L, Charnay Y, Dubois PM, Jouvet M (1986) Distribution of enkephalin-immunoreactive cell bodies in relation to serotonin-containing neurons in the raphe nuclei of the cat: immunohistochemical evidence for the coexistence of enkephalin and serotonin in certain cells. Brain Res 362:63–73

    Google Scholar 

  • Le Quan-Bui KH, Elghozi JL, Devynck MA, Meyer P (1980) Early changes in noradrenaline content of some brain nuclei in spontaneously hypertensive rats. Clin Sci 59 (Suppl 6) 243s–245s

    Google Scholar 

  • Lesić R, Varagić (1961) Factors influencing the hypertensive effect of eserine in the rat. Br J Pharmacol 16:99–107

    Google Scholar 

  • Lewis PR, Shute CCD (1967) The cholinergic limbic system: projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system, and the subfornical organ of supraoptic crest. Brain Res 90:521–540

    Google Scholar 

  • Lewis PJ, Rawlins MD, Reid JL (1974) The effects of intraventricular 6-hydroxydopamine on body temperature and arterial blood pressure in cats and rabbits. Br J Pharmacol 51:207–212

    Google Scholar 

  • Lin JS, Luppi PH, Salvert D, Sakai K, Jouvet M (1986) Histamine-containing neurons in the cat hypothalamus. CR Acad Sci Paris III, 303:371–376

    Google Scholar 

  • Lindvall O, Björklund A (1974) The organization of the ascending catecholamine neuron systems in the rat brain as revealed by glyoxylic acid fluorescence method. Acta Physiol Scand (Suppl 412):1–48

    Google Scholar 

  • Lipski J, Przybylski J, Solnicka E (1976) Reduced hypotensive effect of clonidine after lesions of the nucleus tractus solitarii in rats. Eur J Pharmacol 38:19–22

    Google Scholar 

  • Ljungdahl A, Hökfelt T, Nilsson G (1978) Distribution of substance P-like immunoreactivity in the central nervous system of the rat-I. Cell bodies and nerve terminals. Neuroscience 3:861–943

    Google Scholar 

  • Loeschcke HH, Koepchen HP (1958) Versuch zur Lokalisation des Angriffsortes der Atmungsund Kreislaufwirkung von Novocain im Liquor cerebrospinalis. Pflügers Arch ges Physiol 266:628–641

    Google Scholar 

  • Loeschcke HH, De Lattre J, Schläfke ME, Trouth CO (1970) Effects on respiration and circulation of electrically stimulating the ventral surface of the medulla oblongata. Respir Physiol 10:184–197

    Google Scholar 

  • Loewy AD, McKellar S (1981) Serotonergic projections from the ventral medulla to the intermediolateral cell column in the rat. Brain Res 211:146–152

    Google Scholar 

  • Loewy AD, Neil JJ (1981) The role of descending monoaminergic systems in central control of blood pressure. Fed Proc 40:2778–2785

    Google Scholar 

  • Loewy AD, McKellar S, Saper CB (1979a) Direct projections from the A5 catecholamine cell group to the intermediolateral cell column. Brain Res 174:309–314

    Google Scholar 

  • Loewy AD, Gregorie EM, McKellar S, Baker RP (1979b) Electrophysiological evidence that the A5 catecholamine cell group is a vasomotor center. Brain Res 178:196–200

    Google Scholar 

  • Loizou LA (1969) Projections of the nucleus locus coeruleus in the albino rat. Brain Res 15:563–566

    Google Scholar 

  • Lorenz RG, Saper CB, Wong DL, Ciaranello RD, Loewy AD (1985) Co-localization of substance P-and phenylethanolamine-N-methyltransferase-like immunoreactivity in neurons of ventrolateral medulla that project to the spinal cord: potential role in control of vasomotor tone. Neurosci Lett 55:255–260

    Google Scholar 

  • Lorez HP, Kiss D, Da Prada M, Haeusler G (1983) Effects of clonidine on the rate of noradrenaline turnover in discrete areas of the rat central nervous system. Naunyn-Schmiedeberg's Arch Pharmacol 323:307–314

    Google Scholar 

  • Maccarrone C, Jarrott B, Conway EL (1986) Comparison of neuropeptide Y immunoreactivity in hypothalamic and brainstem nuclei of young normotensive Wistar-Kyoto rats. Neurosci Lett 68:232–238

    Google Scholar 

  • Macrae IM, Minson JB, Kapoor V, Morris MJ, Chalmers JP (1986) Midline B3 serotonin nerves in rat medulla are involved in hypotensive effect of methyldopa. J Cardiovasc Pharmacol 8:381–385

    Google Scholar 

  • Maeda T, Shimizu N (1972) Projections ascendantes du locus coeruleus et d'autres neurones aminergiques pontiques au niveau du prosencéphale du rat. Brain Res 36:19–35

    Google Scholar 

  • Maeda T, Pin C, Salvert D, Ligier M, Jouvet M (1973) Catecholamine containing neurons in the pontine tegmentum and their pathways in the cat. Brain Res 57:119–152

    Google Scholar 

  • Maley B, Elde R (1982) The ultrastructural localization of serotonin immunoreactivity within the nucleus of the solitary tract of the cat. J Neurosci 2:1499–1506

    Google Scholar 

  • Maley B, Newton BW (1985) Immunohistochemistry of gamma-aminobutyric acid in the cat nucleus tractus solitarius. Brain Res 330:364–368

    Google Scholar 

  • Mangiapane ML, Simpson JB (1980) Subfornical organ: forebrain site of pressor and dipsogenic action of angiotensin II. Am J Physiol 239:R382–R389

    Google Scholar 

  • Mansour A, Lewis ME, Khachaturian H, Akil H, Watson SJ (1986) Pharmacological and anatomical evidence of selective μ-, δ-and κ-opioid receptor binding in the rat brain. Brain Res 399:69–79

    Google Scholar 

  • Mantyh PW, Hunt SP (1984) Evidence for cholecystokinin-like immunoreactive neurons in the rat medulla oblongata which project to the spinal cord. Brain Res 291:49–54

    Google Scholar 

  • Martin SM, Malkinson TJ, Veale WL, Pittman QJ (1985) The action of centrally administered arginine vasopressin on blood pressure in the conscious rabbit. Brain Res 348:137–145

    Google Scholar 

  • Martin JR, Beinfeld MC, Westfall TC (1988) Blood pressure increases after injection of neuropeptide Y into posterior hypothalamic nucleus. Amer J Physiol 254:H879–H888

    Google Scholar 

  • Maruyama S (1981) Inhibition by topically applied clonidine and guanfacine on the pressor response to stimulation of the locus coeruleus in cats. Jap J Pharmacol 31:856–859

    Google Scholar 

  • Matsuguchi H, Sharabi FM, Gordon FJ, Johnson AK, Schmid PG (1982) Blood pressure and heart rate responses to microinjection of vasopressin into the nucleus tractus solitarius region of the rat. Neuropharmacology 21:687–693

    Google Scholar 

  • McAllen RM, Neil JJ, Loewy AD (1982) Effects of kainic acid applied to the ventral surface of the medulla oblongata on vasomotor tone, the baroreceptor reflex, and hypothalamic autonomic responses. Brain Res 238:65–76

    Google Scholar 

  • McCarty R, Plunkett LM (1986) Forebrain binding sites for atrial natriuretic factor: alterations in spontaneously hypertensive (SHR) rats. Neurochem Int 9:177–183

    Google Scholar 

  • McCaughran JA, Murphy D, Schechter N, Friedman R (1983) Participation of the central cholinergic system in blood pressure regulation in the Dahl rat model of essential hypertension. J Cardiovasc Pharmacol 5:1005–1009

    Google Scholar 

  • McCubbin JW, Kaneko Y, Page IH (1960) Ability of serotonin and norepinephrine to mimic the central effects of reserpine on vasomotor activity. Circ Res 8:849–858

    Google Scholar 

  • McIntosh FC, Birks RI, Sastry PB (1956) Pharmacological inhibition of acetylcholine synthesis. Nature (Lond) 178:1181

    Google Scholar 

  • McNeill TH, Sladek JR (1980) Simultaneous monoamine histofluorescence and neuropeptide immunocytochemistry. I. Correlative distribution of catecholamine varicosities and magnocellular neurosecretory neurons in the rat supraoptic and paraventricular nuclei. J Comp Neurol 193:1023–1033

    Google Scholar 

  • McRae-Degueurce A, Milon H (1983) Serotonin and dopamine afferents to the rat locus coeruleus: a biochemical study after lesioning of the ventral mesencephalic tegmental-A10 region and the raphe dorsalis. Brain Res 263:344–347

    Google Scholar 

  • Meeley MP, Ruggiero DA, Ishitsuka T, Reis DJ (1985) Intrinsic gamma-aminobutyric acid neurons in the nucleus of the solitary tract and the rostral ventrolateral medulla of the rat: an immunocytochemical and biochemical study. Neurosci Lett 58:83–89

    Google Scholar 

  • Meeley MP, Ernsberger PR, Granata AR, Reis DJ (1986) An endogenous clonidine-displacing substance from bovine brain: receptor binding and hypotensive actions in the ventrolateral medulla. Life Sci 1119–1126

    Google Scholar 

  • Meessen H, Olszewski J (1949) Cytoarchitectonic atlas of the rhombencephalon of the rabbit. Karger, Basel

    Google Scholar 

  • Michelini LC, Barnes KL, Ferrario CM (1986) Area postrema lesions augment the pressor activity of centrally administered vasopressin. Clin Exp Hypertens A 8:1107–1125

    Google Scholar 

  • Milner TA, Pickel VM, Chan J, Massari VJ, Oertel WH, Park DH, Joh TH, Reis DJ (1987) Phenylethanolamine N-methyltransferase-containing neurons in the rostral ventrolateral medulla. II. Synaptic relationship with GABAergic terminals. Brain Res 411:46–57

    Google Scholar 

  • Milton AS, Paterson AT (1974) A microinjection study of the control of antidiuretic hormone release by the supraoptic nucleus of the hypothalamus in the cat. J Physiol (Lond) 241:607–628

    Google Scholar 

  • Minson JB, Choy VJ, Chalmers JP (1984) Bulbospinal serotonin neurons and hypotensive effects of methyldopa in the spontaneously hypertensive rat. J Cardiovasc Pharmacol 6:312–317

    Google Scholar 

  • Miura M, Reis DJ (1970) A blood pressure response from fastigial nucleus and its relay pathway in brainstem. Am J Physiol 219:1330–1336

    Google Scholar 

  • Mogenson GJ, Calaresu FR (1973) Cardiovascular responses to electrical stimulation of the amygdala in the rat. Exp Neurol 39:166–180

    Google Scholar 

  • Montani JP, Liard JF, Schoun J, Möhring J (1980) Hemodynamic effects of exogenous and endogenous vasopressin at low plasma concentrations in conscious dogs. Circ Res 47:346–355

    Google Scholar 

  • Moore RY, Halaris AE, Jones BE (1978) Serotonin neurons of the midbrain raphe: ascending projections. J Comp Neurol 180:417–438

    Google Scholar 

  • Morin G, Naquet R, Badier M (1951) Stimulation électrique de la région amygdalienne et pression artérielle chez le chat. J Physiol (Paris) 44:303–305

    Google Scholar 

  • Morris BJ, Herz A (1986) Autoradiographic localization in rat brain of κ-opiate binding sites labelled by (3H)bremazocine. Neuroscience 19:839–846

    Google Scholar 

  • Morris M, Wren JA, Sundberg DK (1981) Central neural peptides and catecholamines in spontaneous and DOCA/salt hypertension. Peptides 2:207–211

    Google Scholar 

  • Moskowitz AS, Goodman RP (1984) Light microscopic autoradiographic localization of muand delta-opioid binding sites in the mouse central nervous system. J Neurosci 4:1331–1342

    Google Scholar 

  • Mosqueda-Garcia R, Eskay R, Zamir N, Palkovits M, Kunos G (1986) Opioid-mediated cardiovascular effects of clonidine in spontaneously hypertensive rats: elimination by neonatal treatment with monosodium glutamate. Endocrinology 118:1814–1822

    Google Scholar 

  • Mraovitch S, Kumada M, Reis DJ (1982) Role of the nucleus parabrachialis in cardiovascular regulation in cat. Brain Res 232:57–75

    Google Scholar 

  • Muscholl E (1979) Presynaptic muscarinic receptors and inhibition of release. In: Paton DM (ed) The release of catecholamines from adrenergic neurones. Pergamon, London, pp 87–110

    Google Scholar 

  • Nagai T, Satoh K, Imamoto K, Maeda T (1981) Divergent projections of catecholamine neurons of the locus coeruleus as revealed by fluorescent retrograde double labelling technique. Neurosci Lett 23:117–123

    Google Scholar 

  • Nakagawa Y, Shiosaka S, Emson PC, Tohyama M (1985) Distribution of neuropeptide in the forebrain and diencephalon: an immunohistochemical analysis. Brain Res 361:52–60

    Google Scholar 

  • Nakai M, Yamane Y, Umeda Y, Ogino K (1982) Vasopressin-induced pressor response elicited by electrical stimulation of solitary nucleus and dorsal motor nucleus of vagus of rat. Brain Res 251:164–168

    Google Scholar 

  • Nakamura K, Gerold M, Thoenen H (1971a) Genetically hypertensive rats: relationship between the development of hypertension and the changes in norepinephrine turnover of peripheral and central adrenergic neurons. Naunyn-Schmiedeberg's Arch Pharmacol 271:157–169

    Google Scholar 

  • Nakamura K, Gerold M, Thoenen H (1971b) Experimental hypertension of the rat: reciprocal changes of norepinephrine turnover in heart and brainstem. Naunyn-Schmiedeberg's Arch Pharmacol 268:125–139

    Google Scholar 

  • Nakamura K, Hayashi T, Nakamura K (1984) Alterations of brainstem and peripheral met-enkephalin and substance P levels in spontaneously hypertensive rats. Clin Exp Hypertens A6:1833–1836

    Google Scholar 

  • Negro-Vilar A, Saavedra JM (1980) Changes in brain somatostatin and vasopressin levels after stress in spontaneously hypertensive and Wistar-Kyoto rats. Brain Res Bull 5:353–358

    Google Scholar 

  • Neumayr RJ, Hare BD, Franz DN (1974) Evidence for bulbospinal control of sympathetic preganglionic neurons by monoaminergic pathways. Life Sci 14:793–806

    Google Scholar 

  • Newton BNV, Maley B, Traurig HH (1983) The distribution of met-enkephalin (ME), serotonin (5-HT) and substance P (SP) immunoreactivities in the area postrema (AP) of the rat and cat. Proc Soc Neurosci 9:293

    Google Scholar 

  • Nomura M, Ohtsuji M, Nagata Y (1985) Changes in the alpha-adrenoceptors in the medulla oblongata including nucleus tractus solitarii of spontaneously hypertensive rats. Neurochem Res 10:1143–1154

    Google Scholar 

  • Ogawa M (1978) Interaction between noradrenergic and serotonergic mechanisms on the central regulation of blood pressure in rat: a study using experimental central hypertension produced by chemical lesions of the locus coeruleus. Jap Circ J 42:581–597

    Google Scholar 

  • Oishi R, Itoh Y, Nishibori M, Saeki K (1985) Decrease in histamine thurnover in the brain of spontaneously hypertensive rats. Brain Res 343:180–183

    Google Scholar 

  • Okamoto K (1969) Spontaneous hypertension in rats. In: Richter GW, Epstein MA (eds) International review of experimental pathology, vol 7. Academic, New York, p 227

    Google Scholar 

  • Okuno T, Winternitz SR, Lindheimer MD, Oparil S (1983) Central catecholamine depletion, vasopressin, and blood pressure in the DOCA/NaCl rat. Am J Physiol 244:H807–H813

    Google Scholar 

  • Olpe HR, Berecek K, Jones RSG, Steinmann MW, Sonnenburg C, Hofbauer KG (1985) Reduced activity of locus coeruleus neurons in hypertensive rats. Neurosci Lett 61:25–29

    Google Scholar 

  • Olson L, Fuxe K (1972) Further mapping out of central noradrenaline systems projections of the subcoeruleus area. Brain Res 43:289–295

    Google Scholar 

  • Onesti G, Schwartz AB, Kim KE, Paz-Martinez V, Swartz C (1971) Antihypertensive effect of clonidine. Circ Res 28 (Suppl II):II–53–II–69

    Google Scholar 

  • Otsuka A, Barnes KL, Ferrario CM (1986) Contribution of area postrema to pressor actions of angiotensin II in dog. Am J Physiol 251:H538–H546

    Google Scholar 

  • Ozawa H, Uematsu T (1976) Centrally mediated cardiovascular effects of intracisternal application of carbachol in anaesthetized rats. Jap J Pharmacol 26:339–346

    Google Scholar 

  • Palkovits M, Jacobowitz DM (1974) Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain. II. Hindbrain (mesencephalon, rhombencephalon). J Comp Neurol 157:29–42

    Google Scholar 

  • Palkovits M, Záborszky L (1977) Neuroanatomy of central cardiovascular control. Nucleus tractus solitarii: afferent and efferent neuronal connections in relation to the baroreceptor reflex arc. In: De Jong W, Provoost AP, Shapiro AP (eds) Hypertension and brain mechanisms. Elsevier, Amsterdam, pp 9–34 (Progress in Brain Research, vol 47)

    Google Scholar 

  • Palkovits M, Saavedra JM, Jacobowitz DM, Kizer JS, Zaborszky L, Brownstein MJ (1977) Serotonergic innervation of the forebrain: effect of lesions on serotonin and tryptophan hydroxylase levels. Brain Res 130:121–134

    Google Scholar 

  • Pakovits M, Zaborszky L, Feinger A, Mezey E, Fekete MIK, Herman JP, Kanyicska B, Szabo D (1980) Noradrenergic innervation of the rat hypothalamus: experimental biochemical and electron microscopic studies. Brain Res 191:161–170

    Google Scholar 

  • Patel KP, Kline RL, Mercer PF (1981a) Noradrenergic mechanisms in the brain and peripheral organs of normotensive and spontaneously hypertensive rats at various ages. Hypertension 3:682–689

    Google Scholar 

  • Patel KP, Ciriello J, Kline RL (1981b) Noradrenergic mechanisms in brain and peripheral organs after aortic nerve transection. Am J Physiol 240:H481–H486

    Google Scholar 

  • Paterson SJ, Robson LE, Kosterlitz HW (1983) Classification of opioid receptors. Br Med Bull 39:31–36

    Google Scholar 

  • Pazo JH, Medina JH (1983) Cholinergic mechanisms within the caudate nucleus mediate changes in blood pressure. Neuropharmacology 22:717–720

    Google Scholar 

  • Persson B (1980) Cardiovascular effects of intracerebroventricular GABA, glycine and muscimol in the rat. Naunyn-Schmiedeberg's Arch Pharmacol 313:225–236

    Google Scholar 

  • Persson B, Henning M (1980) Effect of GABA analogues on blood pressure and central GABA metabolism in the rat. Acta Pharmacol Toxicol 47:135–143

    Google Scholar 

  • Petty MA, De Jong W (1984) Endorphins and the hypotensive response to stimulation of alphareceptors in the brainstem by alpha-methylnoradrenaline. Neuropharmacology 23:643–648

    Google Scholar 

  • Petty MA, Reid JL (1981) Opiate analogs, substance P, and baroreceptor reflexes in the rabbit. Hypertension 3 (Suppl 1):141–147

    Google Scholar 

  • Petty MA, Reid JL (1982a) The effect of opiates on arterial baroreceptor reflex function in the rabbit. Naunyn-Schmiedeberg's Arch Pharmacol 319:206–211

    Google Scholar 

  • Petty M, Reid J (1982b) The cardiovascular effects of centrally administered substance P in the anaesthetized rabbit. Eur J Pharmacol 82:9–14

    Google Scholar 

  • Pfeiffer A, Feuerstein G, Kopin IJ, Faden AI (1983a) Cardiovascular and respiratory effects of mu-, delta-and kappa-opiate agonists microinjected into the anterior hypothalamic brain area of awake rats. J Pharmacol Exp Ther 225:735–741

    Google Scholar 

  • Pfeiffer A, Feuerstein G, Zerbe RL, Faden AI, Kopin IJ (1983b) μ-Receptors mediate opioid cardiovascular effects at anterior hypothalamic sites through sympatho-adrenomedullary and parasympathetic pathways. Endocrinology 113:929–938

    Google Scholar 

  • Philippu A (1970) Release of catecholamines from the hypothalamus by drugs and electrical stimulation. In: Schümann HJ, Kroneberg G (eds) New aspects of storage and release mechanism of catecholamines. Springer, Berlin Heidelberg New York, pp 258–267

    Google Scholar 

  • Philippu A (1980) Regulation of the arterial blood pressure. In: Szekeres L (ed) Adrenergic activators and inhibitors. Springer, Berlin Heidelberg New York, pp 521–548 (Handbook of experimental Pharmacology, vol 54/I)

    Google Scholar 

  • Philippu A (1981) Involvement of cholinergic systems of the brain in the central regulation of cardiovascular functions. J Auton Pharmacol 1:321–330

    Google Scholar 

  • Philippu A (1984) Hypothalamic neurotransmitters: patterns of release and involvement in blood pressure regulation. In: Fleming WW, Langer SZ, Graefe KH, Weiner N (eds) Neuronal and extraneuronal events in autonomic pharmacology. Raven, New York, pp 83–92

    Google Scholar 

  • Philippu A (1985) The use of push-pull cannulae for superfusing various hypothalamic areas in anaesthetized and conscious, freely moving animals. In: Bayon A, Drucker-Colin R (eds) In vivo perfusion and release of neuroactive substances. Methods and Strategies. Academic, Orlando, pp 221–232

    Google Scholar 

  • Philippu A, Bohuschke N (1976) Hypothalamic superfusion with muscarinic drugs. Naunyn-Schmiedeberg's Arch Pharmacol 292:1–7

    Google Scholar 

  • Philippu A, Kittel E (1977) Presence of beta-adrenoreceptors in the hypothalamus; their importance for the pressor response to hypothalamic stimulation. Naunyn-Schmiedeberg's Arch Pharmacol 297:219–225

    Google Scholar 

  • Philippu A, Schartner P (1976) Inhibition by locally applied alpha-adrenoceptor blocking agents of the depressor response to stimulation of the anterior hypothalamus. Naunyn-Schmiedeberg's Arch Pharmacol 295:1–7

    Google Scholar 

  • Philippu A, Stroehl U (1978) Beta-adreoreceptors of the posterior hypothalamus. Clin Exp Hypertens 1:25–38

    Google Scholar 

  • Philippu A, Wiedemann K (1981) Hypothalamic superfusion with histamine agonists modifies the pressor response to hypothalamic stimulation. J Auton Pharmacol 1:111–117

    Google Scholar 

  • Philippu A, Heyd G, Burger A (1970) Release of noradrenaline from the hypothalamus in vivo. Eur J Pharmacol 9:52–58

    Google Scholar 

  • Philippu A, Roensberg W, Przuntek H (1973a) Effects of adrenergic drugs on pressor responses to hypothalamic stimulation. Naunyn-Schmiedeberg's Arch Pharmacol 278:373–386

    Google Scholar 

  • Philippu A, Przuntek H, Roensberg W (1973b) Superfusion of the hypothalamus with gamma-aminobutyric acid: effect on release of adrenaline and blood pressure. Naunyn-Schmiedeberg's Arch Pharmacol 276:103–118

    Google Scholar 

  • Philippu A, Demmeler R, Roensberg G (1974) Effects of centrally applied drugs on pressor responses to hypothalamic stimulation. Naunyn-Schmiedeberg's Arch Pharmacol 282:389–400

    Google Scholar 

  • Philippu A, Dietl H, Sinha JN (1979a) In vivo release of endogenous catecholamines in the hypothalamus. Naunyn-Schmiedeberg's Arch Pharmacol 308:137–142

    Google Scholar 

  • Philippu A, Dietl H, Stroehl U, Truc VT (1979b) Adrenoreceptors of the hypothalamus: their importance for the regulation of the arterial blood pressure. In: Usdin E, Kopin IJ, Barchas J (eds) Catecholamines: basic and clinical frontiers, vol 2. Pergamon, New York, pp 1428–1430

    Google Scholar 

  • Philippu A, Dietl H, Sinha JN (1980) Rise in blood pressure increases the release of endogenous catecholamines in the anterior hypothalamus of the cat. Naunyn-Schmiedeberg's Arch Pharmacol 310:237–240

    Google Scholar 

  • Philippu A, Dietl H, Eisert A (1981) Hypotension alters the release of catecholamines in the hypothalamus of the conscious rabbit. Eur J Pharmacol 69:519–523

    Google Scholar 

  • Philippu A, Hagen R, Hanesch U, Waldmann U (1983) Changes in the arterial blood pressure increase the release of endogenous histamine in the hypothalamus of anaesthetized cats. Naunyn-Schmiedeberg's Arch Pharmacol 323:162–167

    Google Scholar 

  • Philippu A, Bald M, Kraus A, Dietl H (1984) In vivo release by histamine agonists and antagonists of endogenous catecholamines in the cat hypothalamus. Naunyn-Schmiedeberg's Arch Pharmacol 326:116–123

    Google Scholar 

  • Phillips MI, Hoffman WE (1977) Sensitive sites in the brain for the blood pressure and drinking responses to angiotensin II. In: Buckley JP, Ferrario CM, Lokhandwala MF (eds) Central actions of angiotensin and related hormones. Pergamon, Oxford, pp 325–356

    Google Scholar 

  • Pilowsky PM, Kapoor V, Minson JB, West MJ, Chalmers JP (1986a) Spinal cord serotonin release and raised blood pressure after brainstem kainic acid injection. Brain Res 366:354–357

    Google Scholar 

  • Pilowsky P, Minson J, Hodgson A, Howe P, Chalmers J (1986b) Does substance P coexist with adrenaline in neurones of the rostral ventrolateral medulla in the rat? Neurosci Lett 71:293–298

    Google Scholar 

  • Pittman QJ, Lawrence D, McLean L (1982) Central effects of arginine vasopressin on blood pressure in rats. Endocrinology 110:1058–1060

    Google Scholar 

  • Pitts DK, Beuthin FC, Commissaris RL (1986) Cardiovascular effects of perfusion of the rostral rat hypothalamus with clonidine: differential interactions with prazosin and yohimbine. Eur J Pharmacol 124:67–74

    Google Scholar 

  • Plunkett LM, Saavedra JM (1985) Increased angiotensin II binding affinity in the nucleus tractus solitarius of spontaneously hypertensive rats. Proc Natl Acad Sci USA 82:7721–7724

    Google Scholar 

  • Poitras D, Parent A (1978) Atlas of the distribution of monoamine-containing nerve cell bodies in the brainstem of the cat. J Comp Neurol 179:699–718

    Google Scholar 

  • Porter JP, Brody MJ (1986) A comparison of the hemodynamic effects produced by electrical stimulation of subnuclei of the paraventricular nucleus. Brain Res 375:20–29

    Google Scholar 

  • Potashner SJ (1979) Baclofen: effects on amino-acid release and metabolism in slices of guinea-pig cerebral cortex. J Neurochem 32:103–109

    Google Scholar 

  • Przuntek H, Philippu A (1973) Reduced pressor responses to stimulation of the locus coeruleus after lesion of the posterior hypothalamus. Naunyn-Schmiedeberg's Arch Pharmacol 276:119–122

    Google Scholar 

  • Przuntek H, Guimaraes S, Philippu A (1971) Importance of adrenergic neurons of the brain for the rise of blood pressure evoked by hypothalamic stimulation. Naunyn-Schmiedeberg's Arch Pharmacol 271:311–319

    Google Scholar 

  • Punnen S, Sapru HN (1985) Blockade of cholinergic receptors in the C1 area abolishes hypertensive response to opiates in the A1 area of the ventrolateral medulla. Brain Res 336:180–186

    Google Scholar 

  • Punnen S, Willette R, Krieger AJ, Sapru HN (1984) Cardiovascular response to injections of enkephalin in the pressor area of the ventrolateral medulla. Neuropharmacology 23:939–946

    Google Scholar 

  • Punnen S, Willette RN, Krieger AJ, Sapru HN (1986) Medullary pressor area: site of action of intravenous physostigmine. Brain Res 382:178–184

    Google Scholar 

  • Quirion R, Weiss AS, Pert CB (1983) Comparative pharmacological properties and autoradiographic distribution of (3H)ethylketocyclazocine binding sites in rat and guinea pig brain. Life Sci 33:183–186

    Google Scholar 

  • Quirion R, Dalpe M, De Lean A, Gutkowska J, Cantin M, Genest J (1984) Atrial natriuretic factor (ANF) binding sites in brain and related structures. Peptides 5:1167–1172

    Google Scholar 

  • Ramirez-Gonzalez MD, Tchakarov L, Mosquada-Garcia R, Kunos G (1983) β-Endorphin acting on the brainstem is involved in the antihypertensive action of clonidine and α-methyldopa in rats. Circ Res 53:150–157

    Google Scholar 

  • Reis DJ, Ross CA, Ruggiero DA, Granta AR, Joh TH (1984) Role of adrenaline neurons of ventrolateral medulla (the C1 group) in the tonic and phasic control of arterial pressure. Clin Exp Hypertens A6:221–241

    Google Scholar 

  • Rettig R, Healy DP, Printz MP (1986) Cardiovascular effects of microinjections of angiotensin II into the nucleus tractus solitarii. Brain Res 364:233–240

    Google Scholar 

  • Reynolds DG, Gurll NJ, Vargish T, Lechner RB, Faden AI, Holaday JW (1980) Blockade of opiate receptors with naloxone improves survival and cardiac performance in canine endotoxic shock. Circ Shock 7:39–48

    Google Scholar 

  • Reynoldson JA, Head GA, Korner PI (1979) Effect of 6-hydroxydopamine on blood pressure and heart rate responses to intracisternal clonidine in conscious rabbits. Eur J Pharmacol 55:257–262

    Google Scholar 

  • Riphagen CL, Pittman QJ (1986) Oxytocin and (1-deamino,8-D-arginine)-vasopressin (dDAVP): intrathecal effects on blood pressure, heart rate and urine output. Brain Res 374:371–374

    Google Scholar 

  • Rioux F, Quirion R, St Pierre S, Regoli D, Jolicoeur FB, Belanger F, Barbeau A (1981) The hypotensive effect of centrally administered neurotensin in rats. Eur J Pharmacol 69:241–247

    Google Scholar 

  • Robertson HA, Leslie RA (1985) Noradrenergic alpha2 binding sites in vagal dorsal motor nucleus and nucleus tractus solitarius: autoradiographic localization. Can J Physiol Pharmacol 63:1190–1194

    Google Scholar 

  • Robinson RL, Dietl H, Bald M, Kraus A, Philippu A (1983) Effects of short-lasting and long-lasting blood pressure changes on the release of endogenous catecholamines in the hypothalamus of the conscious, freely moving rabbit. Naunyn-Schmiedeberg's Arch Pharmacol 322:203–209

    Google Scholar 

  • Robinson SE (1982) Interaction of the median raphe nucleus and hypothalamic serotonin with cholinergic agents and pressor responses in the rat. J Pharmacol Exp Ther 223:662–668

    Google Scholar 

  • Robinson SE (1984) Serotonergic-cholinergic interactions in blood pressure control in the rat. Fed Proc 43:21–24

    Google Scholar 

  • Robinson SE, Austin MJ, Gibbens DM (1985) The role of serotonergic neurons in dorsal raphe, median raphe and anterior hypothalamic pressor mechanisms. Neuropharmacology 24:51–58

    Google Scholar 

  • Rocha e Silva M Jr, Rosenberg M (1969) The release of vasopressin in response to haemorrhage and its role in the mechanism of blood pressure regulation. J Physiol (Lond) 202:535–557

    Google Scholar 

  • Rockhold RW, Caldwell RW (1979) Effect of lesions of the nucleus tractus solitarii on the cardiovascular actions of clonidine in conscious rats. Neuropharmacology 18:347–354

    Google Scholar 

  • Rockhold RW, Caldwell RW (1980) Cardiovascular effects following clonidine microinjection into the nucleus tractus solitarii of the rat. Neuropharmacology 19:919–922

    Google Scholar 

  • Rockhold RW, Crofton JT, Brooks DP, Share L (1986) Naloxone does not improve cardiovascular or blunt vasopressin responses in spontaneously hypertensive rats following graded haemorrhage. Neuroendocrinology 43:657–663

    Google Scholar 

  • Rogers JF, Cubeddu LX (1983) Naloxone does not antagonize the antihypertensive effect of clonidine in essential hypertension. Clin Pharmacol Ther 34:68–73

    Google Scholar 

  • Rosella-Dampman LM, Emmert SE, Keil LC, Summy-Long JY (1985) Differential effects of naloxone on the release of neurohypophysial hormones in normotensive and spontaneously hypertensive rats. Brain Res 325:205–214

    Google Scholar 

  • Ross CA, Armstrong DM, Ruggiero DA, Pickel VM, Joh TH, Reis DJ (1981a) Adrenaline neurons in the rostral ventrolateral medulla innervate thoracic spinal cord: a combined immunocytochemical and retrograde transport demonstration. Neurosci Lett 25:257–262

    Google Scholar 

  • Ross CA, Ruggiero DA, Reis DJ (1981b) Projections from neurons close to the ventral surface of the hindbrain to the spinal cord in the rat. Neurosci Lett 21:143–148

    Google Scholar 

  • Ross CA, Ruggiero DA, Joh TH, Park DH, Reis DJ (1983) Adrenaline synthesizing neurons in the rostral ventrolateral medulla: a possible role in tonic vasomotor control. Brain Res 273:356–361

    Google Scholar 

  • Ross CA, Ruggiero DA, Park DH, Joh TH, Sved AF, Fernandez-Pardal J, Saavedra JM, Reis DJ (1984) Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamine and vasopressin. J Neurosci 4:474–494

    Google Scholar 

  • Rouot BR, Snyder SH (1979) (3H) Para-amino-clonidine: a novel ligand which binds with high affinity to α-adrenergic receptors. Life Sci 25:769–774

    Google Scholar 

  • Routledge C, Marsden CA (1987) Electrical stimulation of the C1 region of the rostral ventrolateral medulla of the rat increases mean arterial pressure and adrenaline release in the posterior hypothalamus. Neuroscience 20:457–466

    Google Scholar 

  • Ruggiero DA, Meeley MP, Anwar M, Reis DJ (1985) Newly identified GABAergic neurons in regions of the ventrolateral medulla which regulate blood pressure. Brain Res 339:171–177

    Google Scholar 

  • Saavedra JM (1979a) Adrenaline levels in brainstem nuclei and effects of a PNMT inhibitor on spontaneously hypertensive rats. Brain Res 166:283–292

    Google Scholar 

  • Saavedra JM (1979b) Brain catecholamines during development of DOCA-salt hypertension in rats. Brain Res 179:121–127

    Google Scholar 

  • Saavedra JM, Alexander N (1983) Catecholamines and phenylethanolamine N-methyltransferase in selected brain nuclei and in the pineal gland of neurogenically hypertensive rats. Brain Res 274:388–392

    Google Scholar 

  • Saavedra JM, Grobecker H, Axelrod J (1976) Adrenaline-forming enzyme in brainstem: elevation in genetic and experimental hypertension. Science 191:483–484

    Google Scholar 

  • Saavedra JM, Grobecker H, Axelrod J (1978) Changes in central catecholaminergic neurons in the spontaneously (genetic) hypertensive rat. Circ Res 42:529–534

    Google Scholar 

  • Saavedra JM, Corrêa FM, Plunkett LM, Israel A, Kurihara M, Shigematsu K (1986) Binding of angiotensin and atrial natriuretic peptide in brain of hypertensive rats. Nature (Lond) 320:758–760

    Google Scholar 

  • Sakai K, Salvert D, Touret M, Jouvet M (1977a) Afferent connections of the nucleus raphe dorsalis in the cat as visualized by the horseradish peroxidase technique. Brain Res 137:11–35

    Google Scholar 

  • Sakai K, Touret M, Salvert D, Leger L, Jouvet M (1977b) Afferent projections to the cat locus coeruleus as visualized by the horseradish peroxidase technique. Brain Res 119:21–41

    Google Scholar 

  • Saper CB, Reis DJ, Joh T (1983) Medullary catecholamine inputs to the anteroventral third ventricular cardiovascular regulatory region in the rat. Neurosci Lett 42:285–291

    Google Scholar 

  • Sar M, Stumpf WE, Miller RJ, Chang KJ, Cuatrecasas P (1978) Immunohistochemical localization of enkephalin in rat brain and spinal cord. J Comp Neurol 182:17–38

    Google Scholar 

  • Satoh K, Tohyama M, Yamamoto K, Sakumoto T, Shimizu N (1977) Noradrenaline innervation of the spinal cord studied by the horseradish peroxidase method combined with monoamine oxidase staining. Exp Brain Res 30:175–186

    Google Scholar 

  • Satoh K, Armstrong DM, Fibiger HC (1983) A comparison of the distribution of central cholinergic neurons as demonstrated by acetylcholinesterase pharmacohistochemistry and choline acetyltransferase immunohistochemistry. Brain Res Bull 11:693–720

    Google Scholar 

  • Sattler RW, Van Zwieten PA (1967) Acute hypotensive action of 2-(2,6-dichlorphenylamino)-2-imidazoline hydrochloride (St 155) after infusion into the cat's vertebral artery. Eur J Pharmacol 2:9–13

    Google Scholar 

  • Sawchenko PE, Swanson LW (1982) The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res 4:275–325

    Google Scholar 

  • Sawyer WH, Acosta M, Balaspiri L, Judd J, Manning M (1974) Structural changes in the arginine vasopressin molecule that enhance antidiuretic activity and specificity. Endocrinology 94:1106–1115

    Google Scholar 

  • Saxena AK, Pant KK, Saksena AK, Tangri KK, Vrat S, Bhargava KP (1983) Cardiovascular responses elicited by microinjection of cholinergic agents into nucleus dorsalis raphe in cats. Clin Exp Pharmacol Physiol 10:621–628

    Google Scholar 

  • Saxena AK, Saksena AK, Agnihotri MS, Vrat S, Tangri KK, Bhargava KP (1985) Cardiovascular responses elicited by microinjection of monoamines into mesencephalic nucleus dorsalis raphe in cats. Naunyn-Schmiedeberg's Arch Pharmacol 329:141–145

    Google Scholar 

  • Schadt JC, York DH (1981) The reversal of hemorrhagic hypotension by naloxone in conscious rabbit. Can J Physiol Pharmacol 59:1208–1213

    Google Scholar 

  • Schaz K, Stock G, Simon W, Schlör KH, Unger T, Rockhold R, Ganten D (1980) Enkephalin effects on blood pressure, heart rate and baroreceptor reflex. Hypertension 2:395–407

    Google Scholar 

  • Schläfke M, Loeschcke HH (1967) Lokalisation eines an der Regulation von Atmung und Kreislauf beteiligten Gebietes an der ventralen Oberfläche der Medulla oblongata durch Kälteblockade. Pflügers Arch ges Physiol 297:201–220

    Google Scholar 

  • Schmid PG, Guo GB, Abboud FM (1985) Different effects of vasopressin and angiotensin II on baroreflexes. Fed Proc 44:2388–2392

    Google Scholar 

  • Schmitt H, Schmitt H (1969) Localization of the hypotensive effect of 2-(2,6-dichlorphenylamino)-2-imidazoline hydrochloride (St 155, Catapresan). Eur J Pharmacol 6:8–12

    Google Scholar 

  • Schmitt H, Schmitt H, Boissier JR, Giudicelli JF, Fichelle J (1968) Cardiovascular effects of 2-(2,6-dichlorphenylamino)-2-imidazoline hydrochloride (St 155). Eur J Pharmacol 2:340–346

    Google Scholar 

  • Schmitt H, Schmitt H, Fenard S (1971) Evidence for an α-sympathomimetic component in the effects of catapresan on vasomotor centres: antagonism by piperoxane. Eur J Pharmacol 14:98–100

    Google Scholar 

  • Schoener EP, Pitts DK (1985) Cardiovascular effects of centrally perfused clonidine. Eur J Pharmacol 114:297–303

    Google Scholar 

  • Schueler FW (1960) The mechanism of action of the hemicholinium. Int Rev Neurobiol 2:77–97

    Google Scholar 

  • Schwartz J, Reid JA (1981) Effect of vasopressin blockade on blood pressure regulation during haemorrhage in conscious dogs. Endocrinology 109:1778–1780

    Google Scholar 

  • Schwartz JC, Garbarg M, Pollard H (1987) Histaminergic transmission in the brain. In: Pappenheimer JP (ed) Handbook of physiology, The nervous system IV. American Physiological Society, Bethesda, pp 257–316

    Google Scholar 

  • Seller H, Illert M (1969) The localization of the first synapse in the carotid sinus baroreceptor reflex pathway and its alteration of the afferent input. Pflügers Arch ges Physiol 306:1–19

    Google Scholar 

  • Severs WB, Daniels AE, Smookler HH, Kinnard WJ, Buckley JP (1966) Interrelationship between angiotensin II and the sympathetic nervous system. J Pharmacol Exp Ther 153:530–537

    Google Scholar 

  • Shade RE, Share L (1975) Volume control of plasma antidiuretic hormone concentration following acute blood volume expansion in the anaesthetized dog. Endocrinology 97:1048–1057

    Google Scholar 

  • Share L, Levy MN (1962) Cardiovascular receptors and blood titer of antidiuretic hormone. Am J Physiol 203:425–428

    Google Scholar 

  • Shimizu T, Katsuura G, Nakamura M, Nakao K, Morii N, Itoh Y, Shiono S, Imura H (1986) Effect of intracerebroventricular atrial natriuretic polypeptide on blood pressure and urine production in rats. Life Sci 19:1263–1270

    Google Scholar 

  • Shropshire AT, Wendt RL (1983) Failure of naloxone to reduce clonidine-induced changes in blood pressure, heart rate and sympathetic nerve firing in cats. J Pharmacol Exp Ther 224:494–500

    Google Scholar 

  • Shvaloff A, Laguzzi R (1986) Serotonin receptors in the rat nucleus tractus solitarii and cardiovascular regulation. Eur J Pharmacol 132:283–288

    Google Scholar 

  • Silvermann AJ, Zimmerman EA (1983) Magno-cellular neurosecretory system. Annu Rev Neurosci 6:357–380

    Google Scholar 

  • Simantov R, Kuhar MJ, Uhl GR, Snyder SH (1977) Opiate peptide enkephalin: immunohistochemical mapping in rat central nervous system. Proc Natl Acad Sci USA 74:2167–2171

    Google Scholar 

  • Sinha JN, Dhawan KN, Chandra O, Gupta GP (1967) Role of acetylcholine in central vasomotor regulation. Can J Physiol Pharmacol 45:503–507

    Google Scholar 

  • Sinha JN, Gupta ML, Bhargava KP (1969) Effect of histamine and antihistaminics on central vasomotor loci. Eur J Pharmacol 5:235–238

    Google Scholar 

  • Sinha JN, Tangri KK, Bhargava KP, Schmitt H (1975) Central sites of sympatho-inhibitory effects of clonidine and 1-dopa. In: Milliez P, Safar M (eds) Recent advances in hypertension. Boehringer, Ingelheim, pp 97–109

    Google Scholar 

  • Sinha JN, Dietl H, Philippu A (1980) Effect of a fall of blood pressure on the release of catecholamines in the hypothalamus. Life Sci 26:1751–1760

    Google Scholar 

  • Sinha JN, Sharma DK, Gurtu S, Pant KK, Bhargava KP (1984) Nucleus locus coeruleus: evidence for a 1-adrenoceptor mediated hypotension in the cat. Naunyn-Schmiedeberg's Arch Pharmacol 326:193–197

    Google Scholar 

  • Sinha JN, Gurtu S, Sharma DK, Bhargava KP (1985) An analysis of the a-adrenoceptor modulation of vasomotor tone at the level of lateral medullary pressor area (LMPA). Naunyn-Schmiedeberg's Arch Pharmacol 330:163–168

    Google Scholar 

  • Skofitsch G, Jacobowitz DM, Eskay RL, Zamir N (1985) Distribution of atrial natriuretic factor-like immunoreactive neurons in the rat brain. Neuroscience 16:917–948

    Google Scholar 

  • Sladek JR, Walker P (1977) Serotonin-containing neuronal perikarya in the primate locus coeruleus and subcoeruleus. Brain Res 134:359–366

    Google Scholar 

  • Smialowska M, Bal A, Soltys Z, Kaluza J (1985) Monoamine distribution on the ventral surface of the rat medulla oblongata. J Neural Transm 63:13–29

    Google Scholar 

  • Smith ML, Browning RA, Myers JH (1979) In vivo rate of serotonin synthesis in brain and spinal cord of young, spontaneously hypertensive rats. Eur J Pharmacol 53:301–305

    Google Scholar 

  • Smits JF, Struyker-Boudier HA (1976) Intrahypothalamic serotonin and cardiovascular control in rats. Brain Res 111:422–427

    Google Scholar 

  • Smits JFM, Van Essen H, Struyker-Boudier AJ (1978) Serotonin-mediated cardiovascular responses to electrical stimulation of the raphe nuclei in the rat. Life Sci 23:173–178

    Google Scholar 

  • Smolen AJ, Glazer EJ, Ross LL (1979) Horseradish peroxidase histochemistry combined with glyoxylic acid-induced fluorescence used to identify brainstem catecholaminergic neurones which project to the chick thoracic spinal cord. Brain Res 160:353–357

    Google Scholar 

  • Smookler HH, Severs WB, Kinnard WJ, Buckley JP (1966) Centrally mediated cardiovascular effects of angiotensin II. J Pharmacol Exp Ther 153:485–494

    Google Scholar 

  • Smyth HS, Sleight P, Pickering GW (1969) Reflex regulation of arterial pressure during sleep in man. Circ Res 24:109–121

    Google Scholar 

  • Snyder DW, Nathan MA, Reis DJ (1978) Chronic lability of arterial pressure produced by selective destruction of the catecholamine innervation of the nucleus tractus solitarii in the rat. Circ Res 43:662–671

    Google Scholar 

  • Sofroniew MV (1980) Projections from vasopressin, oxytocin and neurophysin neurons to neural targets in the rat and human. J Histochem Cytochem 28:475–478

    Google Scholar 

  • Sofroniew MV (1983) Vasopressin and oxytocin in the mammalian brain and spinal cord. Trends Neurosci 6:467–472

    Google Scholar 

  • Sofroniew MV, Weindl A (1978) Projections from the parvocellular vasopressin-and neurophysin-containing neurons of the suprachiasmatic nucleus. Am J Anat 153:391–430

    Google Scholar 

  • Sofroniew MV, Weindl A, Schrell U, Wetzstein R (1981) Immunohistochemistry of vasopressin, oxytocin and neurophysin in the hypothalamus and extrahypothalamic regions of the human and primate brain. Acta Histochem (Suppl 24): 79–95

    Google Scholar 

  • Spyer KM (1981) Neural organisation and control of the baroreceptor reflex. Rev Physiol Biochem Pharmacol 88:24–124

    Google Scholar 

  • Squadrito F, Quattrone G, Buemi M, Frisina N, Caputi AP, Squadrito G (1985) Role of brain cholinergic system in the antihypertensive effect of clonidine in different models of rat hypertension. J Hypertens 3: S97–S99

    Google Scholar 

  • Starke K (1981) Alpha-adrenoceptor subclassification. Rev Physiol Biochem Pharmacol 88:199–236

    Google Scholar 

  • Starke K, Montel H (1973) Involvement of alpha-receptors in clonidine-induced inhibition of transmitter release from central monoamine neurones. Int J Neuropharmacol 12:1073–1080

    Google Scholar 

  • Starke K, Montel H, Gayk W, Merker R (1974) Comparison of the effects of clonidine on pre-and postsynaptic adrenoceptors in the rabbit pulmonary artery. Naunyn-Schmiedeberg's Arch Pharmacol 285:133–150

    Google Scholar 

  • Starke K, Endo T, Taube HD (1975a) Relative pre-and postsynaptic potencies of alpha-adrenoceptor agonists in the rabbit pulmonary artery. Naunyn-Schmiedeberg's Arch Pharmacol 291:55–78

    Google Scholar 

  • Starke K, Borowski E, Endo T (1975b) Preferential blockade of presynaptic alpha-adrenoceptors by yohimbine. Eur J Pharmacol 34:385–388

    Google Scholar 

  • Steinbusch HWM (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience 6:557–618

    Google Scholar 

  • Steinbusch HWM, Sauren Y, Groenewegen H, Watanabe T, Mulder AH (1986) Histaminergic projections from the premammillary and posterior hypothalamic region to the caudateputamen complex in the rat. Brain Res 368:389–393

    Google Scholar 

  • Struyker-Boudier H, Smeets G, Brouwer G, Van Rossum J (1974) Hypothalamic alpha-adrenergic receptors in cardiovascular regulation. Neuropharmacology 13:837–841

    Google Scholar 

  • Struyker-Boudier H, Smeets G, Brouwer G, Van Rossum JM (1975) Central nervous system alpha-adrenergic mechanisms and cardiovascular regulation in rats. Arch Int Pharmacodyn Ther 213:285–293

    Google Scholar 

  • Sukamoto T, Yamamoto T, Watanabe S, Ueki S (1984) Cardiovascular responses to centrally administered serotonin in conscious normotensive and spontaneously hypertensive rats. Eur J Pharmacol 100:173–179

    Google Scholar 

  • Summy-Long JY, Rosella LM, Keil LC (1981) Effects of centrally administered endogenous opioid peptides on drinking behavior, increased plasma vasopressin concentration and pressor response to hypertonic sodium chloride. Brain Res 221:343–357

    Google Scholar 

  • Sumners C, Phillips MI, Richards EM (1982) Central pressor action of neurotensin in conscious rats. Hypertension 4:888–893

    Google Scholar 

  • Suzuki H, Kondo K, Handa M, Saruta T (1981) Role of the brain iso-renin-angiotensin system in experimental hypertension in rats. Clin Sci 61:175–180

    Google Scholar 

  • Suzuki H, Matsukawa S, Itaya Y, Kageyama Y, Saruta T, Kondo K (1986) Central and peripheral contributions of the renin-angiotensin system in two models of experimental hypertension in rats. Clin Exp Hypertens A8:113–128

    Google Scholar 

  • Sved AF (1985) Clonidine can lower blood pressure by inhibiting vasopressin release. Eur J Pharmacol 109:111–116

    Google Scholar 

  • Sved AF, Blessing WW, Reis DJ (1985) Caudal ventrolateral medulla can alter vasopressin and arterial pressure. Brain Res Bull 14:227–232

    Google Scholar 

  • Svensson TH, Thorén P (1979) Brain noradrenergic neurons in the locus coeruleus: inhibition by blood volume load through vagal afferents. Brain Res 172:174–178

    Google Scholar 

  • Swanson LW, Hartman BK (1975) The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-β-hydroxylase as a marker. J Comp Neurol 163:467–506

    Google Scholar 

  • Swanson LW, Sawchenko PE (1983) Hypothalamic integration: organisation of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 6:269–324

    Google Scholar 

  • Sweet CS, Wenger HC, Gross DM (1979) Central antihypertensive properties of muscimol and related gamma-aminobutyric acid agonists and the interaction of muscimol with baroreceptor reflexes. Can J Physiol Pharmacol 57:600–605

    Google Scholar 

  • Sweet CS, Wenger HC, Taylor DA, Gross DM (1980) Central antihypertensive properties of muscimol and related structures. Brain Res Bull 5:491–496

    Google Scholar 

  • Takano Y, Martin JE, Leeman SE, Loewy AD (1984) Substance P immunoreactivity released from rat spinal cord after kainic acid excitation of the ventral medulla oblongata: a correlation with increases in blood pressure. Brain Res 291:168–172

    Google Scholar 

  • Talman WT, Reis DJ (1981) Baroreflex actions of substance P microinjected into the nucleus tractus solitarii in rat: a consequence of local distortion. Brain Res 220:402–407

    Google Scholar 

  • Talman WT, Snyder D, Reis DJ (1980a) Chronic lability of arterial pressure produced by destruction of A2 catecholaminergic neurons in rat brainstem. Circ Res 46:842–853

    Google Scholar 

  • Talman WT, Perrone MH, Reis DJ (1980b) Evidence for L-glutamate as the neurotransmitter of baroreceptor afferent nerve fibres. Science 209:813–815

    Google Scholar 

  • Talman WT, Granata AR, Reis DJ (1984) Glutamatergic mechanisms in the nucleus tractus solitarius in blood pressure control. Fed Proc 43:39–44

    Google Scholar 

  • Tanaka T, Seki A, Fujii J, Kurihara H, Ikeda M (1982) Norepinephrine turnover in the cardiovascular tissues and brainstem of the rabbit during development of one-kidney and two-kidney Goldblatt hypertension. Hypertension 4:272–278

    Google Scholar 

  • Tanaka I, Misono KS, Inagami T (1984) Atrial natriuretic factor in rat hypothalamus, atria and plasma: determination by specific radioimmunoassay. Biochem Biophys Res Comm 124:663–668

    Google Scholar 

  • Tappaz ML, Brownstein MJ (1977) Origin of glutamate-decarboxylase (GAD)-containing cells in discrete hypothalamic nuclei. Brain Res 132:95–106

    Google Scholar 

  • Tappaz ML, Brownstein MJ, Palkovits M (1976) Distribution of glutamate decarboxylase in discrete brain nuclei. Brain Res 108:371–379

    Google Scholar 

  • Taube HD, Borowski E, Endo T, Starke K (1976) Enkephalin: a potential modulator of noradrenaline release in rat brain. Eur J Pharmacol 38:377–380

    Google Scholar 

  • Tessel RE, Kennedy LE, Burgess SK, Borchardt T (1978) Epinephrine in rat hypothalamus: antagonism by desipramine of 6-hydroxydopamine-induced depletion. Brain Res 153:615–617

    Google Scholar 

  • Timmermans PBMWM, Lam E, Van Zwieten PA (1979) The interaction between prazosin and clonidine at α-adrenoceptors in rats and cats. Eur J Pharmacol 55:57–66

    Google Scholar 

  • Timmermans PBMWM, Schoop AMC, Kwa HY, Van Zwieten PA (1981) Characterization of α-adrenoceptors participating in the central hypotensive and sedative effects of clonidine using yohimbine, rauwolscine and corynanthine. Eur J Pharmacol 70:7–15

    Google Scholar 

  • Toda N, Matsuda Y, Shimanoto K (1969) Cardiovascular effects of sympathomimetic amines injected into the central ventricles of the rabbit. Int J Neuropharmacol 8:451–462

    Google Scholar 

  • Torii S, Kawamura H (1960) Effects of amygdaloid stimulation on blood pressure and electrical activity of hippocampus. Jap J Physiol 10:374–384

    Google Scholar 

  • Tran LD, Montastruc JL, Montastruc P (1982) Effects of lysine-vasopressin and oxytocin on central cardiovascular control. Br J Pharmacol 77:69–73

    Google Scholar 

  • Trendelenburg U (1957) Stimulation of sympathetic centres by histamine. Circ Res 5:105–110

    Google Scholar 

  • Trimarchi GR, Glisson WC, Thomson WM, Vanlingen J, Buccafusco JJ (1986) Cholinergic neurons and the cardiovascular response produced by central injection of substance P in the normotensive rat. Life Sci 39:1579–1588

    Google Scholar 

  • Trolin G (1975) Effects of pentobarbitone and decerebration on the clonidine induced circulatory changes. Eur J Pharmacol 34:1–7

    Google Scholar 

  • Trouth CO, Loeschcke HH, Berndt J, Betzinger EM (1973) Topography of the circulatory responses to electrical stimulation in the medulla oblongata. Relationship to respiratory responses. Pflügers Arch ges Physiol 339:185–201

    Google Scholar 

  • Tuomisto L, Eriksson L (1980) Cardiovascular and behavioural changes after i.c.v. infusions of histamine and agonists in conscious goats. Agents Actions 10:165–166

    Google Scholar 

  • Tuomisto L, Eriksson L, Fyhrquist F (1980) Vasopressin release by histamine in the conscious goat. Eur J Pharmacol 63:15–24

    Google Scholar 

  • Tuomisto L, Yamatodani A, Dietl H, Waldmann U, Philippu A (1983) In vivo release of endogenous catecholamines, histamine and GABA in the hypothalamus of Wistar Kyoto and spontaneously hypertensive rats. Naunyn-Schmiedeberg's Arch Pharmacol 323:183–187

    Google Scholar 

  • Ueda S, Kawata M, Sano Y (1986) Identification of neuropeptide Y immunoreactivity in the suprachiasmatic nucleus and the lateral geniculate nucleus of some mammals. Neurosci Lett 68:7–10

    Google Scholar 

  • Uhl GR, Kuhar MJ, Snyder SH (1977) Neurotensin: immunohistochemical localization in rat central nervous system. Proc Natl Acad Sci USA 74:4059–4063

    Google Scholar 

  • Uhl GR, Goodman RR, Snyder SH (1979) Neurotensin-containing cell bodies, fibers and nerve terminals in the brainstem of the rat: immunohistochemical mapping. Brain Res 167:77–91

    Google Scholar 

  • Undesser KP, Hasser EM, Haywood JR, Johnson AK, Bishop VS (1985) Interaction of vasopressin with the area postrema in arterial baroreflex function in conscious rabbits. Circ Res 56:410–417

    Google Scholar 

  • Unger T, Rascher W, Schuster C, Pavlovitch R, Schömig A, Dietz, R, Ganten D (1981) Central blood pressure effects of substance P and angiotensin II: role of the sympathetic nervous system and vasopressin. Eur J Pharmacol 71:33–42

    Google Scholar 

  • Unger T, Bles F, Ganten D, Lang RE, Rettig R, Schwab NA (1983) GABAergic stimulation inhibits central actions of angiotensin II: pressor responses, drinking and release of vasopressin. Eur J Pharmacol 90:1–9

    Google Scholar 

  • Unger T, Rohmeiss P, Demmert G, Ganten D, Lang RE, Luft FC (1986) Differential modulation of the baroreceptor reflex by brain and plasma vasopressin. Hypertension 8:157–166

    Google Scholar 

  • Ungerstedt U (1971) Stereotaxic mapping of monoamine pathways in the rat brain. Acta Physiol Scand [Suppl] 367:1–48

    Google Scholar 

  • Unnerstall JR, Kopajtic TA, Kuhar MJ (1984) Distribution of alpha-2-agonist binding sites in the rat and human central nervous system: analysis of some functional, anatomical correlates of the pharmacological effects of clonidine and related adrenergic agents. Brain Res Rev 7:69–101

    Google Scholar 

  • U'Prichard DC, Greenberg DA, Snyder SH (1977) Binding characteristics of a radiolabeled agonist and antagonist at central nervous system alpha noradrenergic receptors. Mol Pharmacol 13:454–473

    Google Scholar 

  • Vallejo M, Lightman SL (1986) Pressor effect of centrally administered neuropeptide Y in rats: role of sympathetic nervous system and vasopressin. Life Sci 38:1859–1866

    Google Scholar 

  • Vallejo M, Carter DA, Lightman SL (1984) Haemodynamic effects of arginine-vasopressin microinjections into the nucleus tractus solitarius: a comparative study of vasopressin, a selective vasopressin receptor agonist and antagonist, and oxytocin. Neurosci Lett 52:247–252

    Google Scholar 

  • Van den Buuse M, De Kloet ER, Versteeg DHG, De Jong W (1984a) Regional brain catecholamine levels and the development of hypertension in the spontaneously hypertensive rat: the effect of 6-hydroxydopamine. Brain Res 301:221–229

    Google Scholar 

  • Van den Buuse M, Versteeg DH, De Jong W (1984b) Role of dopamine in the development of spontaneous hypertension. Hypertension 6:899–905

    Google Scholar 

  • Van den Buuse M, Versteeg DH, De Jong W (1986) Brain dopamine-depletion by lesions in the substantia nigra attenuates the development of hypertension in the spontaneously hypertensive rat. Brain Res 368:69–78

    Google Scholar 

  • Van der Gugten J, Palkovits M, Wijnen HLJ, Versteeg DHG (1976) Regional distribution of adrenaline in the rat brain. Brain Res 107:171–175

    Google Scholar 

  • Van Wimersma GTB, Thody TJ, Verspaget H, De Rotte GA, Goedemans HJH, Croiset G, Van Ree JM (1979) Effects of morphine and β-endorphin on basal and elevated plasma levels of α-MSH and vasopressin. Life Sci 24:579–586

    Google Scholar 

  • Varagić V (1955) The action of eserine on the blood pressure of the rat. Br J Pharmacol 10:349–353

    Google Scholar 

  • Varagić V, Vojvodić N (1962) Effect of guanethidine, hemicholinium and mebutamate on the hypertensive response to eserine and catecholamines. Br J Pharmacol 19:451–457

    Google Scholar 

  • Vargish T, Reynolds DG, Gurll NJ, Lechner RB, Holaday JW, Faden AI (1980) Naloxone reversal of hypovolemic shock in dogs. Circ Shock 7:31–38

    Google Scholar 

  • Veening JG, Swanson LW, Sawchenko PE (1984) The organization of projections from the central nucleus of the amygdala to brainstem sites involved in central autonomic regulation: a combined retrograde transport immunohistochemical study. Brain Res 303:337–357

    Google Scholar 

  • Versteeg DHG, Palkovits M, Van der Gugten J, Wijnen HLJM, Smeets GWM, De Jong W (1976) Catecholamine content of individual brain regions of spontaneously hypertensive rats (SH-rats). Brain Res 112:429–434

    Google Scholar 

  • Versteeg CAM, Bohus B, De Jong W (1982) Attenuation by arginine-and desglycinamidelysine-vasopressin of a centrally evoked pressor response. J Auton Nerv Syst 6:253–262

    Google Scholar 

  • Vincent SR, Johansson O, Hökfelt T, Meyerson B, Sachs C, Elde RP, Terenius L, Kimmel J (1982) Neuropeptide coexistence in human cortical neurones. Nature 298:65–67

    Google Scholar 

  • Virus RM, McManus DQ, Gebhart GF (1983) Capsaicin treatment in adult Wistar Kyoto and spontaneously hypertensive rats: neurochemical effects in the spinal cord. Eur J Pharmacol 92:1–8

    Google Scholar 

  • Vlahakos D, Gavras I, Gavras H (1985) Alpha-adrenoceptor agonists applied in the area of the nucleus tractus solitarii in the rat: effect of anesthesia on cardiovascular responses. Brain Res 347:372–375

    Google Scholar 

  • Vollmer RR, Buckley JP (1977) Central cardiovascular effects of phentolamine in chloralose anaesthetized cats. Eur J Pharmacol 43:17–25

    Google Scholar 

  • Voorn P, Buijs RM (1983) An immuno-electron microscopical study comparing vasopressin, oxytocin, substance P and enkephalin containing nerve terminals in the nucleus of the solitary tract of the rat. Brain Res 270:169–173

    Google Scholar 

  • Wahlestedt C, Skagerberg G, Hakånson R, Sundler F, Wada H, Watanabe T (1985) Histamine in the central nervous system. Spinal projections of hypothalamic histidine decarboxylase-immunoreactive neurones. Agents Actions 16:231–233

    Google Scholar 

  • Ward DG, Lefcourt AM, Gann DS (1980) Neurons in the dorsal rostral pons process information about changes in venous return and in arterial pressure. Brain Res 181:75–88

    Google Scholar 

  • Warnke E, Hoefke W (1977) Influence of central pretreatment with 6-hydroxydopamine on the hypotensive effect of clonidine. Arzneim Forsch 27:2311–2313

    Google Scholar 

  • Watanabe T, Taguchi Y, Hayashi H, Tanaka J, Shiosaka S, Tohyama M, Kubota H, Terano Y, Wada H (1983) Evidence for the presence of a histaminergic neuron system in the rat brain: an immunohistochemical analysis. Neurosci Lett 39:249–254

    Google Scholar 

  • Watanabe T, Taguchi Y, Shiosaka S, Tanaka J, Kubota H, Terano Y, Tohyama M, Wada H (1984) Distribution of the histaminergic neuron system in the central nervous system of rats; a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res 295:13–25

    Google Scholar 

  • Watkins J, Fitzgerald G, Zamboulis C, Brown MJ, Dollery CT (1980) Absence of opiate and histamine H2 receptor-mediated effects of clonidine. Clin Pharmacol Ther 28:605–610

    Google Scholar 

  • Watson SJ, Akil H, Sullivan S, Barchas JD (1977) Immunocytochemical localization of methionine enkephalin: preliminary observation. Life Sci 21:731–738

    Google Scholar 

  • Weber E, Barchas JD (1983) Immunohistochemical distribution of dynorphin B in rat brain: relation to dynorphin A and α-neo-endorphin systems. Proc Natl Acad Sci USA 80:1125–1129

    Google Scholar 

  • Weitzell R, Tanaka T, Starke K (1979) Pre-and postsynaptic effects of yohimbine stereoisomers on noradrenergic transmission in the pulmonary artery of the rabbit. Naunyn-Schmiedeberg's Arch Pharmacol 308:127–136

    Google Scholar 

  • Westerink BHC, De Vries JB (1985) On the origin of dopamine and its metabolite in predominantly noradrenergic innervated brain areas. Brain Res 330:164–166

    Google Scholar 

  • Westlund KN, Bowker RM, Ziegler MG, Coulter JD (1981) Origins of spinal noradrenergic pathways demonstrated by retrograde transport of antibodies to DBH. Neurosci Lett 25:243–249

    Google Scholar 

  • Westlund KN, Bowker RM, Ziegler MG, Coulter JD (1983) Noradrenergic projections to the spinal cord of the rat. Brain Res 263:15–31

    Google Scholar 

  • Weyhenmeyer JA, Phillips MI (1982) Angiotensin-like immunoreactivity in the brain of the spontaneously hypertensive rat. Hypertension 4:514–523

    Google Scholar 

  • White T (1961) Some effects of histamine and two histamine metabolites on catecholamine containing neurones in the rat brain. J Physiol (Lond) 159:198–202

    Google Scholar 

  • Wible JH Jr, Luft FC, Di Micco JA (1988) Hypothalamic GABA suppresses sympathetic outflow to the cardiovascular system. Am J Physiol 254:R680–R687

    Google Scholar 

  • Wijnen HJLM, Versteeg DHG, Palkovits M, De Jong W (1977) Increased adrenaline content of individual nuclei of the hypothalamus and the medulla oblongata of genetically hypertensive rats. Brain Res 135:180–185

    Google Scholar 

  • Wijnen HJLM, Palkovits M, De Jong W, Versteeg DHG (1978) Elevated adrenaline content in nuclei of the medulla oblongata and the hypothalamus during the development of spontaneous hypertension. Brain Res 157:191–195

    Google Scholar 

  • Wijnen HJ, Spierenburg HA, De Kloet ER, De Jong W, Versteeg DHG (1980a) Decrease in noradrenergic activity in hypothalamic nuclei during the development of spontaneous hypertension. Brain Res 184:153–162

    Google Scholar 

  • Wijnen HJLM, De Kloet ER, Versteeg DHG, De Jong W (1980b) Noradrenaline concentration and turnover in nuclei of the hypothalamus and the medulla oblongata at two stages in the development of renal hypertension in the rat. Brain Res 198:411–417

    Google Scholar 

  • Wilcox BJ, Seybold VS (1982) Localization of neuronal histamine in rat brain. Neurosci Lett 29:105–110

    Google Scholar 

  • Wilkening D, Dvorkin B, Makman MH, Lew JY, Matsumoto J, Baba Y, Goldstein M, Fuxe K (1980) Catecholamine-stimulated cyclic AMP formation in phenylethanolamine-N-methyltransferase containing brainstem nuclei of normal rats and of rats with spontaneous genetic hypertension. Brain Res 186:133–143

    Google Scholar 

  • Willette RN, Krieger AJ, Barcas PP, Sapru HN (1983) Medullary gamma-aminobutyric acid (GABA) receptors and the regulation of blood pressure in the rat. J Pharmacol Exp Ther 226:893–899

    Google Scholar 

  • Willette RN, Barcas PP, Krieger AJ, Sapru HN (1984a) Endogenous GABAergic mechanisms in the medulla and the regulation of blood pressure. J Pharmacol Exp Ther 230:34–39

    Google Scholar 

  • Willette RN, Punnen S, Krieger AJ, Sapru HN (1984b) Hypertensive response following stimulation of opiate receptors in the caudal ventrolateral medulla. Neuropharmacology 23:401–406

    Google Scholar 

  • Willette RN, Punnen S, Krieger AJ, Sapru HN (1984c) Cardiovascular control by cholinergic mechanisms in the rostral ventrolateral medulla. J Pharmacol Exp Ther 231:457–463

    Google Scholar 

  • Williford DJ, Hamilton BL, Souza JD, Williams TP, DiMicco JA, Gillis RA (1980) Central nervous system mechanisms involving GABA influence arterial pressure and heart rate in the rat. Circ Res 47:80–88

    Google Scholar 

  • Wolf WA, Kuhn DM, Lovenberg W (1981) Blood pressure responses to local application of serotonergic agents in the nucleus tractus solitarii. Eur J Pharmacol 69:291–299

    Google Scholar 

  • Wong TM, Chan SH, Tse SY (1984) Central cardiovascular actions of D-Ala2-Met5-enkephalinamide in the rat: effects of naloxone and nucleus reticularis gigantocellularis lesion. Neurosci Lett 46:249–254

    Google Scholar 

  • Woodruff ML, Baisden RH, Whittington DL (1986) Effects of electrical stimulation of the pontine A5 cell group on blood pressure and heart rate in the rabbit. Brain Res 379:10–23

    Google Scholar 

  • Xie CW, Tang J, Han JS (1986) Clonidine stimulated the release of dynorphin in the spinal cord of the rat: a possible mechanism for its depressor effects. Neurosci Lett 65:224–228

    Google Scholar 

  • Yamada KA, Norman WP, Hamosh P, Gillis RA (1982) Medullary ventral surface GABA receptors affect respiratory and cardiovascular function. Brain Res 248:71–78

    Google Scholar 

  • Yamada KA, McAllen RM, Loewy AD (1984) GABA antagonists applied to the ventral surface of the medulla oblongata block the baroreceptor reflex. Brain Res 297:175–180

    Google Scholar 

  • Yamada S, Ishima T, Ashizawa N, Hayashi M, Tomita T, Hayashi E (1985) Specific increase of hypothalamic α 1-adrenoceptors in spontaneously hypertensive rats: effect of hypotensive drug treatment. Brain Res 344:127–133

    Google Scholar 

  • Yamori Y, Ooshima A, Nosaka A, Okamoto K (1972) Metabolic basis for central blood pressure regulation in spontaneously hypertensive rats. In: Okamoto K (ed) Spontaneous hypertension. Its pathogenesis and complications. Igaku Shoin, Tokyo, pp 73–78

    Google Scholar 

  • Yang CP, Lin MT (1983) Amino acids injected into the cerebroventricular system induce an enhancement of reflex bradycardia in the rat. Neuropharmacology 22:1190–1193

    Google Scholar 

  • Yasuhara H, Tonooka M, Wada I, Oguchi K, Sakamoto K, Kamijo K (1983) Hemodynamics and monoamine oxidase activity in spontaneously hypertensive rats (SHR) J Pharmacol 33:1057–1064

    Google Scholar 

  • Ylitalo P, Karppanen H, Paasonen MK (1974) Is the area postrema a control center of blood pressure? Nature (Lond) 247:58–59

    Google Scholar 

  • Yoshida M, Nagatsu I, Karasawa N, Kondo Y, Ohno T, Nagatsu T (1982) Immunohistochemical localization of tyrosine hydroxylase and serotonin in the brains of golden hamster. Acta Histochem Cytochem 15:827–841

    Google Scholar 

  • Yukimura T, Fuxe K, Ganten D, Andersson K, Härfstrand A, Unger T, Agnati LF (1981) Acute sino-aortic denervation in rats produces a selective increase of adrenaline turnover in the dorsal midline area of the caudal medulla oblongata and a reduction of adrenaline levels in the anterior and posterior hypothalamus. Eur J Pharmacol 69:361–365

    Google Scholar 

  • Zamir N, Gutman Y, Ben-Ishay D (1979) Experimental hypertension and catecholamine distribution in the rat brain. Brain Res 171:101–112

    Google Scholar 

  • Zandberg P, Palkovits M, De Jong W (1977) The area postrema and control of arterial blood pressure; absence after excision of the area postrema in rats. Pflüger's Arch ges Physiol 372:169–173

    Google Scholar 

  • Zandberg P, De Jong W, De Wied D (1979) Effects of catecholamine-receptor stimulating agents on blood pressure after local application in the nucleus tractus solitarii of the medulla oblongata. Eur J Pharmacol 55:43–56

    Google Scholar 

  • Zawoiski EJ (1980) Central actions of norepinephrine, phentolamine and 6-hydroxydopamine in spontaneously hypertensive rats. Arch Int Pharmacodyn Ther 247:103–118

    Google Scholar 

  • Zerbe RL, Bayorh MA, Feuerstein G (1982) Vasopressin: an essential pressor factor for blood pressure recovery following haemorrhage. Peptides 3:509–514

    Google Scholar 

  • Zukowska-Grojec Z, Bayorh MA, Zerbe RL, Palkovits M, Kopin IJ (1983) Role of catecholamines and vasopressin in cardiovascular responses to bilateral dorsolateral transection of the medulla oblongata in the rat. Hypertension 5:908–915

    Google Scholar 

  • Zukowska-Grojec Z, Zerbe RL, Jimerson DC, Bayorh MA, Palkovits M, Kopin IJ (1985) Catecholaminergic activity of the baroreceptor areas of the brain in response to bilateral dorsolateral transection of medulla oblongata in rats. Brain Res 325:231–240

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag

About this chapter

Cite this chapter

Philippu, A. (1988). Regulation of blood pressure by central neurotransmitters and neuropeptides. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 111. Reviews of Physiology, Biochemistry and Pharmacology, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0033872

Download citation

  • DOI: https://doi.org/10.1007/BFb0033872

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19156-8

  • Online ISBN: 978-3-540-39128-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics