Skip to main content

Systems problems in global change research

  • Chapter
  • First Online:
Systems Representation of Global Climate Change Models

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 186))

  • 152 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Akin, W. E., Global Patterns. Climate vegetation and Soils, University of Oklahoma Press: Norman and London, 1991.

    Google Scholar 

  2. Anthes, R. A., “An observational basis for cumulus parameterization”, Report of the Seminar on Progress in Numerical Modeling and the Understanding of Predictability as a Result of Global Weather Experiment, Sigtuna, Sweden, October 1984, GARP Special Report No. 43, pp. II-1 to II-24 (Available from the Secretariat of the WMO, Case Postale No. 5, CH-12111 Geneva, Switzerland).

    Google Scholar 

  3. Arakawa, A., “Computational design for long-term numerical integrations of the equations of atmospheric motion”, J. Computat. Phys., 1, pp. 119–143, 1966.

    Article  Google Scholar 

  4. Arakawa, A., “Design of the UCLA general circulation model”, Tech. Rep. No. 7, Dept. Meteor. University of California, Los Angels, pp. 116, 1972.

    Google Scholar 

  5. Arakawa, A., and Lamb, V. R., “Computational design of the basic dynamical processes of the UCLA general circulation model”, Methods in Computational Physics, Vol. 17, Academic Press, New York, pp. 174–265, 1977.

    Google Scholar 

  6. Arrhenius, S., „On the influence of carbonic acid in the air upon the temperature of ground”, Philos. Mag., 41, 237, 1896.

    Google Scholar 

  7. Bacastow, R., and Maier-Reimer, E., “Ocean-circulation model of the carbon cycle”, Climate dynamics, Vol. 4, 2, pp. 95, 1990.

    Article  Google Scholar 

  8. Baier, W., Chaput, D. Z., Russello, D. A., and Sharp, W. R., “Soil moisture estimator program system”, Tech. Bull. No. 78. Canada Dept. Agriculture, Sir John Carling Building, Ottawa, pp. 55, 1972.

    Google Scholar 

  9. Bentley, C. R., Trans. Amer. Geophys. Union, 70, pp. 1002, 1989.

    Google Scholar 

  10. rBolin, B., ed., Carbon Cycle Modeling, SCOPE 16, Wiley N.Y., 1981.

    Google Scholar 

  11. Bretherton, F. P., “The earth system”, Future Generation Computer Systems, 5, North-Holland, pp. 259–264, 1989.

    Google Scholar 

  12. Broecker, W.S., “A revised estimate for the radiocarbon age of North Atlantic deep water”, J. of Geo. Res., 84, pp. 3218–3226, 1979.

    Google Scholar 

  13. Bryan, K., “Climate and the ocean circulation: III. The ocean model”, Mon. Wea. rev., 97, pp. 806–827, 1969.

    Google Scholar 

  14. Bryan, K., and Cox, M. D., “An approximate equation of state for numerical models of ocean circulation”, J. Phys. Oceanogr., 2, pp. 510–514, 1972.

    Article  Google Scholar 

  15. Bryan, K., “The Ocean heat balance”, Oceanus, 21, pp. 19–26, 1978.

    Google Scholar 

  16. Bryan, K., Manabe, S., and, Spelman, M. J., “Interhemispheric asymmetry in the transient response of a coupled atmosphere-ocean model to a CO 2 forcing”, J. Phys. Oceanog., Vol. 18, pp.851–867, 1988.

    Article  Google Scholar 

  17. Budyko, M. I., Ronov, A. B., and Yanshin, A. L., The History of the Earth's Atmosphere, Gidrometeoizdat, Leningrad (Russian), 1985, (English Translation Springer-Verlag, 1987).

    Google Scholar 

  18. Callendar, G. S., “The artificial production of carbon dioxide and its influence on temperature”, Q. J. R. Metorol. Soc., 64, 223, 1938.

    Google Scholar 

  19. Chamberlain, T.C., “An attempt to frame a working hypothesis of the cause of glacial periods on an atmospheric basis”, J. Geol., 7, 545, 1899.

    Google Scholar 

  20. Cess, R. D., et. al. “Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models“, Science, Vol. 245, pp. 513–516, 1989.

    Google Scholar 

  21. Cox, M. D., “An idealized model of the world ocean. Part I: The global-scale water mass”, J. Phys. Ocean., Vol 19, No. 11, November 1989.

    Google Scholar 

  22. Deardorff, J. W., “Dependence of air-sea transfer coefficients on bulk stability”, J. Geophys. Res., 73, pp. 2549–2557, 1968.

    Google Scholar 

  23. Del Genio, A. D., McGrattan, K. B., “Moist convection and the vertical structure and water abundance of Jupiter atmosphere”, ICARUS, Vol. 84, pp 29–53, 1990.

    Article  Google Scholar 

  24. Dickinson, R. E., “Modeling evapotranspiration for three-dimensional global climate models”, Climate Processes and Climate Sensitivity, J.E. Hansen and t. Takahashi, Eds., Maurice Ewing Series, Vol 5, American Geophysics Union, Washington D.C., pp 58–72, 1984.

    Google Scholar 

  25. Dobson, G. M. B., Exploring the Atmosphere, Clarendon Press, Oxford, 1968.

    Google Scholar 

  26. Gates, W. L., “Modeling as a means of studying the climate system” Projecting the climatic effects of increasing carbon dioxide, Eds. M. C. MacCracken and F. M. Luther, DOE/ER-0237, December 1985.

    Google Scholar 

  27. Flood, R. L., and Carson, E. R., Dealing with Complexity. An Introduction to the Theory and Application of Systems Science, Plenum Press, N.Y., 1988.

    Google Scholar 

  28. Gribbin, J., and Kelly, M. Winds of Change. Living in a Global Greenhouse, Hodder and Stoughton, 1989.

    Google Scholar 

  29. Hansen, J., and Lebedeff, S., J. Geophys., Vol. 92, n 13, p.345 1987.

    Google Scholar 

  30. Hansen, J., Russel, G., Rind, D., Stone, P., Lacis, A., Lebedeff, S., Ruedy, R. and Travis, L., “Efficient three-dimensional global models for climate studies: Models I and II”, Monthly Weather Review, Vol. 111, No. 4, April 1983.

    Google Scholar 

  31. Hansen, J., Lacis, A., Rind, D., J., Russel, Stone, P., Fung, I., Ruedy, R., and Lerner, J., “Climate sensitivity: Analysis of feedback mechanisms”, Climate Processes and Climate Sensitivity, Geophysical Monograph 29, Maurice Ewing Volume 5, 1984.

    Google Scholar 

  32. Hansen, J., Fung, I., Lacis, A., Rind, D., Lebedeff, S., Ruedy, R., Russel, G., Stone, P., “Global climate changes as forecast by Goddard Institute of Space studies three-dimensional model”, J. Geophys. Res., Vol. 93, pp. 9341–9364, April 1988.

    Google Scholar 

  33. Harris, C., and Stonehouse, B., Eds., Antarctica and Global Climatic Change, Lewis Publ., Boca Raton, FL., 1991.

    Google Scholar 

  34. Henderson-Sellers, A., and Meadows, A.J. “Surface temperatures of early Earth”, Nature, 270, pp. 589–591, 1977.

    Article  Google Scholar 

  35. Hilel, D., Soil and Water, Academic Press, 1971.

    Google Scholar 

  36. Holton, J. R., An Introduction to Dynamic Meteorology, International geophysics Series, Vol 23, Academic Press, NY, 1979.

    Google Scholar 

  37. Houghton, J. T., The physics of atmospheres, Cambridge Univ. Press, New York, 1976.

    Google Scholar 

  38. Idso, S. B., “What if increases in atmospheric CO 2 have an inverse greenhouse effect?, I. Energy balance considerations related to surface albedo“, J. Climatology, Vol 4, pp. 399–409, 1984.

    Google Scholar 

  39. Jastrow, R., Nirenberg, W., Seitz, F., Scientific Perspectives on the Greenhouse Problem, The Marshall Press, Jameson Books Inc., Ottawa, Illinois, 1990.

    Google Scholar 

  40. Jones, P. D., and Kelly, P. M., “Hemispheric and global temperature data”, in Long and Short Term Variability in Climate, H. Wanner and U. Sigenthaler, Eds., Springer-Verlag, N. Y., pp. 18–34, 1988.

    Google Scholar 

  41. Kandel, R., Earth and Cosmos, Oxford Pergammon Press, 1980.

    Google Scholar 

  42. Karol, I. L., Kiselyev, A. A., Rozanov, E. V., “Study of the climatic effects of changes in atmospheric trace gases content with the radiation-photochemical model”, US/USSR Meeting of Experts on Causes of Recent Climate Change, Leningrad, 1986.

    Google Scholar 

  43. Keeling, C. D., Bacastow, J., Lancaster, J., Whorf, T. P., and Mook, W. G., “Evidence for accelerated release of carbon dioxide to the atmosphere, inferred from direct measurements of concentration and 13 C/12 C ratio”, presented at the June 1989 Annual Meeting of the Air and Waste Management Association, Anaheim, California, also submitted to Science, 1989.

    Google Scholar 

  44. Kellog, W. W., and Schneider, S. H., “Climate stabilization for better or worse”, Science, 186, pp.1163–1172, 1974.

    Google Scholar 

  45. Kuo, B. C., Automatic Control Systems, 6'th edition, Prentice Hall, NJ, 1991.

    Google Scholar 

  46. Lacis, A. A., Hansen, J., Lee, P., Mitchell, T., and Lebedeff, S., “Greenhouse effect of trace gases, 1970–1980”, Geophysical Res. Lett., 8, 1035–1038, 1981.

    Google Scholar 

  47. Landsberg, H. E., “The value and challenge of climate predictions”, IX world Meteorological Conference, Geneva, May 1983.

    Google Scholar 

  48. Lashof, D. A., and Ahuja, D. R., “Relative contributions of greenhouse gas emissions to global warming”, Nature, Vol. 344, 5 April 1990.

    Article  PubMed  Google Scholar 

  49. Lorenz, E. N., “Can chaos and intransitivity lead to interannual variability?”, Tellus 42 A, pp. 378–389, 1990.

    Google Scholar 

  50. Lorenz, E. N., “Chaos, spontaneous climatic variations and detection of the greenhouse effect”, in Greenhouse-Gas-Induced Climatic Change: A critical Appraisal of Simulations and Observations, Ed. M. E. Schlesinger, Elsevier Science Publ. B. V., Amsterdam, 1991.

    Google Scholar 

  51. Lorenz, E.N., “Climate Predictability”, The physical basis of climate and climate modeling, GARP Publn. Series, No. 16, Geneva, WMO, pp. 132–136, 1975.

    Google Scholar 

  52. Monin, A. S., An Introduction to the Theory of Climate, D. Reidal, Boston, 1986.

    Google Scholar 

  53. MacCracken, M. C., “Carbon dioxide and climate change: Background and overview“, Projecting the climatic effects of increasing carbon dioxide, Eds. M. C. MacCracken and F. M. Luther, DOE/ER-0237, December 1985.

    Google Scholar 

  54. Manabe, S., “Climate and ocean circulation: I. The atmospheric circulation and the hydrology of the earth's surface”, Mon. Wea. Rev., Vol 97, pp. 739–774, 1969.

    Google Scholar 

  55. Manabe, S., “Climate and ocean circulation: II. The atmospheric circulation and the effect of heat transfer by ocean currents”, Mon. Wea. Rev., Vol 97, pp. 775–805, 1969.

    Google Scholar 

  56. Manabe, S., Smagorinsky, J., and Strickler, R. F., “Simulated climatology of a general circulation model with a hydrologic cycle“, Monthly Weather Review, Vol. 93, 769–798, 1965.

    Google Scholar 

  57. Manabe, S., and Wetherald, R., “Thermal equilibrium of the atmosphere with a given distribution of relative humidity”, J. Atmos. Sci., 24, pp. 247–259, 1967.

    Article  Google Scholar 

  58. Manabe, S., Bryan, K., and Spelman, M. J., J. Phys. Ocean, 20, pp. 722, 1990.

    Article  Google Scholar 

  59. Marland, G., et. al. “Estimates of CO 2 emissions from fossil fuel burning and cement manufacturing”, Oak Ridge Natl. Lab. Rep. ORNL/CDIAC-25, National Technical Information Service, Springfield VA., 1989.

    Google Scholar 

  60. Mass, C. F., and Portman, D., A., “Major volcanic eruptions and climate: A critical evaluation”, J. of Climate, Vol 2, pp. 566–593, 1989.

    Article  Google Scholar 

  61. Matthews, E., “Global vegetation and land use: New high resolution data bases for climate studies”, J. Climate Appl. Meteor., 1983.

    Google Scholar 

  62. Meier, M. F., “Glaciers, ice-sheets and sea level: Effects of a CO 2 induced climate changes”, National Academy Press, 1985.

    Google Scholar 

  63. Meier, M. F., Nature 343, pp115, 1990.

    Article  Google Scholar 

  64. Milankovitch, Milutin., Theorie Mathematique des Phenomenes Termiques Produits per la Radiation Solaire, Gauthier Villars, Paris 1920.

    Google Scholar 

  65. Neftel, A., Oeschger, H., and, Stauffer, B., “Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries”, Nature, 315, pp. 45–47, 1985.

    Article  Google Scholar 

  66. Neumann, G., and Pierson Jr., W. J., Principles of Physical Oceanography, Prentice Hall, Englewood Cliffs, N. J., 1966.

    Google Scholar 

  67. Newell, R.E., and Dopplick, T. G., “Questions concerning the possible influence of anthropogenic CO 2 on atmospheric temperature“, J. Appl. Meteorology, 18:822–825, 1979.

    Article  Google Scholar 

  68. North, G. R., “Theory of energy balance climatic models”, J. Atmos. Sci., 32, pp. 2033–2043, 1975.

    Article  Google Scholar 

  69. Oeschger, H., Sigenthaler, U., and Gugelman, A., “A box diffusion model to study the carbon dioxide exchange in nature”, Tellus, 27, pp. 168–192, 1975.

    Google Scholar 

  70. Ogata, K., Modern Control Engineering, 2'nd edition, Prentice Hall, NJ, 1990.

    Google Scholar 

  71. Pao, Y. H., Adaptive Pattern Recognition and Neural Networks, Addison-Wesley, 1989.

    Google Scholar 

  72. Parker, S. P., Ed. McGraw Hill Dictionary of Scientific and Technical Terms, Third edition, McGraw Hill, N. Y., 1984.

    Google Scholar 

  73. Phillips, N. A., “A coordinate surface having some special advantage for numerical forecasting”, J. Meteor., 14, pp. 184–185, 1955.

    Google Scholar 

  74. Ramanathan, V., Barkstrom, B. R., Harrison, E. F. “Climate and the Earth's Radiation Budget”, Physics Today, v 42, n 5, 1989.

    Google Scholar 

  75. Ramanathan, V., Cicerone, R. J., Singh, H. B.m and Kiehl, J. T., “Trace gas trends and their potential role in climate change” J. Geophys Res., 90, pp. 5547–5566, 1985.

    Google Scholar 

  76. Ramanathan, V., Pitcher, E. J., Malone, R. C., Blackmon, M. L., “The response of a spectral general circulation model to refinements in radiative processes”,J. Atmos. Sci., 40, pp. 605–630, 1983.

    Article  Google Scholar 

  77. Richardson, L. F., Weather Prediction by Numerical Process, Cambridge Univ. Press, Cambridge, pp. 219–220, 1922.

    Google Scholar 

  78. Russel, G. L., and Lerner, J. A., “A new finite-differencing scheme for the tracer transport equation” J. Appl. Meteor., 20, pp. 1483, 1981.

    Article  Google Scholar 

  79. Rind, D., Goldberg, R., Hansen, J., Rosenzweig, C., and, Ruedy, R., “Potential evapotranspiration and the likelihood of future drought”, J. Geo. Res., Vol. 95, No. D7, pp. 9983–10004, June 20, 1990.

    Google Scholar 

  80. Robock, A., “An updated climate feedback diagram”, Bull. American Meteorological Society, 66:786–787, 1985.

    Article  Google Scholar 

  81. Rodgers, C. D., “The radiative heat budget of the troposphere and the lower stratosphere“, Report No. A2, MIT, Cambridge, MA, 1967.

    Google Scholar 

  82. Sarkisyan, A. S., Osnovy teorii raschet okeanicheskysy techneny (Fundamental of the Theory and Calculation of Ocean Currents), Gidrometeoizdat, Moscow, 1966.

    Google Scholar 

  83. Schneider, S. H., “Cloudiness as a global climate feedback mechanism: The effects of radiation balance and surface temperature on variations in cloudiness”, J. of Atmos. Sci., 29, pp. 1413–1422, 1972.

    Article  Google Scholar 

  84. Schneider, S. H., and Dickinson, R. E., “Climate modeling”, Rev. of Geophys. and Space Phys., 12, pp. 447–493, 1974.

    Google Scholar 

  85. Schneider, S. H., Washington, W. M., and Cervin, R. M., “Cloudiness as a climatic feedback mechanism: Effects on cloud amounts of prescribed global and regional surface temperature changes in the NCAR GCM, Journal of Atmospheric Sciences, 35, pp. 2207–2221, 1978.

    Article  Google Scholar 

  86. Schneider, S. H., and Londer, R., The Coevolution of Climate and Life, Sierra Club Book, San Francisco, 1984.

    Google Scholar 

  87. Schneider, S. H., “The greenhouse effect: reality or media event”, World Monitor, 1989.

    Google Scholar 

  88. Schneider, S. H., Global Warming. Are We Entering the Greenhouse Century, Sierra Club Books, San Fransisco, U.S.A., 1989.

    Google Scholar 

  89. Schlesinger, M.E., and Gates, W. L., “Preliminary analysis of four general circulation model experiments on the role of the ocean in climate”, report No. 25, Climatic Research Institute, Oregon State University, Corvallis, Oregon, pp. 56, 1981.

    Google Scholar 

  90. Sigenthaler, U., and Oeschger, H.,, “Predicting future atmospheric CO 2 levels”, Science, 199, pp. 388–395, 1978.

    Google Scholar 

  91. Smagorinsky, J., “General circulation experiments with the primitive equations. 1. The basic experiment.”, Mon. Wea. Rev., 91, pp 98–164, 1963.

    Google Scholar 

  92. Smith, G. D., ed. The Cambridge Encyclopedia of Earth Sciences, Cambridge Univ. Press, Cambridge, UK., 1981.

    Google Scholar 

  93. Stringer, E. T., Foundations of Climatology. An Introduction to Physical, Dynamic, Synoptic and Geographical Climatology, W. H. Freeman & Co, San Francisco, 1972.

    Google Scholar 

  94. Stone, P. H., and Yao, M-S., “Development of a two-dimensional zonally averaged statistical-dynamical model. Part II: The role of eddy momentum fluxes in the general circulation and their parameterization”, J. Atm. Sci., Vol 44, No. 24, December 1987.

    Google Scholar 

  95. Stone, P. H., and Yao, M-S., “Development of a two-dimensional zonally averaged statistical-dynamical model. Part III: The The parameterization of eddy fluxes of heat and moisture”, J. Climate, Vol 3, No. 7, July 1990.

    Google Scholar 

  96. Sullivan, W.. Assault on the Unknown: The International Geophysical Year, McGraw-Hill, New York, 1961.

    Google Scholar 

  97. Takahashi, T., “The Carbon Dioxide Puzzle”, Oceanus, v 32 n 2, pp. 22–29, Summer 1989.

    Google Scholar 

  98. Tans, P. P., Fung, I. Y., and Takahashi, T., “Observational constraints on the global atmospheric CO 2 budget”, Science, Vol 247, pp. 1431–1438 March 1990.

    Google Scholar 

  99. Trabalka, J. R., (ed.), Atmospheric Carbon Dioxide and the Global Carbon Cycle, DOE/ER-0239, US DOE, Washington D.C., available from NTIS, Springfield, Virginia, 1985.

    Google Scholar 

  100. Tyndall, J., “On radiation through the Earth's Atmosphere”, Philos. Mag. 4, 200, 1863.

    Google Scholar 

  101. Wang, W., Yung, Y., Lacis, A., Mo., T., and Hansen, J., “Greenhouse effects due to man-made perturbations of trace gases”, Science, 195, pp. 685, 1976.

    Google Scholar 

  102. Washington, W. M. and Parkinson, C. L. An introduction to three-dimensional climate modeling, Oxford University Press, New York, 1986.

    Google Scholar 

  103. Woods, J., “The world ocean circulation experiment”, Nature, 314; pp. 501–511, 1985.

    Article  Google Scholar 

  104. Yao, M-S., and Stone, P. H., “Development of a two-dimensional zonally averaged statistical-dynamical model. Part I: The parameterization of moist convection and its role in the general circulation”, J. Atm. Sci., Vol 44, No. 1, 1 January 1987.

    Google Scholar 

  105. Anthropogenic Climate Change, M. I. Budyko, and Y. A. Izrael, Eds., University of Arizona Press., 1991.

    Google Scholar 

  106. “CHAMMP Researchers Exploit emerging hardware & software in advanced climate models”, SIAM News, Vol 24, No. 6, November 1991. Also see Nature 344, 1990.

    Google Scholar 

  107. Earth Systems Science. A Closer View, Report of the Earth Systems Science Committee, NASA Advisory Council, NASA, Washington D.C., January 1988.

    Google Scholar 

  108. Climate in Human Perspective. A Tribute to Helmut E. Landsberg, Baer, F., Canfield, N. L., and Mitchell, J. M., (Eds.), Kluwer Acad. Publ., 1990.

    Google Scholar 

  109. Energy in Non-OECD Countries. Selected Topics 1991, International Energy Agency, OCDE-OECD, Paris, 1991.

    Google Scholar 

  110. Glossary: Carbon Dioxide and Climate, The Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, August 1990.

    Google Scholar 

  111. Impact of Sea Level Rise on Society, Part 1, Covering Note, Proc. of Workshop, Delfts Hydraulics Laboratory, Delfts, Netherlands, August 27–29, 1986.

    Google Scholar 

  112. Projecting the climatic effects of increasing carbon dioxide Mac-Cracken, M. C. and Luther, F. M. eds., DOE/ER-037, December 1985.

    Google Scholar 

  113. World Meteorological Organization (WMO), Report of the WMO (CAS) meeting of experts on the CO 2 concentrations from preindustrial times to I.G.Y, World Climate Programme Report WCP-55, Geneva, Switzerland, 1983.

    Google Scholar 

  114. Carbon dioxide and climate: a second assessment, National Academy Press, Washington D.C., 1982.

    Google Scholar 

  115. Renewing U.S. Mathematics. A Plan for the 1990's, Committee on the Mathematical Sciences: Status and Future Directions, Board on Mathematical Sciences, Commission in Physical Sciences, Mathematics, and Applications, National Research Council. Report available from National Academic Press, 2101 Constitution Avenue, NW, Washington, DC 20418, 1990.

    Google Scholar 

  116. Prospects for Future Climate. A Special US/USSR Report on Climate and Climate Change, Eds. M. C. MacCracken, M. I. Budyko, A. D. Hecht and Y. A. Izrael, Lewis Publishers Inc, Chelsea, Michigan, 1990.

    Google Scholar 

  117. Webster's Ninth New Collegiate Dictionary and Webster's Collegiate Thesaurus. First Digital Edition, NeXT Computer Inc. and Merriam Webster Inc., 1990.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this chapter

Cite this chapter

(1993). Systems problems in global change research. In: Systems Representation of Global Climate Change Models. Lecture Notes in Control and Information Sciences, vol 186. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0033664

Download citation

  • DOI: https://doi.org/10.1007/BFb0033664

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19824-6

  • Online ISBN: 978-3-540-39312-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics