Skip to main content

The modulation of neurotransmitter release at synaptic junctions

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 98

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 98))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abood LG, Koketsu K, Miyamoto A (1962) Outflux of various phosphates during membrane depolarization of excitable tissues. Am J Physiol 202:469–474

    PubMed  Google Scholar 

  • Aghajanian GK, Bunney BS (1977) Dopamine “autoreceptors”: Pharmacological characterization by microiontophoretic single-cell recording studies. Naunyn Schmiedebergs Arch Pharmacol 297:1–7

    Article  PubMed  Google Scholar 

  • Allshire AP, Heffron JJA (1979) Effect of magnesium ions on respiratory-and ATP-supported calcium binding by rat heart mitochondria. Biochem Soc Trans 7:513–514

    PubMed  Google Scholar 

  • Alnaes E, Rahamimoff R (1974) Dual action of praseodymium (Pr3+) on transmitter release at the frog neuromuscular synapse. Nature 247:478–479

    Article  PubMed  Google Scholar 

  • Alnaes E, Rahamimoff R (1975) On the role of mitochondria in transmitter release from motor nerve terminals. J Physiol 248:285–306

    PubMed  Google Scholar 

  • Andersen P, Sundberg SH, Sveen O, Wigstrom H (1977) Specific long-lasting potentiation of synaptic transmission in hippocampal slices. Nature 266:736–737

    Google Scholar 

  • Angus JA, Korner PI (1980) Evidence against presynaptic α-adrenoceptor modulation of cardiac sympathetic transmission. Nature 286:288–290

    Article  PubMed  Google Scholar 

  • Anttila P, Vapaatalo H (1972) Decreased toxicity of d-tubocurarine after pretreatment with drugs elevating the intracellular level of cAMP in mice. Naunyn Schmiedebergs Arch Pharmacol 273:175–178

    Article  PubMed  Google Scholar 

  • Arbilla S, Kamal L, Langer SZ (1979) Presynaptic GABA autoreceptors on GABAergic nerve endings of the rat substantia nigra. Eur J Pharmacol 57:211–217

    Article  PubMed  Google Scholar 

  • Ashley CC, Ellory JC (1972) The efflux of magnesium from single crustacean muscle fibres. J Physiol 226:653–674

    PubMed  Google Scholar 

  • Atwood HL, Johnston HS (1968) Neuromuscular synapses of a crab motor axon. J Exp Zool 167:457–470

    Article  Google Scholar 

  • Atwood HL, Morin WA (1970) Neuromuscular and axo-axonal synapses of the cray-fish opener muscle. J Ultrastruct Res 32:351–369

    Article  PubMed  Google Scholar 

  • Atwood HL, Parnas I (1968) Synaptic transmission in crustacean muscles with dual motor innervation. Comp Biochem Physiol 27:381–404

    Article  Google Scholar 

  • Auerbach A, Betz W (1971) Does curare affect transmitter release? J Physiol 213:691–705

    PubMed  Google Scholar 

  • Axelsson J, Thesleff S (1958) The desensitizing effect of acetylcholine on the mammalian motor end-plate. Acta Physiol Scand 43:15–26

    PubMed  Google Scholar 

  • Baker PF (1972) Transport and metabolism of calcium ions in nerves. Prog Biophys Mol Biol 24:177–223

    Article  PubMed  Google Scholar 

  • Baker PF (1976) Regulation of intracellular Ca and Mg in squid axons. Fed Proc 35:2589–2595

    PubMed  Google Scholar 

  • Baker PF, Crawford C (1972) Mobility and transport of magnesium in squid giant axons. J Physiol 227:855–874

    PubMed  Google Scholar 

  • Baker PF, Schlaepfer W (1975) Calcium uptake by axoplasm extruded from giant axons of Loligo. J Physiol 249:37–38

    Google Scholar 

  • Baker PF, Blaustein MP, Hodgkin AL, Steinhardt RA (1967) The effect of sodium concentration on calcium movements in giant axons of Loligo forbesi. J Physiol 192:43P

    Google Scholar 

  • Balnave RJ, Gage PW (1974) On facilitation of transmitter release at the toad neuromuscular junction. J Physiol 239:657–675

    PubMed  Google Scholar 

  • Barker JL, Nicoll RA, Padjen A (1975) Studies on convulsants in the isolated frog spinal cord. II. Effects on root potentials. J Physiol 245:537–548

    PubMed  Google Scholar 

  • Barrett, EF, Magleby KL (1976) Physiology of cholinergic transmission. In: Goldberg AM, Hanin I (eds) Cholinergic function. Raven, New York, pp 29–100

    Google Scholar 

  • Barrett EF, Stevens CF (1972) The kinetics of transmitter release at the frog neuromuscular junction. J Physiol 227:691–708

    PubMed  Google Scholar 

  • Barron DH, Matthews BHC (1938) Interpretation of potential changes in the spinal cord. J Physiol 92:276–321

    Google Scholar 

  • Beani L, Bianchi C, Ledda F (1964) The effect of tubocurarine on acetylcholine release from motor nerve terminals. J Physiol 174:172–183

    PubMed  Google Scholar 

  • Bennett MR, Fisher C (1977) The effect of calcium ions on the binomial parameters that control acetylcholine release during transmission of nerve impulse at amphibian neuromuscular synapses. J Physiol 271:673–698

    PubMed  Google Scholar 

  • Bennett MR, Florin T (1974) A statistical analysis of the release of acetylcholine at newly formed synapses in striated muscle. J Physiol 283:93–107

    Google Scholar 

  • Bennett MR, McLachlan EM (1972) An electrophysiological analysis of the synthesis of acetylcholine in preganglionic nerve terminals. J Physiol 221:669–682

    PubMed  Google Scholar 

  • Bennett MR, Florin T, Hall R (1975) The effect of calcium ions on the binomial statistic parameters which control acetylcholine release at synapses in striated muscle. J Physiol 247:429–446

    PubMed  Google Scholar 

  • Bennett MR, Florin T, Pettigrew AG (1976) The effect of calcium ions on the binomial statistic parameters that control acetylcholine release at preganglionic nerve terminals. J Physiol 257:597–620

    PubMed  Google Scholar 

  • Beranek R, Vyskočil F (1967) The action of tubocurarine and atropine on the normal and denervated rat diaphragm. J Physiol 188:53–66

    PubMed  Google Scholar 

  • Beswick FG, Conroy RJWL (1965) Optimal tetanic conditioning of heteronymous monosynaptic reflexes. J Physiol 180:134–146

    PubMed  Google Scholar 

  • Betz, WJ (1970) Depression of transmitter release at the neuromuscular junction of the frog. J Physiol 206:629–644

    PubMed  Google Scholar 

  • Bianchi CP (1961) The effect of caffeine on radiocalcium movement in frog sartorius. J Gen Physiol 44:848–858

    Article  Google Scholar 

  • Bianchi CP (1968) Cell calcium. Butterworth, London

    Google Scholar 

  • Birks RI (1963) The role of sodium ions in the metabolism of acetylcholine. Can J Biochem Physiol 41:2573–2597

    PubMed  Google Scholar 

  • Birks RI, Cohen WM (1965) Effects of sodium on transmitter release from frog motor nerve terminals. In: Paul WM, Daniel EE, Kay CM, Monckton G (eds) Muscle. Pergamon, London, pp 403–420

    Google Scholar 

  • Birks RI, Cohen WM (1968a) The action of sodium pump inhibitors on neuromuscular transmission. Proc R Soc Lond (Biol) 170:381–399

    Google Scholar 

  • Birks RI, Cohen MW (1968b) The influence of internal sodium on the behavior of motor nerve endings. Proc R Soc Lond (Biol) 170:401–421

    Google Scholar 

  • Bittner GD, Harrison J (1971) A reconsideration of the Poisson hypothesis for transmitter release at the crayfish neuromuscular junction. J Physiol 218:757–767

    PubMed  Google Scholar 

  • Blaber LC (1970) The effect of facilitatory concentration of decamethonium on the storage and release of transmitter at the neuromuscular junction of the cat. J Pharmacol Exp Ther 175:664–672

    PubMed  Google Scholar 

  • Blaber LC (1973) The prejunctional actions of some non-depolarizing blocking drugs. Br J Pharmacol 47:109–116

    PubMed  Google Scholar 

  • Blaustein MP (1974) The interrelationship between sodium and calcium fluxes across cell membranes. Rev Physiol Biochem Pharmacol 70:33–82

    PubMed  Google Scholar 

  • Blaustein MP, Russel JM, de Weer P (1974) Calcium efflux from internally dialysed squid axons: the influence of external and internal cations. J Supramol Struct Biochem 2:558–581

    Article  Google Scholar 

  • Blaustein MP, Ratzlaff RW, Schweitzer ES (1978a) Calcium buffering in presynaptic nerve terminals. II. Kinetic properties of the nonmitochondrial Ca sequestration mechanism. J Gen Physiol 72:43–66

    Article  PubMed  Google Scholar 

  • Blaustein MP, Ratzlaff RW, Kendrick NC, Schweitzer ES (1978b) Calcium buffering in presynaptic nerve terminals. I. Evidence for involvement of a nonmitochondrial ATP-dependent sequestration mechanism. J Gen Physiol 72:15–41

    Article  PubMed  Google Scholar 

  • Blioch ZL, Glagoleva IM, Liberman EA, Nenashev VA (1968) A study of the mechanism of quantal transmitter release at a chemical synapse. J Physiol 199:11–35

    PubMed  Google Scholar 

  • Bliss TVP, Gardner-Medwin AR (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the unanesthetized rabbit following stimulation of the perforant path. J Physiol 232:357–374

    PubMed  Google Scholar 

  • Bliss TVP, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    PubMed  Google Scholar 

  • Bowman WC, Raper C (1967) Adrenotropic receptors in skeletal muscle. Ann NY Acad Sci 139:741–753

    PubMed  Google Scholar 

  • Boyd TE (1932) Recovery of the tongue from curare paralysis following prolonged stimulation of the hypoglossal nerve. Am J Physiol 100:569–575

    Google Scholar 

  • Braun M, Schmidt RF (1966) Potential changes recorded from the frog motor nerve terminal during its activation. Pflügers Arch ges Physiol 287:56–80

    Article  Google Scholar 

  • Braun M, Schmidt, RF, Zimmerman M (1966) Facilitation of the frog neuromuscular junction during and after repetitive stimulation. Pflügers Arch ges Physiol 287:41–55

    Article  Google Scholar 

  • Breckenridge B, Burn JH, Matschinsky FM (1967) Theophylline, epinephrine and neostigmine facilitation of neuromuscular transmission. Proc Natl Acad Sci 57:1893–1897

    PubMed  Google Scholar 

  • Bremer F (1929) Nouvelles recherches sur la sommation d'influx nerveux. Compt rend soc biol 102:332–336

    Google Scholar 

  • Bremer F, Kleyntjens F (1934) Étude de phénomène de la facilitation centrale. Ann Physiol Physiochim biol 10:874–879

    Google Scholar 

  • Brennan MJ, Cantrill RC (1979a) The effect of delta-aminolaevulinic acid on the uptake and efflux of [3H]GABA in rat brain synaptosomes. J Neurochem 32:1781–1786

    PubMed  Google Scholar 

  • Brennan MJ, Cantrill RC (1979b) δ-aminolaevulinic acid is a potent agonist for GABA autoreceptors. Nature 280:514–515

    Article  PubMed  Google Scholar 

  • Brooks VB, Thies RE (1962) Reduction of quantum content during neuromuscular transmission. J Physiol 162:298–310

    Google Scholar 

  • Brooks C, Downman CBB, Eccles JC (1950) Afterpotentials and excitability of spinal motoneurones following orthodromic activation. J Neurophysiol 13:157–176

    Google Scholar 

  • Brostrom CO, Huang Y-C, Breckenridge B, Wolff DJ (1975) Identification of a calcium-dependent regulator of brain adenylate cyclase. Proc Natl Acad Sci 72:64–68

    PubMed  Google Scholar 

  • Brown GL, Feldberg W (1936) The acetylcholine metabolism of a sympathetic ganglion. J Physiol 88:265–283

    Google Scholar 

  • Brown GL, Gillespie JS (1956) Output of sympathin from the spleen. Nature 178:980

    PubMed  Google Scholar 

  • Brown GL, Gillespie JS (1957) The output of sympathetic transmitter from the spleen of the cat. J Physiol 138:81–102

    PubMed  Google Scholar 

  • Brown GL, Harvey AM (1941) Neuromuscular transmission in the extrinsic muscles of the eye. J Physiol 99:379–399

    Google Scholar 

  • Brown TH, Perkel DH, Feldman MW (1976) Evoked transmitter release: statistical effects of nonuniformity and nonstationarity. Proc Natl Acad Sci 73:2913–2917

    Google Scholar 

  • Brunelli M, Castellucci V, Kandel ER (1976) Synaptic facilitation and behavioral sensitization in Aplysia: possible role of serotonin and cyclic AMP. Science 194:1178–1181

    PubMed  Google Scholar 

  • Bunney BS, Aghajanian GK (1975) In: Usdin E, Bunney WE Jr (eds) Pre-and postsynaptic receptors. Marcel Dekker, New York, pp 89–122

    Google Scholar 

  • Burgen A, Kosterlitz HW, Iversen LL (1980) Neuroactive peptides. Proc R Soc Lond (Biol) 210:1–195

    Google Scholar 

  • Burgess GM, Claret M, Jenkinson D (1979) Effects of catecholamines, ATP and A23187 on potassium and calcium movements in isolated hepatocytes. Nature 279:544–546

    Article  PubMed  Google Scholar 

  • Burke BE, De Lorenzo RJ (1981) Ca2+-and calmodulin-stimulated endogenous phosphorylation of neurotubulin. Proc Natl Acad Sci 78:991–995

    PubMed  Google Scholar 

  • Burke RE, Rudomin P (1977) Spinal neurons and synapses. In: Kandel ER (ed) Handbook of physiology, vol I. American Physiol Soc, Bethesda, MD, pp 877–944

    Google Scholar 

  • Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    PubMed  Google Scholar 

  • Burnstock G (1975) Purinergic transmission. In: Iversen LL, Iversen SD, Synder SH (eds) Handbook of psychopharmacology, vol 5. Plenum, New York, pp 131–194

    Google Scholar 

  • Burnstock G (1978) A basis for distinguishing two types of purinergic receptor. In: Straub RW, Bolis L (eds) Cell membrane receptors for drugs and hormones. Raven, New York, pp 107–118

    Google Scholar 

  • Callec JJ, Guillet JC, Pichon Y, Boistel J (1971) Further studies on synaptic transmission in insects. II. Relations between sensory information and its synaptic integration at the level of a single giant axon in the cockroach. J Exp Biol 55:123–149

    PubMed  Google Scholar 

  • Carafoli E, Malmstrom K, Capano M, Crompton M (1975) Mitochondria and the regulation of cell calcium. In: Symposium on calcium transport in contraction and secretion. Carlo Erba Foundation, Milan, pp 13–14

    Google Scholar 

  • Carlsson A (1975a) In: Usdin E, Bunney WE Jr (eds) Pre-and postsynaptic receptors. Marcel Dekker, New York, pp 49–65

    Google Scholar 

  • Carlsson A (1975b) Dopaminergic autoreceptors. In: Almgren O, Carlsson A, Engel J (eds) Chemical tools in catecholamine research II. Elsevier, Amsterdam, pp 219–225

    Google Scholar 

  • Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Tox 20:140–144

    Google Scholar 

  • Carlsson A, Kehr W, Lindqvist M, Magnusson T, Atack CV (1972) Regulation of monoamine metabolism in the central nervous system. Pharmacol Rev 24:371–384

    PubMed  Google Scholar 

  • Castellucci VF, Kandel ER (1976) Presynaptic facilitation as a mechanism for behavioral sensitization in Aplysia. Science 194:1176–1178

    PubMed  Google Scholar 

  • Castellucci VF, Pinsker H, Kupferman I, Kandel ER (1970) Neuronal mechanism of habituation and dishabituation of the gill-withdrawal reflex in Aplysia. Science 167:1745–1748

    PubMed  Google Scholar 

  • Cedar H, Schwartz JH (1972) Cyclic adenosine monophosphate in the nervous system of Aplysia california. II. Effect of serotonin and dopamine. J Gen Physiol 60:570–587

    Article  PubMed  Google Scholar 

  • Cedar H, Kandel ER, Schwartz JH (1972) Cyclic adenosine monophosphate in the nervous system of Aplysia californica. I. Increased synthesis in response to synaptic stimulation. J Gen Physiol 60:558–569

    Article  PubMed  Google Scholar 

  • Cerrito F, Raiteri M (1979) Serotonin release is modulated by presynaptic autoreceptors. Eur J Pharmacol 57:427–430

    Article  PubMed  Google Scholar 

  • Chang CC, Lee CY (1963) Isolation of neurotoxins from the venom of Bungarus multi-cinctus and their modes of neuromuscular blocking action. Arch Int Pharmacodyn Ther 144:241–257

    PubMed  Google Scholar 

  • Chang CC, Cheng HC, Chen TF (1967) Does tubocurarine inhibit the release of acetylcholine from motor nerve endings? Jpn J Physiol 17:505–515

    PubMed  Google Scholar 

  • Charlton MP, Atwood HL (1977) Modulation of transmitter release by intracellular sodium in squid giant synapse. Brain Res 134:367–371

    Article  PubMed  Google Scholar 

  • Charlton MP, Thompson CS, Atwood HL, Farnell B (1980) Synaptic transmission and intracellular sodium: ionophore-induced sodium loading of nerve terminals. Neurosci Lett 16:193–196

    Article  PubMed  Google Scholar 

  • Chasin M, Harris DN, Phillips MB, Hess SM (1972) 1-ethyl-4-(isopropropylidenehydrazino)-1 H-pyrazolo-(2,4-b)-pyridine-5 carboxylic acid ethyl ester hydrochloride (SQ 20,009) — a potent new inhibitor of cyclic 3',5'-nucleotide phosphodiesterases. Biochem Pharmacol 21:2443–2450

    Article  PubMed  Google Scholar 

  • Cheung WY (1970) Cyclic 3′,5′-nucleotide phosphodiesterase: demonstration of an activator. Biochem Biophys Comm 38:533–538

    Article  Google Scholar 

  • Collier B, Ilson D (1977) The effect of preganglionic nerve stimulation on the accumulation of certain analogues of choline by a sympathetic ganglion. J Physiol 264:489–509

    PubMed  Google Scholar 

  • Colomo F, Rahaminoff R (1968) Interaction between sodium and calcium ions in the process of transmitter release at the neuromuscular junction. J Physiol 198:203–218

    Google Scholar 

  • Colquhoun D, Dreyer F, Sheridan RE (1978) The action of tubocurarine at the neuromuscular junction. J Physiol 284:171P

    Google Scholar 

  • Colquhoun D, Dreyer F, Sheridan RE (1979) The actions of tubocurarine at the frog neuromuscular junction. J Physiol 293:247–284

    PubMed  Google Scholar 

  • Cooke JD, Quastel DMJ (1973) The specific effect of potassium on transmitter release by motor nerve terminals and its inhibition by calcium. J Physiol 228:435–458

    PubMed  Google Scholar 

  • Coraboeuf E, Le Dousrin G, Obrecht-Coutris G (1970) Release of acetylcholine by chick embryo heart before innervation. J Physiol 206:383–395

    PubMed  Google Scholar 

  • Cowan SL (1936) The effect of certain substances on the transmission of excitation from motor nerve to voluntary muscle. J Physiol 86:61–62

    Google Scholar 

  • Cubeddu LX, Weiner N (1975) Nerve-stimulation mediated overflow of norepinephrine and dopamine-β-hydroxylase. III. Effects of norepinephrine depletion on the alpha presynaptic regulation of release. J Pharmacol Exp Ther 192:1–14

    PubMed  Google Scholar 

  • Cubeddu L, Barnes E, Weiner N (1974) Release of norepinephrine and dopamine-β-hydroxylase by nerve stimulation. II. Effects of papaverine. J Pharmacol Exp Ther 191:444–457

    PubMed  Google Scholar 

  • Cubeddu L, Barnes E, Weiner N (1975) Release of norepinephrine and dopamine hydroxylase by nerve stimulation. IV. An evaluation of a role for cyclic adenosine monophosphate. J Pharmacol Exp Ther 193:105–127

    PubMed  Google Scholar 

  • Curtis DR, Eccles JC (1960) Synaptic action during and after repetitive stimulation. J Physiol 150:374–398

    PubMed  Google Scholar 

  • Dale HH, Feldberg W, Vogt M (1936) The release of acetylcholine at voluntary motor nerve endings. J Physiol 86:353–380

    Google Scholar 

  • Daly JW (1976) The nature of receptors regulating the formation of cyclic AMP in brain tissue. Life Sci 18:1349–1358

    Article  PubMed  Google Scholar 

  • Daly JW (1977) Cyclic nucleotides in the nervous system. Plenum, New York

    Google Scholar 

  • Davidoff RA, Hackman JC, Osorio I (1980) Amino acid antagonists do not block the depolarizing effects of potassium ions on frog primary afferents. Neuroscience 5:117–126

    Article  PubMed  Google Scholar 

  • Deadwyler SA, Dudek FE, Cotman CW, Lynch G (1975) Intracellular responses of rat dentate granule cells in vitro: post-tetanic potentiation to perforant path stimulation. Brain Res 88:80–85

    Article  PubMed  Google Scholar 

  • Deadwyler SA, Dunwiddie J, Lynch G (1978) Short-lasting changes in hippocampal neuronal excitability following repetitive synaptic activation. Brain Res 147:384–389

    Article  PubMed  Google Scholar 

  • del Castillo J, Engbaek L (1954) The nature of the neuromuscular block produced by magnesium. J Physiol 124:370–384

    PubMed  Google Scholar 

  • del Castillo J, Katz B (1954a) The effect of magnesium on the activity of motor nerve endings. J Physiol 124:553–559

    PubMed  Google Scholar 

  • del Castillo J, Katz B (1954b) Quantal components of the end-plate potential. J Physiol 124:560–573

    PubMed  Google Scholar 

  • del Castillo J, Katz B (1954c) Statistical factors involved in neuromuscular facilitation and depression. J Physiol 124:574–585

    PubMed  Google Scholar 

  • del Castillo J, Katz B (1954d) Changes in end-plate activity produced by presynaptic polarization. J Physiol 124:586–604

    PubMed  Google Scholar 

  • De Lorenzo RJ (1976) Calcium-dependent phosphorylation of specific synaptosomal fraction proteins: possible role of phosphorylation in mediating neurotransmitter release. Biochem Biophys Res Comm 71:590–597

    Article  PubMed  Google Scholar 

  • De Lorenzo RJ (1980) Role of calmodulin in neurotransmitter release and synaptic function. Ann NY Acad Sci 356:92–109

    PubMed  Google Scholar 

  • De Lorenzo RJ (1982) Calmodulin in neurotransmitter release and synaptic function. Fed Proc 41:2265–2282

    PubMed  Google Scholar 

  • De Lorenzo RJ (1983) Calcium-calmodulin protein phosphorylation in neuronal transmission: a molecular approach to removal excitability and anticonvulsant drug action. Adv Neurol 34:325–328

    PubMed  Google Scholar 

  • De Lorenzo RJ, Freedman SD (1977a) Calcium-dependent phosphorylation of specific synaptosomal fraction proteins: possible role of phosphoproteins in mediating neurotransmitter release. Biochem Biophys Res Comm 71:590–597

    Article  Google Scholar 

  • De Lorenzo RJ, Freedman SD (1977b) Calcium-dependent phosphorylation of synaptic vesicle proteins and its possible role in mediating neurotransmitter release and vesicle function. Biochem Biophys Res Comm 77:1036–1043

    Article  PubMed  Google Scholar 

  • De Lorenzo RJ, Freedman SD (1977c) Possible role of calcium-dependent protein phosphorylation in mediating neurotransmitter release and anticonvulsant action. Epilepsia 18:357–365

    PubMed  Google Scholar 

  • De Lorenzo RJ, Freedman SD (1978) Calcium-dependent neurotransmitter release and protein phosphorylation in synaptic vesicles. Biochem Biophys Comm 80:183–192

    Article  Google Scholar 

  • De Lorenzo RJ, Freedman SD, Yohe WB, Maurer SC (1979) Stimulation of Ca2+-dependent neurotransmitter release and presynaptic nerve terminal protein phosphorylation by calmodulin and a calmodulin-like protein isolated from synaptic vesicles. Proc Natl Acad Sci 76:1838–1842

    PubMed  Google Scholar 

  • Deterre P, Paupardin-Tritsch D, Bockaert J, Gerschenfeld HM (1981) Role of cyclic AMP in a serotonin-evoked slow inward current in snail neurones. Nature 290:783–785

    Article  PubMed  Google Scholar 

  • De Weer P (1970) Effects of intracellular adenosine-5-diphosphate and orthophosphate on the sensitivity of sodium efflux from squid axon to external sodium and potassium. J Gen Physiol 56:585–619

    Google Scholar 

  • Dodge FA, Rahamimoff R (1967) Cooperative action of calcium ions in transmitter release at the neuromuscular junction. J Physiol 193:419–432

    PubMed  Google Scholar 

  • Dodge FA Jr, Miledi R, Rahamimoff R (1969) Strontium and quantal release of transmitter at the neuromuscular junction. J Physiol 200:267–283

    PubMed  Google Scholar 

  • Douglas RM, Goddard GV (1975) Long-term potentiation of the perforant paths granule cell synapse in the rat hippocampus. Brain Res 86:205–215

    Article  PubMed  Google Scholar 

  • Douglas WW, Lywood DW, Straub RM (1961) The stimulant effect of barium on the release of acetylcholine from superior cervical ganglion. J Physiol 156:515–522

    PubMed  Google Scholar 

  • Dudel J (1965) Potential changes in the crayfish motor nerve terminal during repetitive stimulation. Pflügers Arch ges Physiol 282:323–337

    Article  Google Scholar 

  • Dudel J, Kuffler SW (1961a) The quantal nature of transmission and spontaneous miniature potentials at the crayfish neuromuscular junction. J Physiol 155:514–529

    PubMed  Google Scholar 

  • Dudel J, Kuffler SW (1961b) Presynaptic inhibition at the crayfish neuromuscular junction. J Physiol 155:543–562

    PubMed  Google Scholar 

  • Dudel J, Parnas H, Parnas I (1981) The effect of magnesium on the time course of facilitation at the crayfish neuromuscular junction. Neurosci Lett 22:165–168

    Article  PubMed  Google Scholar 

  • Duncan CJ, Publicover SJ (1979) Inhibitory effects of cholinergic agents on the release of transmitter at the frog neuromuscular junction. J Physiol 294:91–103

    PubMed  Google Scholar 

  • Dunlap K, Fischbach GD (1978) Neurotransmitters decrease the calcium component of sensory neurone action potentials. Nature 276:837–839

    Article  PubMed  Google Scholar 

  • Dunwiddie TV, Hoffer BJ (1980) Adenine nucleotides and synaptic transmission in the in vitro rat hippocampus. Br J Pharmacol 69:59–68

    PubMed  Google Scholar 

  • Dunwiddie TV, Lynch G (1979) The relationship between extracellular calcium concentrations and the induction of the hippocampal long-term potentiation. Brain Res 169:413–417

    Article  Google Scholar 

  • Dzieniszewski P, Kilbinger H (1978) Muscarinic modulation of acetylcholine release evoked by dimethylphenylpiperazinium and high potassium from guinea-pig myenteric plexus. Eur J Pharmacol 50:385–391

    Article  PubMed  Google Scholar 

  • Eccles JC (1953) The neurophysiological basis of mind. The principles of neurophysiology. Calendar, Oxford

    Google Scholar 

  • Eccles JC (1957) The physiology of nerve cells. John Hopkins, Baltimore

    Google Scholar 

  • Eccles JC (1964) The physiology of synapses. Springer, Berlin Heidelberg New York, pp 82–93

    Google Scholar 

  • Eccles JC, Krnjevic K (1959a) Potential changes recorded inside primary afferent fibres within the spinal cord. J Physiol 149:250–273

    PubMed  Google Scholar 

  • Eccles JC, Krnjevic K (1959b) Presynaptic changes associated with posttetanic potentiation in the spinal cord. J Physiol 149:274–287

    PubMed  Google Scholar 

  • Eccles JC, Rall W (1951a) Repetitive monosynaptic activation of motoneurons. Proc R Soc Lond (Biol) 138:475–498

    Google Scholar 

  • Eccles JC, Rall W (1951b) Effects induced in a monosynaptic reflex path by its activation. J Neurophysiol 14:353–376

    PubMed  Google Scholar 

  • Eccles JC, Katz B, Kuffler SW (1941) Nature of the “end-plate potential” in curarized muscle. J Neurophysiol 4:362–381

    Google Scholar 

  • Eccles JC, Katz B, Kuffler SW (1942) Effect of eserine on neuromuscular transmission. J Neurophysiol 5:211–230

    Google Scholar 

  • Eccles JC, Eccles RM, Magni F (1960) Presynaptic inhibition in the spinal cord. J Physiol 154:28

    Google Scholar 

  • Eccles JC, Eccles RM, Magni F (1961) Central inhibitory action attributable to presynaptic depolarization produced by muscle afferent volleys. J Physiol 159:147–166

    Google Scholar 

  • Eccles JC, Magni F, Willis WD (1962) Depolarization of central terminals of group I afferent fibres from muscle. J Physiol 160:62–93

    Google Scholar 

  • Eide E, Jurna I, Lundberg A (1968) Conductance measurements from motoneurons during presynaptic inhibition. In: von Euler C, Skoglund S, Soderberg U (eds) Structure and function of inhibitory neuronal mechanisms. Pergamon, Oxford, pp 215–219

    Google Scholar 

  • Eipper BA (1974) Rat brain tubulin and protein kinase activity. J Biol Chem 249:1398–1406

    PubMed  Google Scholar 

  • Elmqvist D, Feldman DS (1965) Effects of sodium pump inhibitors on spontaneous acetylcholine release at the neuromuscular junction. J Physiol 131:341–376

    Google Scholar 

  • Elmqvist D, Quastel DM (1965) A quantitative study of end-plate potentials in isolated human muscle. J Physiol 178:505–529

    PubMed  Google Scholar 

  • Emmelin NG, MacIntosh FC (1956) The release of acetylcholine from perfused sympathetic ganglia and skeletal muscles. J Physiol 131:477–496

    PubMed  Google Scholar 

  • Enero MA, Langer SZ (1973) Influence of reserpine-induced depletion of noradrenaline on the negative feedback mechanism for transmitter release during nerve stimulation. Br J Pharmacol 49:214–255

    PubMed  Google Scholar 

  • Enyeart J (1981) Cyclic AMP, 5-HT, and the modulation of transmitter release at the crayfish neuromuscular junction. J Neurobiol 12:505–513

    Article  PubMed  Google Scholar 

  • Enyeart J, Erulkar SD (1978) Serotonin, cAMP and the modulation of evoked transmitter release at the crayfish neuromuscular junction. 8th Ann Meeting Society for Neurosciences, Abstr #587

    Google Scholar 

  • Epstein R, Tauc L (1970) Heterosynaptic facilitation and post-tetanic potentiation in Aplysia nervous system. J Physiol 209:1–23

    PubMed  Google Scholar 

  • Erulkar SD, Fine A (1979) Calcium in the nervous system. Rev Neurosci 4:179–232

    Google Scholar 

  • Erulkar SD, Rahamimoff R (1978) The role of calcium ions in tetanic and post-tetanic increase in miniature end-plate potential frequency. J Physiol 278:501–511

    PubMed  Google Scholar 

  • Erulkar SD, Weight FF (1977) Extracellular potassium and transmitter release at the giant synapse of squid. J Physiol 266:209–218

    PubMed  Google Scholar 

  • Erulkar SD, Weight FF (1979) Ionic environment and the modulation of transmitter release. Trends in Neurosci 2:298–301

    Article  Google Scholar 

  • Erulkar SD, Meiri H, Rahamimoff R (1983) The ionic basis of high-frequency synaptic activation. In: Physiology and pharmacology of epileptogenic phenomena. Raven Press, New York, pp 197–205

    Google Scholar 

  • Evans GJ, Erulkar SD (1980) Comparison of the effect of magnesium and cobalt on transmitter release at the frog neuromuscular junction in low calcium. Abstract — Biophysical Society Meetings, New Orleans, LA

    Google Scholar 

  • Fadiga E, Brookhart JM (1962) Interactions of excitatory postsynaptic potentials generated at different sites on the frog motoneuron. J Neurophysiol 25:790–804

    Google Scholar 

  • Farel PB (1971) Long-lasting habituation in spinal frogs. Brain Res 33:405–417

    Article  PubMed  Google Scholar 

  • Farel PB (1973) Persistent increases in synaptic efficacy following brief tetanic stimulation in the isolated frog spinal cord. Soc Neurosci 3rd Ann Meeting, San Diego, CA, pp 41–42

    Google Scholar 

  • Farel PB, Glanzman DL, Thompson RF (1973) Habituation of a monosynaptic response in vertebrate central nervous system: lateral column motoneuron pathway in isolated frog spinal cord. J Neurophysiol 36:1117–1130

    PubMed  Google Scholar 

  • Farnebo L, Hamberger B (1971) Drug-induced changes in the release of 3H-monoamines from field-stimulated rat brain slices. Acta Physiol Scand (Suppl) 371:19–27

    Google Scholar 

  • Feng TP (1936) Studies on the neuromuscular junction II. The universal antagonism between calcium and curarizing agencies. Clin J Physiol 10:513–528

    Google Scholar 

  • Feng TP (1941) Studies on the neuromuscular junction XXVI. The changes of the end-plate potential during and after prolonged stimulation. Chin J Physiol 16:341–372

    Google Scholar 

  • Feng TP, Li TH (1941) Studies on the neuromuscular junction XXIII. A new aspect of the phenomena of eserine potentiation and post-tetanic facilitation in mammalian muscles. Clin J Physiol 16:37–56

    Google Scholar 

  • Fiekers JF, Spannbauer PM, Scubon-Mulieri B, Parsons RL (1980) Voltage dependence of desensitization. Influence of calcium activation kinetics. J Gen Physiol 75:511–529

    Article  PubMed  Google Scholar 

  • Fifková E, van Harreveld A (1977) Long-lasting morphological changes in dendritic spines of dentate granular cells following stimulation of the entorhinal area. J Neurocytol 6:211–230

    Article  PubMed  Google Scholar 

  • Fillenz M (1977) The factors which provide short-term and long-term control of transmitter release. Prog Neurobiol 8:251–278

    Article  Google Scholar 

  • Fletcher P, Forrester T (1975) The effect of curare on the release of acetylcholine from mammalian motor nerve terminals and an estimate of quantum content. J Physiol 251:131–144

    PubMed  Google Scholar 

  • Frank K, Fuortes MGF (1957) Presynaptic and postsynaptic inhibition of monosynaptic reflexes. Fed Proc 16:39–40

    Google Scholar 

  • Frankenhaeuser B, Hodgkin AL (1956) The after-effects of impulses in the giant nerve fibres of Loligo. J Physiol 131:341–376

    PubMed  Google Scholar 

  • Fredholm BB (1976) Release of adenosine-like material from isolated perfused dog adipose tissue following sympathetic nerve stimulation and its inhibition by adrenergic alpha-receptor blockade. Acta Physiol Scand 96:422–430

    Google Scholar 

  • Fredholm BB, Hedqvist P (1978) Release of [3H] purine from [3H] adenine-labelled rabbit kidney following sympathetic nerve stimulation and its inhibition by alpha-adrenoceptor blockade. Br J Pharmacol 64:239–246

    PubMed  Google Scholar 

  • Furukawa T, Fukami Y, Asada Y (1963) A third type of inhibition in the Mauthner cell of the goldfish. J Neurophysiol 26:759–774

    PubMed  Google Scholar 

  • Gage PW, Hubbard JI (1966) An investigation of the post-tetanic potentiation of the end-plate potentials at a mammalian neuromuscular junction. J Physiol 184:353–375

    PubMed  Google Scholar 

  • Gage PW, Quastel DMJ (1965) Dual effect of potassium on transmitter release. Nature 206:625–626

    PubMed  Google Scholar 

  • Gage PW, Quastel DMJ (1966) Competition between sodium and calcium ions in transmitter release at mammalian neuromuscular junctions. J Physiol 185:95–123

    PubMed  Google Scholar 

  • Gallager DW, Pert A, Bunney WE Jr (1978) Haloperidol-induced presynaptic dopamine supersensitivity is blocked by chronic lithium. Nature 273:309–312

    PubMed  Google Scholar 

  • Galvan M, ten Bruggencate G, Senkowitsch R (1979) The effects of neuronal stimulation and ouabain upon extracellular K+ and Ca2+ levels in rat isolated sympathetic ganglia. Brain Res 160:544–548

    Article  PubMed  Google Scholar 

  • Gilbert DL (1960) Magnesium equilibrium in muscle. J Gen Physiol 43:1103–1118

    Article  PubMed  Google Scholar 

  • Ginsborg BL, Hirst GDS (1972) The effect of adenosine on the release of the transmitter from the phrenic nerve of the rat. J Physiol 224:629–645

    PubMed  Google Scholar 

  • Ginsborg BL, Jenkinson DH (1976) Transmission of impulses from nerve to muscle. In: Zaimis E (ed) Neuromuscular junction. Handbook of experimental pharmacology. Springer, Berlin Heidelberg New York, pp 229–364

    Google Scholar 

  • Glagoleva IM, Liberman YA, Khashyev Z (1970) Effect of uncoupling agents of oxidation phosphorylation on the release of acetylcholine from nerve endings. Biofizika 15:76–83

    PubMed  Google Scholar 

  • Glavinovic MI (1979) Presynaptic action of curare. J Physiol 290:499–506

    PubMed  Google Scholar 

  • Goldberg AL, Singer JJ (1969) Evidence for a role of cyclic AMP in neuromuscular transmission. Proc Natl Acad Sci 64:134–141

    PubMed  Google Scholar 

  • Goldberg ND, Lust WD, O'Dea RF, Wei S, O'Toole AG (1970) A role of cyclic nucleotides in brain metabolism. Adv Biochem Psychopharmacol 3:67–87

    PubMed  Google Scholar 

  • Goldstein M, Anagnoste B, Shirron C (1973) The effect of trivastal, haloperidol and dibutyryl cyclic AMP on [14C] dopamine synthesis in rat striatum. J Pharm Pharmacol 25:348–351

    PubMed  Google Scholar 

  • Göthert M (1977) Effects of presynaptic modulators on Ca2+-induced noradrenaline release from cardiac sympathetic nerves. Naunyn Schmiedebergs Arch Pharmacol 300:267–272

    PubMed  Google Scholar 

  • Göthert M, Hults H (1980) Alpha-adrenoceptor-mediated modulation of 5-hydroxytryptamine release from rat brain cortex slices. Naunyn Schmiedebergs Arch Pharmacol 313:21–26

    Article  PubMed  Google Scholar 

  • Göthert M, Weinheimer G (1979) Extracellular 5-hydroxytryptamine inhibits 5-hydroxytryptamine release from rat brain cortex slices. Naunyn Schmiedebergs Arch Pharmacol 310:93–96

    Article  PubMed  Google Scholar 

  • Göthert M, Pohl IM, Wehking E (1979) Effects of presynaptic modulators on Ca2+-induced noradrenaline release from central noradrenergic neurons. Naunyn Schmiedebergs Arch Pharmacol 307:21–27

    Article  PubMed  Google Scholar 

  • Granit R (1956) Reflex rebound by post-tetanic potentiation. Temporal summation spasticity. J Physiol 131:32–51

    PubMed  Google Scholar 

  • Graubard K, Raper JA, Hartline DK (1980) Graded synaptic transmission between spiking neurons. Proc Natl Acad Sci 77:3733–3735

    PubMed  Google Scholar 

  • Hadházy P, Szerb JC (1977) The effect of cholinergic drugs on [3H]acetylcholine release from slices of rat hippocampus, striatum and cortex. Brain Res 123:311–322

    Article  PubMed  Google Scholar 

  • Haga T, Noda H (1973) Choline uptake systems of rat brain synaptosomes. Biochim Biophys Acta 291:564–575

    PubMed  Google Scholar 

  • Haggendal J (1970) Some further aspects on the release of the adrenergic transmitter. In: Schumann HJ, Kroneberg G (eds) New aspects of storage and release mechanisms of catecholamines. Bayer Symposium II. Springer, Berlin Heidelberg New York, pp 100–109

    Google Scholar 

  • Harris AJ, Miledi R (1971) The effect of type D botulinum toxin in frog neuromuscular junction. J Physiol 217:497–515

    PubMed  Google Scholar 

  • Harris JE, Morgenroth VH, Roth RH, Baldessarini RJ (1974) Regulation of catecholamine synthesis in the rat brain in vitro by cyclic AMP. Nature 252:156–158

    Article  PubMed  Google Scholar 

  • Hartzell HC (1979) Adenosine receptors in frog sinus venosus: slow inhibitory potentials produced by adenine compounds and acetylcholine. J Physiol 293:23–50

    PubMed  Google Scholar 

  • Hodgkin AL, Keynes RD (1957) Movements of labelled calcium in squid giant axons. J Physiol 138:253–281

    PubMed  Google Scholar 

  • Hoffman F, Hoffman EJ, Middleton S, Talesnik J (1945) The stimulating effect of acetylcholine on the mammalian heart and the liberation of an epinephrine-like substance by the isolated heart. Am J Physiol 144:189–198

    Google Scholar 

  • Hounsgaard J (1978) Presynaptic inhibitory action of acetylcholine in area CA1 of the hippocampus. Exp Neurol 62:787–797

    Article  PubMed  Google Scholar 

  • Hubbard JI (1959) Post-activation changes at the mammalian neuromuscular junction. Nature 184:1945–1947

    PubMed  Google Scholar 

  • Hubbard JI (1963) Repetitive stimulation at the neuromuscular junction and the mobilization of transmitter. J Physiol 169:145–165

    Google Scholar 

  • Hubbard JI (1973) Microphysiology of vertebrate neuromuscular transmission. Physiol Rev 53:674–723

    PubMed  Google Scholar 

  • Hubbard JI, Løyning Y (1966) The effects of hypoxia on neuromuscular transmission in a mammalian preparation. J Physiol 185:205–233

    PubMed  Google Scholar 

  • Hubbard JI, Willis WD (1962) Reduction of transmitter output by depolarization. Nature 193:1294–1295

    PubMed  Google Scholar 

  • Hubbard JI, Wilson DF (1973) Neuromuscular transmission in a mammalian preparation in the absence of blocking drugs and the effect of d-tubocurarine. J Physiol 228:307–325

    PubMed  Google Scholar 

  • Hubbard JI, Wilson DF, Miyamoto M (1969) Reduction of transmitter release by d-tubocurarine. Nature 223:531–533

    PubMed  Google Scholar 

  • Hubbard JI, Jones SF, Landau EM (1971) The effect of temperature changes upon transmitter release facilitation and post-tetanic potentiation. J Physiol 216:591–609

    PubMed  Google Scholar 

  • Hughes JR (1958) Post-tetanic potentiation. Physiol Rev 38:91–113

    PubMed  Google Scholar 

  • Hurlbut WP, Longenecker HB, Mauro A (1971) Effects of calcium and magnesium on the frequency of miniature end-plate potentials during prolonged tetanization. J Physiol 219:17–38

    PubMed  Google Scholar 

  • Hutter OF (1952) Post-tetanic restoration of neuromuscular transmission blocked by d-tubocurarine. J Physiol 118:216–222

    PubMed  Google Scholar 

  • Isaakson A, Sandow A (1967) Guanine and caffeine effects on calcium movements in frog sartorius muscle. J Gen Physiol 50:2109–2128

    Article  PubMed  Google Scholar 

  • Israel M, Lesbats B, Meunier FM, Stinnakre J (1976) Postsynaptic release of adenosine triphosphate induced by single impulse transmitter action. Proc R Soc Lond (Biol) 193:461–468

    Google Scholar 

  • Israel M, Lesbats B, Manaranche R, Meunier FM, Matour-Franchon P (1980) Retrograde inhibition of transmitter release by ATP. J Neurochem 34:923–932

    PubMed  Google Scholar 

  • Iversen LL, Rogawski M, Miller RJ (1976) Comparison of the effects of neuroleptic drugs on pre-and postsynaptic dopaminergic mechanisms in the rat striatum. Mol Pharmacol 12:251–262

    PubMed  Google Scholar 

  • Jacobus WE, Tiozzo R, Lugli G, Lehninger AL, Carafoli E (1975) Aspects of energy-linked calcium accumulation by rat heart mitochondria. J Biol Chem 250:7863–7870

    PubMed  Google Scholar 

  • Jenkinson DH (1957) The nature of the antagonism between calcium and magnesium ions at the neuromuscular junction. J Physiol 138:434–444

    PubMed  Google Scholar 

  • Jenkinson DH, Stamenovic BA, Whitaker BDL (1968) The effect of noradrenaline on the end-plate potential in twitch fibres of the frog. J Physiol 195:743–754

    PubMed  Google Scholar 

  • Johnson EW, Wernig A (1971) The binomial nature of transmitter release at the crayfish neuromuscular junction. J Physiol 218:757–767

    PubMed  Google Scholar 

  • Johnson GA, Boukma SJ, Lahti RA, Mathews J (1973) Cyclic AMP and phosphodiesterase in synaptic vesicles from mouse brain. J Neurochem 20:1387–1392

    PubMed  Google Scholar 

  • Jones SF, Kwanbunbumpen S (1970) The effect of nerve stimulation and hemicholinium on synaptic vesicles at the mammalian neuromuscular junction. J Physiol 207:31–50

    PubMed  Google Scholar 

  • Kakiuchi S, Yamazaki R (1970) Calcium-dependent phosphodiesterase activity and its activating factor (PAF) from brain. Biochem Biophys Comm 41:1104–1110

    Article  Google Scholar 

  • Kalsner S (1979) Single pulse stimulation of guinea-pig vas deferens and the presynaptic receptor hypothesis. Br J Pharmacol 66:343–349

    PubMed  Google Scholar 

  • Kalsner S (1980) Limitation of presynaptic adrenoceptor theory-characteristics of the effects of noradrenaline and phenoxybenzamine on stimulation-induced efflux of [3H]noradrenaline in vas deferens. J Pharmacol Exp Ther 212:232–239

    PubMed  Google Scholar 

  • Kalsner S, Chan CG (1979) Adrenergic antagonists and the presynaptic receptor hypothesis in vascular tissue. J Pharmacol Exp Ther 211:257–264

    PubMed  Google Scholar 

  • Kandel ER (1976) The cellular basis of behavior. Freeman, San Francisco

    Google Scholar 

  • Kandel ER, Tauc L (1965a) Heterosynaptic facilitation in neurons of abdominal ganglion of Aplysia depilans. J Physiol 181:1–27

    PubMed  Google Scholar 

  • Kandel ER, Tauc L (1965b) Mechanism of heterosynaptic facilitation in the giant cell of the abdominal ganglion of Aplysia depilans. J Physiol 181:28–47

    PubMed  Google Scholar 

  • Katz B (1962) The transmission of impulses from nerve to muscle, and the subcellular unit of synaptic action. Proc R Soc Lond (Biol) 155:455–477

    Google Scholar 

  • Katz B (1966) Nerve, muscle and synapse. McGraw-Hill, New York

    Google Scholar 

  • Katz B (1969) The release of neural transmitter substances. The Sherrington Lectures X. Liverpool University Press, Liverpool

    Google Scholar 

  • Katz B, Miledi R (1965a) Propagation of electric activity in motor nerve terminals. Proc R Soc Lond (Biol) 161:453–482

    Google Scholar 

  • Katz B, Miledi R (1965b) The effects of calcium on acetylcholine release from motor nerve terminals. Proc R Soc Lond (Biol) 161:496–503

    Google Scholar 

  • Katz B, Miledi R (1967a) The release of acetylcholine from nerve endings by graded electrical pulses. Proc R Soc Lond (Biol) 167:23–28

    Google Scholar 

  • Katz B, Miledi R (1967b) A study of synaptic transmission in the absence of nerve impulses. J Physiol 192:407–436

    PubMed  Google Scholar 

  • Katz B, Miledi R (1968) The role of calcium in neuromuscular facilitation. J Physiol 195:481–492

    PubMed  Google Scholar 

  • Katz B, Miledi R (1977) Transmitter leakage from motor nerve endings. Proc R Soc Lond (Biol) 196:59–72

    Google Scholar 

  • Katz B, Miledi R (1978) A re-examination of curare action at the motor end-plate. Proc R Soc Lond (Biol) 203:119–133

    Google Scholar 

  • Katz B, Thesleff S (1957) A study of the desensitization produced by acetylcholine at the motor end-plate. J Physiol 138:63–80

    PubMed  Google Scholar 

  • Katz NL, Edwards C (1973) Effects of metabolic inhibitors on spontaneous and neurally evoked transmitter release from frog motor nerve terminals. Proc 26th Meeting Soc Gen Physiol 61:259

    Google Scholar 

  • Kelly JS (1965) Antagonism between Na+ and Ca2+ at the neuromuscular junction. Nature 205:296–297

    PubMed  Google Scholar 

  • Kennedy D (1966) The comparative physiology of invertebrate central neurons. In: Lowenstein O (ed) Advances in comparative physiology and biochemistry, vol II. Academic, New York, pp 117–184

    Google Scholar 

  • Kentera D, Varagic VM (1975) The effects of N-2-dibutyryl adenosine 3′,5′-monophosphate, adrenaline and aminophylline on the isometric contractibility of the isolated hemidiaphragm of the rat. Br J Pharmacol 54:375–382

    PubMed  Google Scholar 

  • Keynes RD (1951) The ionic movements during nervous activity. J Physiol 114:119–150

    PubMed  Google Scholar 

  • Keynes RD, Lewis PB (1951) The sodium and potassium content of the cephalopod nerve fibres. J Physiol 114:151–182

    PubMed  Google Scholar 

  • Kilbinger H (1977) Modulation by oxotremorine and atropine of acetylcholine release evoked by electrical stimulation of the myenteric plexus of the guinea-pig ileum. Naunyn Schmiedebergs Arch Pharmacol 300:145–151

    Article  PubMed  Google Scholar 

  • Kilbinger H, Wagner P (1975) Inhibition by oxotremorine of acetylcholine resting release from guinea-pig ileum longitudinal muscle strips. Naunyn Schmiedebergs Arch Pharmacol 287:47–60

    Article  PubMed  Google Scholar 

  • Kilbinger H, Wagner P (1979) The role of presynaptic muscarine receptors in regulating acetylcholine release from peripheral cholinergic neurons. In: Langer SZ, Starke K, Dubocovich ML (eds) Presynaptic receptors. Pergamon, Oxford, pp 347–351

    Google Scholar 

  • Kilbinger H, Wessler I (1980) Inhibition by acetylcholine of the stimulation-evoked release of [3H]-acetylcholine from the guinea-pig myenteric plexus. Neuroscience 5:1331–1340

    Article  PubMed  Google Scholar 

  • Kirpekar SM, Puig M (1971) Effect of flow-stop on noradrenaline release from normal spleens and spleens treated with cocaine phentolamine or phenoxybenzamine. Br J Pharmacol 43:359–369

    PubMed  Google Scholar 

  • Kirschner N (1962) Uptake of catecholamines by a particulate fraction of the adrenal medulla. J Biol Chem 237:2311–2317

    PubMed  Google Scholar 

  • Kita H, Van der Kloot W (1976) Effects of the ionophore X-537A on acetylcholine release at the frog neuromuscular junction. J Physiol 259:177–198

    PubMed  Google Scholar 

  • Klein M, Kandel ER (1978) Presynaptic modulation of voltage-dependent Ca2+ current: mechanism for behavioral sensitization in Aplysia californica. Proc Natl Acad Sci 75:3512–3516

    PubMed  Google Scholar 

  • Klein M, Kandel ER (1980) Mechanism of calcium current modulation underlying presynaptic facilitation and behavioral sensitization in Aplysia. Proc Natl Acad Sci 77:6912–6916

    PubMed  Google Scholar 

  • Klein M, Shapiro E, Kandel E (1980) Synaptic plasticity and the modulation of the Ca2+ current. J Exp Biol 89:117–157

    PubMed  Google Scholar 

  • Korn H, Triller A, Mallet A, Faber DS (1981) Fluctuating responses at a central synapse: n of binomial fit predicts number of stained presynaptic boutons. Science 213:898–901

    PubMed  Google Scholar 

  • Kraatz HG, Trautwein W (1957) Die Wirkung von 2,4-dinitrophenol (DMP) auf die neuromusculare Erregungsübertragung. Arch exp Path Pharmak 231:419–439

    Article  Google Scholar 

  • Krasne FB (1969) Excitation and habituation of the crayfish escape reflex: the depolarizing response in lateral giant fibres of the isolated abdomen. J Exp Biol 50:29–46

    PubMed  Google Scholar 

  • Krnjevic K, Miledi R (1958a) Failure of neuromuscular propagation in rats. J Physiol 140:440–461

    PubMed  Google Scholar 

  • Krnjevic K, Miledi R (1958b) Some effects produced by adrenaline upon neuromuscular propagation in the rat. J Physiol 141:291–304

    PubMed  Google Scholar 

  • Krnjevic K, Mitchell JF (1961) The release of acetylcholine in the isolated rat diaphragm. J Physiol 155:246–262

    PubMed  Google Scholar 

  • Krnjevic K, Morris ME (1972) Extracellular K+ activity and slow potential changes in spinal cord and medulla. Can J Physiol Pharmacol 50:1214–1217

    PubMed  Google Scholar 

  • Kuba K (1970) Effects of catecholamines on the neuromuscular junction in the rat diaphragm. J Physiol 211:511–570

    Google Scholar 

  • Kuba K, Tomita T (1971) Noradrenaline action on nerve terminal in rat diaphragm. J Physiol 217:19–32

    PubMed  Google Scholar 

  • Kuffler SW (1943) Specific excitability of the end-plate region in normal and denervated muscle. J Neurophysiol 6:99–110

    Google Scholar 

  • Kuffler SW, Yoshikami D (1975) The number of transmitter molecules in a quantum. An estimate from iontophoretic application of acetylcholine at the neuromuscular synapse. J Physiol 251:465–482

    PubMed  Google Scholar 

  • Kuno M (1971) Quantum aspects of central and ganglionic synaptic transmission in vertebrates. Physiol Rev 51:647–678

    PubMed  Google Scholar 

  • Kuno M, Weakly JN (1972a) Facilitation of monosynaptic excitatory synaptic potentials in spinal motoneurons evoked by internuncial impulses. J Physiol 224:271–286

    PubMed  Google Scholar 

  • Kuno M, Weakly JN (1972b) Quantal components of the inhibitory synaptic potential in spinal motoneurones of the cat. J Physiol 224:287–303

    PubMed  Google Scholar 

  • Kupferman I (1979) Modulatory actions of neurotransmitters. Ann Rev Neurosci 2:447–465

    Article  PubMed  Google Scholar 

  • Kupferman I, Castellucci VF, Pinsker H, Kandel ER (1970) Neuronal correlates of habituation of the gill withdrawal reflex in Aplysia. Science 167:1743–1745

    PubMed  Google Scholar 

  • Kuroda Y (1978) Physiological role of adenosine derivatives which are released during neurotransmission in mammalian brain. J Physiol (Paris) 74:463–470

    Google Scholar 

  • Kuroda Y, Saito M, Kobayashi K (1976) High concentrations of calcium prevent the inhibition of post-synaptic potentials and the accumulation of cyclic AMP induced by adenosine in brain slices. Proc Japan Acad 52:86–89

    Google Scholar 

  • Landau EM, Smolinsky A, Lass Y (1973) Post-tetanic potentiation and facilitation do not share a common calcium-dependent mechanism. Nature New Biol 244:155–157

    Article  PubMed  Google Scholar 

  • Langer SZ (1974) Presynaptic regulation of catecholamine release. Biochem Pharmacol 23:1793–1800

    Article  PubMed  Google Scholar 

  • Langer SZ (1977) Presynaptic receptors and their role in the regulation of transmitter release. Br J Pharmacol 60:481–497

    PubMed  Google Scholar 

  • Langer SZ (1980) Presynaptic receptors and modulation of neurotransmission: pharmacological implications and therapeutic relevance. Trends in Neurosci 3:110–112

    Article  Google Scholar 

  • Langer SZ, Adler-Graschinsky E, Enero MA, Stefano FJE (1971) The role of the alpha receptor in regulating noradrenaline overflow by nerve stimulation. 25th Cong Physiol Sci, pp 335

    Google Scholar 

  • Langer SZ, Dubocovich ML, Celuch SM (1975) Prejunctional regulatory mechanism for noradrenaline release elicited by nerve stimulation. In: Almgren C, Carlsson A, Engel J (eds) Chemical tools in catecholamine research II. Elsevier, Amsterdam, pp 183–191

    Google Scholar 

  • Langer SZ, Starke K, Dubocovich ML (1979) Presynaptic receptors. Pergamon, Oxford

    Google Scholar 

  • Larrabee MG, Bronk DW (1947) Prolonged facilitation of synaptic excitation in sympathetic ganglia. J Neurophysiol 10:139–154

    Google Scholar 

  • Laskowski M, Thies R (1972) Interactions between calcium and barium on the spontaneous release of transmitter from mammalian nerve terminals. Int J Neurosci 4:11–16

    PubMed  Google Scholar 

  • Levitan IB, Barondes SH (1974) Octopamine and serotonin-stimulated phosphorylation of specific protein in the abdominal ganglion of Aplysia californica. Proc Natl Acad Sci 71:1145–1148

    PubMed  Google Scholar 

  • Lev-Tov A, Rahamimoff R (1980) A study of tetanic and post-tetanic potentiation of miniature end-plate potentials at the frog neuromuscular junction. J Physiol 309:247–273

    PubMed  Google Scholar 

  • Levy RA (1977) The role of GABA in primary afferent depolarization. Prog Neurobiol 9:211–267

    Article  PubMed  Google Scholar 

  • Lichtstein D, Dunlop K, Kaback HR, Blume AJ (1979) Mechanism of monensin-induced hyperpolarization of neuroblastomaglioma hybrid, NG 108-15. Proc Natl Acad Sci 76:2580–2584

    PubMed  Google Scholar 

  • Liley AW (1956a) An investigation of spontaneous activity at the neuromuscular junction of the rat. J Physiol 132:650–666

    PubMed  Google Scholar 

  • Liley AW (1956b) The quantal components of the mammalian end-plate potential. J Physiol 133:571–587

    PubMed  Google Scholar 

  • Liley AW (1956c) The effects of presynaptic polarization on the spontaneous activity at the mammalian neuromuscular junction. J Physiol 134:427–443

    PubMed  Google Scholar 

  • Liley AW, North KAK (1953) An electrical investigation of the effects of repetitive stimulation on mammalian neuromuscular junction. J Neurophysiol 16:509–527

    PubMed  Google Scholar 

  • Lilleheil G, Naess K (1961) A presynaptic effect of d-tubocurarine in the neuromuscular junction. Acta Physiol Scand 52:120–136

    PubMed  Google Scholar 

  • Linder TM (1973) Calcium facilitation at two classes of crustacean neuromuscular synapses. J Gen Physiol 61:56–73

    Article  PubMed  Google Scholar 

  • Liu CN, Chambers WW (1957) Experimental study of anatomical organization of frog's spinal cord. Anat Rec 127:326

    Google Scholar 

  • Liu CN, Chambers WW (1969) Discussion. In: Brazier MAB (ed) The interneuron. Univ of California Press, Berkeley, pp 193–203

    Google Scholar 

  • Llinas R, Heuser JE (1977) Depolarization-release coupling systems in neurons. Neurosci Res Prog Bull 15:557–687

    Google Scholar 

  • Lloyd DPC (1949) Post-tetanic potentiation of response in monosynaptic reflex pathways of the spinal cord. J Gen Physiol 33:147–170

    Article  PubMed  Google Scholar 

  • Lloyd DPC (1952) Electrotonus in dorsal nerve roots. Cold Spring Harbour Symp Quant Biol 7:203–219

    Google Scholar 

  • Locke FS (1894) Notiz über den Einfluss physiologischer Kochsalzlösung auf die elektrische Erregbockert von Muskel und Nerv. Centr f Fysiol 8:166–167

    Google Scholar 

  • Lømo T (1966) Frequency potentiation of excitatory synaptic activity in the dentate area of the hippocampal preparation. Acta Physiol Scand 68, Suppl 277:128

    Google Scholar 

  • Lømo T (1971) Potentiation of monosynaptic EPSPs in the perforant path — dentate granule cell synapse. Expl Brain Res 12:46–63

    Google Scholar 

  • Lothman EW, Somjen GG (1975) Extracellular potassium activity, intracellular and extracellular potential responses in the spinal cord. J Physiol 252:115–136

    PubMed  Google Scholar 

  • Lundberg A, Quilisch H (1953a) Presynaptic potentiation and depression at the neuromuscular junction in frog and rat. Acta Physiol Scand 30, Suppl III, pp 111–120

    Google Scholar 

  • Lundberg A, Quilisch H (1953b) On the effect of calcium on presynaptic potentiation and depression at the neuromuscular junction. Acta Physiol Scand 30, Suppl III, pp 121–129

    Google Scholar 

  • Lüttgau HC, Niedergerke R (1958) The antagonism between Ca and Na ions on the frog's heart. J Physiol 143:486–505

    PubMed  Google Scholar 

  • Lynch G, Schubert P (1980) The use of in vitro brain slices for multidisciplinary studies of synaptic function. Ann Rev Neurosci 3:1–22

    Article  PubMed  Google Scholar 

  • Lynch G, Browning M, Bennett WF (1979) Biochemical and physiological studies of long-term synaptic plasticity. Fed Proc 38:2117–2122

    PubMed  Google Scholar 

  • Lynch GS, Gribkoff VK, Deadwyler SA (1976) Long-term potentiation is accompanied by a reduction in dendrite responsiveness to glutamic acid. Nature 263:151–153

    Article  PubMed  Google Scholar 

  • Lynch GS, Dunwiddie TV, Gribkoff VK (1977) Heterosynatpic depression: a post-synaptic correlate of long-term potentiation. Nature 266:737–739

    Google Scholar 

  • Maeno T (1969) Analysis of mobilization and demobilization process in neuromuscular transmission in the frog. J Neurophysiol 32:793–800

    PubMed  Google Scholar 

  • Magazanik LG, Vyskočil F (1970) Dependence of acetylcholine desensitization on the membrane potential of frog muscle fibre and on the ionic changes in the medium. J Physiol 210:507–518

    PubMed  Google Scholar 

  • Magleby KL (1973a) The effect of repetitive stimulation on facilitation of transmitter release at the frog neuromuscular junction. J Physiol 234:327–352

    PubMed  Google Scholar 

  • Magleby KL (1973b) The effect of tetanic and post-tetanic potentiation on facilitation of transmitter release at the frog neuromuscular junction. J Physiol 234:353–371

    PubMed  Google Scholar 

  • Magleby KL, Zengel JE (1975a) A dual effect of repetitive stimulation on post-tetanic potentiation of transmitter release at the frog neuromuscular junction. J Physiol 245:163–182

    PubMed  Google Scholar 

  • Magleby KL, Zengel JE (1975b) A quantitative description of tetanic and post-tetanic potentiation of transmitter release at the frog neuromuscular junction. J Physiol 245:183–208

    PubMed  Google Scholar 

  • Magleby KL, Zengel JE (1976a) Augmentation: a process that acts to increase transmitter release at the frog neuromuscular junction. J Physiol 257:449–470

    PubMed  Google Scholar 

  • Magleby KL, Zengel JE (1976b) Long-term changes in augmentation, potentiation and depression of transmitter release as a function of repeated synaptic activity at the frog neuromuscular junction. J Physiol 257:471–494

    PubMed  Google Scholar 

  • Magleby KL, Zengel JE (1976c) Stimulation-induced factors which affect augmentation and potentiation of transmitter release at the neuromuscular junction. J Physiol 260:687–717

    PubMed  Google Scholar 

  • Magleby KL, Pallotta BS, Terrar DA (1981) The effect of (+)-tubocurarine on neuromuscular transmission during repetitive stimulation in the rat, mouse and frog. J Physiol 312:97–113

    PubMed  Google Scholar 

  • Mah HD, Daly JW (1976) Adenosine-dependent formation of cyclic AMP in brain slices. Pharmacol Res Commun 8:65–79

    Article  PubMed  Google Scholar 

  • Mallart A, Martin AR (1967) An analysis of facilitation of transmitter release at the neuromuscular junction of the frog. J Physiol 193:679–694

    Google Scholar 

  • Mallart A, Martin AR (1968) The relation between quantum content and facilitation at the neuromuscular junction of the frog. J Physiol 196:593–604

    PubMed  Google Scholar 

  • Manalis RS (1977) Voltage-dependent effect of curare at the frog neuromuscular junction. Nature 267:366–368

    Article  PubMed  Google Scholar 

  • Marcum JM, Dedman JR, Brinkley BR, Means AR (1978) Control of microtubule assembly-disassembly by calcium-dependent regulator protein. Proc Natl Acad Sci 75:3771–3775

    PubMed  Google Scholar 

  • Martin AR (1976) Junctional transmission. II: Presynaptic mechanisms. In: Kandel ER (ed) Cellular biology of neurons. Williams and Wilkins, Baltimore (Handbook of physiology. The nervous system, vol 1, sect 1)

    Google Scholar 

  • Marty A, Neild TO, Ascher P (1976) Voltage sensitivity of acetylcholine currents in Aplysia neurons in the presence of curare. Nature 261:501–503

    Article  PubMed  Google Scholar 

  • Masland RL, Wigton RS (1940) Nerve activity accompanying fasciculation produced by prostigmin. J Neurophysiol 3:269–275

    Google Scholar 

  • Maynard DM, Walton KD (1975) Effects of maintained depolarization of presynaptic neurons on inhibitory transmission in lobster neuropil. J Comp Physiol 97:215–243

    Article  Google Scholar 

  • McAfee DA, Yarowsky PJ (1979) Calcium-dependent potentials in the mammalian sympathetic neurone. J Physiol 290:507–523

    PubMed  Google Scholar 

  • McLachlan EM (1975) An analysis of the release of acetylcholine from preganglionic nerve terminals. J Physiol 245:447–466

    PubMed  Google Scholar 

  • McLachlan EM (1977) The effects of strontium and barium ions at synapses in sympathetic ganglia. J Physiol 267:497–518

    PubMed  Google Scholar 

  • McLachlan EM (1978) The statistics of transmitter release at chemical synapses. In: Porter R (ed) Internat review physiology, neurophysiology III, vol 17. University Park, Baltimore, pp 49–117

    Google Scholar 

  • Meech RW (1978) Calcium-dependent potassium activation in nervous tissues. Ann Rev Biophys Bioeng 7:715–722

    Google Scholar 

  • Meiri H, Erulkar SD, Lerman T, Rahamimoff R (1981) The action of the sodium ionophore, monensin, on transmitter release at the frog neuromuscular junction. Brain Res 204:204–208

    Article  PubMed  Google Scholar 

  • Meiri U, Rahamimoff R (1971) Activation of transmitter release by strontium and calcium ions at the neuromuscular junction. J Physiol 215:709–726

    PubMed  Google Scholar 

  • Miledi R (1966) Strontium as a substitute for calcium in the process of transmitter release at the neuromuscular junction. Nature 212:1233–1234

    Google Scholar 

  • Miledi R (1973) Transmitter release induced by injection of calcium ions into nerve terminals. Proc R Soc Lond (Biol) 183:421–425

    Google Scholar 

  • Miledi R, Potter LT (1971) Acetylcholine receptors in muscle fibres. Nature 233:599–603

    Google Scholar 

  • Miledi R, Thies R (1971) Tetanic and post-tetanic rise in frequency of miniature end-plate potentials in low calcium solutions. J Physiol 212:245–257

    PubMed  Google Scholar 

  • Miledi R, Molenaar PC, Polak RL (1978) α-Bungarotoxin enhances transmitter ‘released’ at the neuromuscular junction. Nature 272:641–643

    Article  PubMed  Google Scholar 

  • Mines GR (1911) On the replacement of calcium in certain neuromuscular mechanisms by allied substances. J Physiol 42:251–266

    Google Scholar 

  • Misgeld U, Sarvey JM, Klee MR (1979) Heterosynaptic postactivation potentiation in hippocampal CA3 neurons: Long-term changes of the postsynaptic channels. Exp Brain Res 37:217–229

    Article  PubMed  Google Scholar 

  • Mitchell JF (1963) The spontaneous and evolked release of acetylcholine from the cerebral cortex. J Physiol 165:98–116

    Google Scholar 

  • Mitchell PR, Martin IR (1978) Is GABA release modulated by presynaptic receptors? Nature 274:904–905

    Article  PubMed  Google Scholar 

  • Miyamoto MD, Breckenridge B McL (1974) A cyclic adenosine monophosphate link in the catecholamine enhancement of transmitter release at the neuromuscular junction. J Gen Physiol 63:609–624

    Article  PubMed  Google Scholar 

  • Miyamoto MD, Volle RL (1974) Enhancement by carbachol of transmitter release from motor nerve terminals. Proc Natl Acad Sci 71:1489–1492

    PubMed  Google Scholar 

  • Molenaar PC, Polak RL (1970) Stimulation by atropine of acetylcholine release and synthesis in cortical slices from rat brain. Br J Pharmacol 40:406–417

    PubMed  Google Scholar 

  • Molgo MJ, Lemignan M, Lechut P (1975) Modification de la liberation du transmitteur à la jonction neuromusculaire de grenouille sous l'action de l'amino 4-pyridine. CR Acad Sci (Paris) Série D 281:1637

    Google Scholar 

  • Moran N, Rahamimoff R (1970) Some statistical properties of neuromuscular facilitation. Isr J Med Sci 6:201–208

    PubMed  Google Scholar 

  • Morgenroth VH III, Hegstrand LR, Roth RH, Greengard P (1975) Evidence for involvement of protein kinase in the activation of adenosine 3′,5′-monophosphate of brain tyrosine 3-mono-oxygenase. J Biol Chem 250:1946–1948

    PubMed  Google Scholar 

  • Morgenroth VH III, Walters JR, Roth RH (1976) Dopaminergic neurons: alteration in the kinetic properties of tyrosine hydroxylase after cessation of impulse flow. Biochem Pharmacol 25:655–661

    Article  PubMed  Google Scholar 

  • Mudge AW, Leeman SE, Fischbach GD (1979) Enkephalin inhibits release of substance P from sensory neurons and decreases action potential duration. Proc Natl Acad Sci 76:526–530

    PubMed  Google Scholar 

  • Nicholls JG, Wallace BG (1978) Modulation of transmission at an inhibitory synapse in the central nervous system of the leech. J Physiol 281:157–170

    PubMed  Google Scholar 

  • Nicholson C (1980) Dynamics of brain cell microenvironment. Neurosci Res Prog Bull 18, MIT, Boston, MA

    Google Scholar 

  • Nicholson C, ten Bruggencate G, Steinberg R, Stockle H (1977) Calcium modulation in brain extracellular microenvironment demonstrated with ion-selective micropipette. Proc Natl Acad Sci 74:1287–1290

    PubMed  Google Scholar 

  • Nicoll RA (1979) Dorsal root potentials and changes in extracellular potassium in the spinal cord of the frog. J Physiol 290:113–127

    PubMed  Google Scholar 

  • Niedergerke R (1963a) Movements of Ca in frog heart ventricles at rest and during contractures. J Physiol 167:515–550

    Google Scholar 

  • Niedergerke R (1963b) Movements of Ca in beating ventricles of the frog heart. J Physiol 167:551–580

    PubMed  Google Scholar 

  • Nowycky MC, Roth RH (1978) Dopaminergic neurons: role of presynaptic receptors in the regulation of transmitter biosynthesis. Prog Neuropsychopharmacol 2:139–158

    Article  Google Scholar 

  • Olmsted JB, Borisy GG (1973) Microtubules. Ann Rev Biochem 42:507–540

    Article  PubMed  Google Scholar 

  • Osorio I, Hackman JC, Davidoff RA (1979) GABA or potassium: which mediates primary afferent depolarization? Brain Res 161:183–186

    Article  PubMed  Google Scholar 

  • Otsuka M, Endo M, Nonamura Y (1962) Presynaptic nature of neuromuscular depression. Jp J Physiol 12:573–584

    Google Scholar 

  • Patel S, Patel U, Vithalani D, Verma SC (1981) Regulation of catecholamine release by presynaptic receptor system. Gen Pharmacol 12:405–422

    PubMed  Google Scholar 

  • Paupardin-Tritsch D, Deterre P, Gerschenfeld HM (1981) Relationship between two voltage-dependent serotonin responses of molluscan neurons. Brain Res 217:201–206

    Article  PubMed  Google Scholar 

  • Pelayo F, Dubocovich ML, Langer SZ (1978) Possible role of cyclic nucleotides in regulation of noradrenaline release from rat pineal through presynaptic adrenoceptors. Nature 274:76–78

    Article  PubMed  Google Scholar 

  • Pellmar TC, Wilson WA (1977) Unconventional serotoninergic excitation in Aplysia. Nature 269:76–78

    Article  PubMed  Google Scholar 

  • Pellmar TC, Carpenter DO (1980) Serotonin induces a voltage-sensitive calcium current in neurons of Aplysia californica. J Neurophysiol 44:423–439

    PubMed  Google Scholar 

  • Perry WLM (1953) Acetylcholine release in the cat's superior cervical ganglion. J Physiol 119:439–454

    PubMed  Google Scholar 

  • Polak RL (1965) Effect of hyoscine on the output of acetylcholine into perfused cerebral ventricles of cats. J Physiol 181:317–323

    PubMed  Google Scholar 

  • Polak RL (1971) The stimulating action of atropine on the release of acetylcholine by cat cerebral cortex in vitro. Br J Pharmacol 14:600–606

    Google Scholar 

  • Porter R (1970) Early facilitation at corticomotoneuronal synapses. J Physiol 207:733–745

    PubMed  Google Scholar 

  • Portzehl H, Caldwell PC, Ruegg JC (1964) The dependence of contraction and relaxation of muscle fibres from the crab Maia squinado on the internal concentration of free calcium ions. Biochem Biophys Acta 79:581–591

    PubMed  Google Scholar 

  • Pressman BC (1976) Biological applications of ionophores. Ann Rev Biochem 45:501–530

    Article  PubMed  Google Scholar 

  • Quastel DMJ, Hackett JT (1971) Quantal release of acetylcholine at the neuromuscular junction is not mediated by cyclic 3′,5′-adenosine monophosphate. Fed Proc 30:557

    Google Scholar 

  • Quilliam JP, Tamarind DL (1973) Some effects of preganglionic nerve stimulation on synaptic vesicle populations in rat superior cervical ganglion. J Physiol 235:317–331

    PubMed  Google Scholar 

  • Rahamimoff R (1968) A dual effect of calcium ions on neuromuscular facilitation. J Physiol 195:471–481

    PubMed  Google Scholar 

  • Rahamimoff R (1976) The role of calcium in transmitter release at the neuromuscular junction. In: Thesleff S (ed) Motor innervation of muscle. Academic, New York, pp 117–149

    Google Scholar 

  • Rahamimoff R, Yaari Y (1973) Delayed release of transmitter at the frog neuromuscular junction. J Physiol 228:241–257

    PubMed  Google Scholar 

  • Rahamimoff R, Meiri H, Erulkar SD, Barenholz Y (1978) Changes in transmitter release induced by ion-containing liposomes. Proc Natl Acad Sci 75:5214–5216

    PubMed  Google Scholar 

  • Rahamimoff R, Lev-Tov A, Meiri H (1980) Primary and secondary regulation of quantal transmitter release: calcium and sodium. J Exp Biol 89:5–18

    PubMed  Google Scholar 

  • Rall W (1967) Distinguishing theoretical synaptic potentials computed for different soma dendritic distributions of synaptic input. J Neurophysiol 30:1138–1168

    PubMed  Google Scholar 

  • Rasmussen H, Goodman DBP (1975) Calcium and cAMP as interrelated intracellular messengers. Ann NY Acad Sci 253:789–802

    PubMed  Google Scholar 

  • Rasmussen H, Goodman DBP (1977) Relationships between calcium and cyclic nucleotides in cell activation. Phys Rev 57:421–509

    Google Scholar 

  • Ribeiro JA (1978) ATP-related nucleotides and adenosine on neurotransmission. Life Sci 22:1373–1380

    Article  PubMed  Google Scholar 

  • Ribeiro JA (1979) Purinergic modulation of transmitter release. J Theor Biol 80:259–270

    Article  PubMed  Google Scholar 

  • Ribeiro JA, Sa-Almeida AM, Namorado JM (1979) Adenosine and adenosine triphosphate decrease 45Ca uptake by synaptosomes stimulated by potassium. Biochem Pharmacol 28:1297–1300

    PubMed  Google Scholar 

  • Richards CD (1972) Potentiation and depression of synaptic transmission in olfactory cortex of the guinea pig. J Physiol 222:209–231

    PubMed  Google Scholar 

  • Riker WF Jr, Roberts J, Standaert FG, Fujimori H (1957) The motor nerve terminal as the primary focus for drug-induced facilitation of neuromuscular transmission. J Pharmacol Exp Ther 121:286–312

    PubMed  Google Scholar 

  • Riker WF Jr, Werner G, Roberts J, Kuperman AS (1959) Pharmacologic evidence for the existence of a presynaptic event in neuromuscular transmission. J Pharmacol Exp Ther 125:150–158

    PubMed  Google Scholar 

  • Rojas E, Taylor RE (1975) Simultaneous measurement of magnesium and calcium influxes in perfused squid axons under membrane potential control. J Physiol 252:1–27

    PubMed  Google Scholar 

  • Rosenthal J (1969) Post-tetanic potentiation at the neuromuscular junction of the frog. J Physiol 203:121–133

    PubMed  Google Scholar 

  • Roth RH (1979) Dopamine autoreceptors: pharmacology, function and comparison with post-synaptic dopamine receptors. Commun Psychopharmacol 3:429–445

    PubMed  Google Scholar 

  • Roth RH, Walters JR, Morgenroth VA III (1974) Effects of alterations in impulse flow on transmitter metabolism in central dopaminergic neurons. In: Usdin E (ed) Neuropsychopharmacology of monoamines and their regulatory enzymes. Raven, New York, pp 369–384

    Google Scholar 

  • Roth RH, Walters JR, Murrin LC, Morgenroth VH Jr (1975) Dopamine neurons: role of impulse flow and presynaptic receptors in the regulation of tyrosine hydroxylase. In: Usdin E, Bunney WE Jr (eds) Pre-and post-synaptic receptors. Marcel Dekker, New York

    Google Scholar 

  • Roth RH, Murrin LC, Walters JR (1976) Central dopaminergic neurons: effects of alterations in impulse flow on the accumulation of dihydroxyphenylacetic acid. Eur J Pharmacol 36:163–171

    Article  PubMed  Google Scholar 

  • Ryall RW (1978) Presynaptic inhibition. Trends in Neurosci 1:164–166

    Article  Google Scholar 

  • Satchell D, Burnstock G, Dann P (1973) Antagonism of the effects of purinergic nerve stimulation and exogenously applied ATP on the guinea-pig taenia coli by 2-substituted imidazolines and related compounds. Eur J Pharmacol 23:264–269

    Article  PubMed  Google Scholar 

  • Sattin A, Rall TW (1970) The effect of adenosine and adenine nucleotides on the cyclic AMP content of guinea-pig cerebral cortex slices. Mol Pharmacol 6:13–23

    PubMed  Google Scholar 

  • Sattin A, Rall TW, Zaneilla J (1975) Regulation of cyclic AMP levels in guinea-pig cerebral cortex by interaction of alpha-adrenergic and adenosine receptor activity. J Pharmacol Exp Ther 192:22–32

    PubMed  Google Scholar 

  • Sawynok J, Jhamandas K (1977) Muscarinic feedback inhibition of acetylcholine release from the myenteric plexus in the guinea-pig ileum and its status after chronic exposure to morphine. Can J Physiol Pharmacol 55:909–916

    PubMed  Google Scholar 

  • Scarpa A, Carafoli E (1978) Calcium transport and cell function. Ann NY Acad Sci 307:1–655

    PubMed  Google Scholar 

  • Schmidt RF (1971) Presynaptic inhibition in the vertebrate central nervous system. Ergeb Physiol 63:20–101

    PubMed  Google Scholar 

  • Schulman H, Greengard P (1978) Stimulation of brain membrane protein phosphorylation by calcium and an endogenous heat-stable protein. Nature 271:478–479

    Article  PubMed  Google Scholar 

  • Schwartzkroin PA, Wester K (1975) Long-lasting facilitation of synaptic potentials following tetanization in the in vitro hippocampal slice. Brain Res 89:107–119

    Article  PubMed  Google Scholar 

  • Seiger A, Olston L, Farnebo LO (1976) Brain tissue transplanted to the anterior chamber of the eye. Drug-modulated transmitter release in central monoamine nerve terminals lacking normal postsynaptic receptors. Cell Tiss Res 165:157–170

    Article  Google Scholar 

  • Shapiro E, Castellucci VF, Kandel ER (1980a) Presynaptic membrane potential affects transmitter release in an identified neuron in Aplysia by modulating the Ca2+ and K+ currents. Proc Natl Acad Sci 77:629–633

    PubMed  Google Scholar 

  • Shapiro E, Castellucci VF, Kandel ER (1980b) Presynaptic inhibition in Aplysia involves a decrease in the Ca2+ current of the presynaptic neuron. Proc Natl Acad Sci 77:1185–1189

    PubMed  Google Scholar 

  • Sherman RG, Atwood HL (1971) Synaptic facilitation: long-term neuromuscular facilitation in crustaceans. Science 171:1218–1250

    Google Scholar 

  • Shimabara T, Peretz B (1978) Soma potential of an interneurone controls transmitter release in a monosynaptic pathway in Aplysia. Nature 273:158–160

    Article  PubMed  Google Scholar 

  • Shimahara T, Tauc L (1975a) Multiple interneuronal afferents to the giant cells in Aplysia. J Physiol 247:299–319

    PubMed  Google Scholar 

  • Shimahara T, Tauc L (1975b) Heterosynaptic facilitation in the giant cell of Aplysia. J Physiol 247:321–341

    PubMed  Google Scholar 

  • Shimahara T, Tauc L (1977) Cyclic AMP induced by serotonin modulates the activity of an identified synapse in Aplysia by facilitating the active permeability to calcium. Brain Res 127:168–172

    Article  PubMed  Google Scholar 

  • Shimizu H, Creveling CR, Daly J (1970) Stimulated formation of cyclic AMP in cerebral cortex: synergism between electrical activity and biogenic amines. Proc Natl Acad Sci 65:1033–1040

    PubMed  Google Scholar 

  • Silinsky EM (1977) Can barium support the release of acetylcholine by nerve impulses? Br J Pharmacol 59:215–217

    PubMed  Google Scholar 

  • Silinsky EM (1978) On the role of barium in supporting the asynchronous release of acetylcholine quanta by motor nerve impulses. J Physiol 274:157–171

    PubMed  Google Scholar 

  • Simon JR, Atweh S, Kuhar MJ (1976) Sodium-dependent high affinity choline uptake: a regulatory step in the synthesis of acetylcholine. J Neurochem 26:909–952

    PubMed  Google Scholar 

  • Singer JJ, Goldberg AL (1970) Cyclic AMP and transmission at the neuromuscular junction. In: Greengard P, Costa E (eds) Advances in biochemical pharmacology. Raven, New York

    Google Scholar 

  • Skirboll LR, Baizer L, Dretchen KL (1977) Evidence for a cyclic nucleotide mediated calcium flux in motor nerve terminals. Nature 268:352–355

    Article  PubMed  Google Scholar 

  • Skirboll LR, Grace AA, Bunney BS (1979) Dopamine auto-and postsynaptic receptors: electrophysiological evidence for differential sensitivity to dopamine agonists. Science 206:80–82

    Google Scholar 

  • Skou JC (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23:394–401

    Article  PubMed  Google Scholar 

  • Slotkin TA, Seidler FJ, Whitmore WL, Salvaggio M, Lau C (1978) Ionic and nucleotide cofactor requirements for uptake of [3H]-norepinephrine by rat brain synaptic vesicle preparations. Mol Pharmacol 14:868–878

    PubMed  Google Scholar 

  • Snodgrass SR (1978) Use of [3H]-muscimol for GABA receptor studies. Nature 273:392–394

    Article  PubMed  Google Scholar 

  • Soifer D (1975) Enzymatic activity in tubulin preparations: cyclic-AMP-dependent protein kinase activity of brain microtubule protein. J Neurochem 24:21–23

    PubMed  Google Scholar 

  • Somjen GG (1979) Extracellular potassium in the mammalian central nervous system. Ann Rev Physiol 41:159–177

    Article  Google Scholar 

  • Somjen GG (1981) Spinal fluids and ions. In: Davidoff R (ed) Pharmacology of the spinal cord. Marcel Dekker, New York, pp 329–380

    Google Scholar 

  • Somjen GG, Lothman EW (1974) Potassium, sustained focal potential shifts and dorsal root potentials of the mammalian spinal cord. Brain Res 69:153–157

    Article  PubMed  Google Scholar 

  • Sordahl LA (1974) Effects of magnesium, ruthenium red and the antibiotic ionophore A-23187 on initial rates of calcium uptake and release by heart mitochondria. Arch Biochem Biophys 167:104–115

    Article  Google Scholar 

  • Spencer WA (1966) Potentiation of recurrent inhibitory action on cat spinal motoneurons. Physiologist 9:292

    Google Scholar 

  • Spencer WA, Wigdor R (1965) Ultra-late PTP of monosynaptic reflex responses in cat. Physiologist 8:278

    Google Scholar 

  • Spencer WA, Thompson RF, Neilson DR Jr (1966) Response decrement of the flexion reflex in the acute spinal cat and transient restoration by strong stimuli. J Neurophysiol 29:221–239

    PubMed  Google Scholar 

  • Standaert FG, Dretchen KL, Skirboll LR, Morgenroth VH III (1976a) Effects of cyclic nucleotides on mammalian nerve terminals. J Pharm Exp Ther 199:544–552

    Google Scholar 

  • Standaert FG, Dretchen KL, Skirboll LR, Morgenroth VH III (1976b) A role of cyclic nucleotides in neuromuscular transmission. J Pharm Exp Ther 199:553–564

    Google Scholar 

  • Starke K (1971) Influence of α-receptor stimulants on noradrenaline release. Naturwissenschaften 58:420

    Article  PubMed  Google Scholar 

  • Starke K (1972) Alpha sympathomimetic inhibition of adrenergic and cholinergic transmission in the rabbit heart. Naunyn Schmiedebergs Arch Pharmacol 274:18–45

    Article  PubMed  Google Scholar 

  • Starke K (1977) Regulation of noradrenaline release by presynaptic receptor systems. Rev Physiol Biochem Pharmacol 77:1–124

    PubMed  Google Scholar 

  • Starke K (1981) Presynaptic receptors. Ann Rev Pharmacol Toxicol 21:7–30

    Article  Google Scholar 

  • Starke K, Montel H, Schumann HJ (1971) Influence of cocaine and phenoxybenzamine on noradrenaline uptake and release. Naunyn Schmiedebergs Arch Pharmacol 270:210–214

    Article  PubMed  Google Scholar 

  • Starke K, Montel H, Gay KW, Merker R (1974) Comparison of the effects of clonidine on pre-and postsynaptic adrenoceptors in the rabbit pulmonary artery. Naunyn Schiedebergs Arch Pharmacol 285:133–150

    Article  Google Scholar 

  • Starke K, Borowski E, Endo T (1975) Preferential blockade of presynaptic α-adrenoceptors by yohimbine. Eur J Pharmacol 34:385–388

    Article  PubMed  Google Scholar 

  • Starke K, Taube HD, Borowski E (1977) Presynaptic receptor systems in catecholaminergic transmission. Biochem Pharmacol 26:259–268

    Article  PubMed  Google Scholar 

  • Stjärne L (1979) Presynaptic alpha-receptors do not depress the secretion of [3H]-noradrenaline induced by veratridine. Acta Physiol Scand 106:379–380

    PubMed  Google Scholar 

  • Stone TW (1981) Physiological roles for adenosine and adenosine 5′-triphosphate in the nervous system. Neuroscience 6:523–555

    Article  PubMed  Google Scholar 

  • Straughan DW (1960) The release of acetylcholine from mammalian motor nerve endings. Br J Pharmacol Chemother 15:417–424

    Google Scholar 

  • Suszkiw JB, Pilar G (1976) Selective localization of a high-affinity choline uptake system and its role in cholinergic nerve terminals. J Neurochem 26:1133–1138

    PubMed  Google Scholar 

  • Sutherland EW, Robison GA (1966) The role of 3′,5′-AMP in responses to catecholamines and other hormones. Pharmacol Rev 18:145–161

    PubMed  Google Scholar 

  • Swenarchuk LE, Atwood HL (1975) Long-term synaptic facilitation with minimal calcium entry. Brain Res 100:205–208

    Article  PubMed  Google Scholar 

  • Syková E (1981) K+ changes in the extracellular space of the spinal cord and their physiological role. J Exp Biol 95:93–110

    PubMed  Google Scholar 

  • Syková E, Orkand RK (1980) Extracellular potassium accumulation and transmission in frog spinal cord. Neuroscience 5:1421–1428

    Article  PubMed  Google Scholar 

  • Syková E, Vyklický L (1977) Changes in extracellular potassium activity in isolated spinal cord of frog under high Mg2+ concentration. Neurosci Lett 4:161–165

    Article  Google Scholar 

  • Syková E, Vyklický L (1978) Effects of picrotoxin on potassium accumulation and dorsal root potentials in the frog spinal cord. Neuroscience 3:1061–1067

    Article  PubMed  Google Scholar 

  • Syková E, Czéh G, Kříž N (1980) Potassium accumulation in the frog spinal cord induced by nociceptive stimulation of the skin. Neurosci Lett 17:253–258

    Article  PubMed  Google Scholar 

  • Szerb JV (1964) The effect of tertiary and quaternary atropine on cortical acetylcholine output and on the electroencephalogram in cats. Can J Physiol Pharmacol 42:303–314

    PubMed  Google Scholar 

  • Szerb JC (1976) Storage and release of labelled acetylcholine in the myenteric plexus of the guinea-pig ileum. Can J Physiol Pharmacol 54:12–22

    PubMed  Google Scholar 

  • Szerb JC (1979) Autoregulation of acetylcholine release. In: Langer SZ, Starke K, Dubocovich ML (eds) Presynaptic receptors. Pergamon, Oxford, pp 293–298

    Google Scholar 

  • Szerb JC (1980) Effect of low calcium and of oxotremorine on the kinetics of the evoked release of [3H]-acetylcholine from the guinea-pig myenteric plexus comparison with morphine. Naunyn Schmiedebergs Arch Pharmacol 31:119–127

    Article  Google Scholar 

  • Szerb JC, Somogyi GT (1973) Depression of acetylcholine release from cortical slices by cholinesterase inhibition and by oxotremorine. Nature New Biol 241:121–122

    PubMed  Google Scholar 

  • Szerb JC, Hadházy P, Dudar JD (1977) Release of [3H]-acetylcholine from rat hippocampal slices: effect of septal lesion and of graded concentrations of muscarinic agonists and antagonists. Brain Res 128:285–291

    Article  PubMed  Google Scholar 

  • Takeuchi A (1958) The long-lasting depression in neuromuscular transmission of frog. Jpn J Physiol 8:102–113

    PubMed  Google Scholar 

  • Takeuchi A, Takeuchi N (1961) Changes in potassium concentration around motor nerve terminals produced by current flow and their effects on neuromuscular transmission. J Physiol 155:46–58

    PubMed  Google Scholar 

  • Takeuchi A, Takeuchi N (1962) Electrical changes in pre-and postsynaptic axons of the giant synapse of Loligo. J Gen Physiol 45:1181–1193

    Article  PubMed  Google Scholar 

  • Tauc L (1965) Presynaptic inhibition in the abdominal ganglion. J Physiol 181:282–308

    PubMed  Google Scholar 

  • ten Bruggencate G, Lux HD, Liebel L (1974) Possible relationships between extracellular potassium activity and presynaptic inhibition in the spinal cord of the cat. Pflügers Arch 349:301–317

    Article  Google Scholar 

  • Thesleff S (1955) The mode of neuromuscular block caused by acetylcholine, nicotine, decamethonium and succinylcholine. Acta Physiol Scand 34:218–231

    PubMed  Google Scholar 

  • Thies RE (1965) Neuromuscular depression and the apparent depletion of transmitter in mammalian muscle. J Neurophysiol 28:427–442

    Google Scholar 

  • Thompson RF, Spencer WA (1966) Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol Rev 73:16–43

    PubMed  Google Scholar 

  • Thompson WJ, Stent GS (1976a) Neuronal control of heartbeat in the medicinal leech I. Generation of the vascular constriction rhythm by heart motor neurons. J Comp Physiol 111:261–279

    Article  Google Scholar 

  • Thompson WJ, Stent GS (1976b) Neuronal control of heartbeat in the medicinal leech II. Intersegmental coordination of heart motor neuron activity by heart interneurons. J Comp Physiol 11:281–307

    Article  Google Scholar 

  • Thompson WJ, Stent GS (1976c) Neuronal control of heartbeat in the medicinal leech III. Synaptic relations of heart interneurons. J Comp Physiol 111:309–333

    Article  Google Scholar 

  • Tomita T, Watanabe H (1973) A comparison of the effects of ATP with noradrenaline and with the inhibitory potential of the guinea-pig taenia coli. J Physiol 231:167–178

    PubMed  Google Scholar 

  • Toyama K, Tsukahara N, Kosaka K, Matsunami K (1970) Synaptic excitation of red nucleus neurons by fibres from interpositus nucleus. Expl Brain Res 11:187–198

    Google Scholar 

  • Triestman S, Levitan I (1976) Alteration of electrical activity in molluscan neurons by cyclic nucleotides and peptide factors. Nature 261:62–64

    Article  PubMed  Google Scholar 

  • Ulbricht W, Wagner HH (1976) Block of potassium channel of the nodal membrane by 4-aminopyridine and its partial removal on depolarization. Pflügers Archiv ges Physiol 367:77–87

    Article  Google Scholar 

  • Vaca K, Pilar G (1979) Mechanisms controlling choline transport and acetylcholine synthesis in motor nerve terminals during electrical stimulation. J Gen Physiol 73:605–628

    Article  PubMed  Google Scholar 

  • Valentino RJ, Dingledine R (1981) Presynaptic inhibitory effect of acetylcholine in the hippocampus. J Neurosci 1:784–792

    PubMed  Google Scholar 

  • van Harreveld A, Fifková E (1975) Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibres as a mechanism of post-tetanic potentiation. Exp Neurol 49:736–749

    Article  PubMed  Google Scholar 

  • Vapaatalo H (1974) Role of cyclic nucleotides in the nervous system. Med Biol 52:200–207

    PubMed  Google Scholar 

  • Vapaatalo H, Anttila P (1972) Effects of some inhibitors of phosphodiesterase on neuromuscular transmission. Naunyn Schmiedebergs Arch Pharmacol 275:227–232

    Article  PubMed  Google Scholar 

  • Varagic VM, Zugic M (1971) Interactions of xanthine derivatives, catecholamines, and glucose-6-phosphate on the isolated phrenic nerve diaphragm preparation of the rat. Pharmacology 5:275–286

    PubMed  Google Scholar 

  • Varagic VM, Zugic M, Mrsulja B (1972) The effect of N-2-dibutyl adenosine 3′,5′-monophosphate on neuromuscular transmission and concentration of glycogen in the isolated phrenic nerve diaphragm preparation. Experientia 28:305–306

    Article  PubMed  Google Scholar 

  • Veloso D, Guynn RW, Oskarsson M, Veech RL (1973) The concentrations of free and bound magnesium in rat tissues. J Biol Chem 218:4811–4819

    Google Scholar 

  • Vizi ES (1973) Acetylcholine release from guinea-pig ileum by parasympathetic ganglion stimulants and gastrin-like polypeptides. Br J Parmacol 47:765–777

    Google Scholar 

  • Volle RL, Koelle GB (1961) The physiological role of acetylcholinesterase (AChE) in sympathetic ganglia. J Pharmacol Exp Ther 133:223–240

    PubMed  Google Scholar 

  • Vyklický L (1978) Transient changes in extracellular potassium and presynaptic inhibition. In: Ryall RW, Kelly JS (eds) Iontophoresis and transmitter mechanisms in the mammalian central nervous system. Elsevier, Amsterdam, pp 284–286

    Google Scholar 

  • Vyklický L, Syková E, Kříž N, Ujec E (1972) Post-stimulation changes of extracellular potassium concentration in the spinal cord of the rat. Brain Res 45:608–611

    Article  PubMed  Google Scholar 

  • Vyklický L, Syková E, Kříž N (1975) Slow potentials induced by changes of extracellular potassium in the spinal cord of the cat. Brain Res 87:77–80

    Article  PubMed  Google Scholar 

  • Vyklický L, Syková E, Mellerová B (1976) Depolarization of primary afferents in the frog spinal cord under high Mg2+ concentrations. Brain Res 117:153–156

    Article  PubMed  Google Scholar 

  • Wakabayashi T, Iwasaki S (1964) Successive EPP pattern and presynaptic factors in neuromuscular transmission. Tohoku J Exp Med 83:225–236

    PubMed  Google Scholar 

  • Wall PD, Johnson AR (1958) Changes associated with post-tetanic potentiation of a monosynaptic reflex. J Neurophysiol 21:149–158

    Google Scholar 

  • Weight FF, Erulkar SD (1976) Modulation of synaptic transmitter release by repetitive postsynaptic action potentials. Science 193:1023–1025

    PubMed  Google Scholar 

  • Weinreich D (1971) Ionic mechanism of post-tetanic potentiation at the neuromuscular junction of the frog. J Physiol 212:431–446

    PubMed  Google Scholar 

  • Weisenberg RC (1972) Microtubule formation in vitro in solutions containing low calcium concentrations. Science 177:1104–1106

    PubMed  Google Scholar 

  • Wernig A (1972) Changes in statistical parameters during facilitation at the frog neuromuscular junction. J Physiol 226:751–759

    PubMed  Google Scholar 

  • Wernig A (1975) Estimates of statistical release parameters from crayfish and frog neuromuscular junctions. J Physiol 244:207–221

    PubMed  Google Scholar 

  • Westfall TC (1977) Local regulation of adrenergic neurotransmission. Physiol Rev 57:659–728

    PubMed  Google Scholar 

  • Westfall TC, Perkins NA, Paul C (1979) Role of presynaptic receptors in the synthesis and release of dopamine in the mammalian central nervous system. In: Langer SZ, Starke K, Dubocovich ML (eds) Presynaptic receptors. Pergamon, Oxford, pp 243–248

    Google Scholar 

  • Wilson DF (1974) The effect of dibutyryl cyclic adenosine 3′,5′-monophosphate theophylline and aminophylline on neuromuscular transmission in the rat. J Pharm Exp Ther 188:447–452

    Google Scholar 

  • Wilson DF, Skirboll LR (1974) Basis for post-tetanic potentiation at the mammalian neuromuscular junction. Am J Physiol 227:92–95

    PubMed  Google Scholar 

  • Woolsey CN, Larrabee MG (1940) Potential changes and prolonged reflex facilitation following stimulation of dorsal spinal roots. Am J Physiol 129:501

    Google Scholar 

  • Wooton GF, Thoa NB, Kopin IJ, Axelrod J (1973) Enhanced release of dopamine-β-hydroxylase and norepinephrine from sympathetic nerves by dibutyryl cyclic adenosine monophosphate and theophylline. Mol Pharmacol 9:178–183

    PubMed  Google Scholar 

  • Yamamoto C, Chujo T (1978) Long-term potentiation in thin hippocampal sections studied by intracellular and extracellular recordings. Exp Neurol 58:242–250

    Article  PubMed  Google Scholar 

  • Yamamoto C, Kawai N (1967) Presynaptic action of acetylcholine in thin sections from the guinea-pig dentate gyrus in vitro. Exp Neurol 19:176–187

    Article  PubMed  Google Scholar 

  • Yamamura HI, Snyder SH (1973) High-affinity transport of choline into synaptosomes of rat brain. J Neurochem 21:1355–1374

    PubMed  Google Scholar 

  • Yeh JZ, Oxford GS, Wu CH, Narahashi T (1976) Dynamics of aminopyridine block of potassium channels in squid axon membrane. J Gen Physiol 68:519–535

    Article  PubMed  Google Scholar 

  • Younkin SG (1974) An analysis of the facilitation at the frog neuromuscular junction. J Physiol 237:1–14

    PubMed  Google Scholar 

  • Zengel JE, Magleby KL (1980) Differential effects of Ba2+, Sr2+ and Ca2+ on stimulation-induced changes in transmitter release at the frog neuromuscular junction. J Gen Physiol 76:175–211

    Article  PubMed  Google Scholar 

  • Zengel JE, Magleby KL, Horn JP, McAfee DA, Yarowsky PJ (1980) Facilitation, augmentation and potentiation of synaptic transmission at the superior cervical ganglion of the rabbit. J Gen Physiol 76:213–231

    Article  PubMed  Google Scholar 

  • Zucker RS (1972) Crayfish escape behavior and central synapses II. Physiological mechanisms underlying behavioral habituation. J Neurophysiol 35:621–637

    PubMed  Google Scholar 

  • Zucker RS (1973) Changes in the statistics of transmitter release during facilitation. J Physiol 229:787–810

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag

About this chapter

Cite this chapter

Erulkar, S.D. (1983). The modulation of neurotransmitter release at synaptic junctions. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 98. Reviews of Physiology, Biochemistry and Pharmacology, vol 98. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0033867

Download citation

  • DOI: https://doi.org/10.1007/BFb0033867

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12817-5

  • Online ISBN: 978-3-540-38744-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics