Invariants for the generalized Lotka-Volterra equations

  • Laurent Cairó
  • Marc R. Feix
  • Joao Goedert
Part III: Nonlinear Wave Propagation: Numerical and Theoretical Studies
Part of the Lecture Notes in Physics book series (LNP, volume 353)


A generalisation of Lotka-Volterra System is given when self limiting terms are introduced in the model. We use a modification of the Carleman embedding method to find invariants for this system of equations. The position and stability of the equilibrium point and the regression of system under invariant conditions are studied.


Equilibrium Point Lorenz System Lorenz Model Cyclic Orbit Central Equilibrium Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    LOTKA A.J. “Contribution to the theory of Periodic Reactions”, Journal of Physics Chemistry 14, (1910), 271–274.CrossRefGoogle Scholar
  2. [2]
    VOLTERRA V. “Lecons sur la théorie mathématique de la lutte pour la vie” Gauthier Villars, Paris, 1931.Google Scholar
  3. [3]
    VERHULST P.F. Nuov. Mem. Acad. Roy. Bruxelles 18 (1845), 1. See also 20 (1847), 1.Google Scholar
  4. [4]
    BOFFI V.C., FRANCESCHINI V. and SPIGA G. “Dynamics of a Gaz Mixture in an Extended Kinetic Theory”, Phys. of Fluids 28 (1985), 3232–3236.CrossRefGoogle Scholar
  5. [5]
    LUPINI R. and SPIGA G. “Chaotic Dynamics of Spatially Homogeneous Gaz”, Phys. of Fluids 31 (1988), 2048–2051.CrossRefGoogle Scholar
  6. [6]
    GOEL N., MITRA S. and MONTROLL E.W. “On the Volterra and other Nonlinear Models of Interacting Populations”, Rev. of Mod. Phys. 43 (1971) 231–276.CrossRefGoogle Scholar
  7. [7]
    CAIRO L., FEIX M.R. and GOEDERT J. “Invariants for Models of Interacting Populations”, accepted for publication in Physics Letters A, 1989.Google Scholar
  8. [8]
    CARLEMAN T. “Application de la théorie des équations intégrales linéaires aux systemes d'équations différentielles non linéaires”, Acta Mathematica 59, (1932), 63–87.Google Scholar
  9. [9]
    MONTROLL E.W. and HELLEMAN R.H.G. “Topics of Statistical Mechanics and Biophysics”, R.A. Piccirelli Ed. AIP Conf. Proc. 27 (1976), 75.Google Scholar
  10. [10]
    ANDRADE R.F.S. and RAUCH A. “The Lorenz Model and the Method of Carleman Embedding”, Phys. Letters 82 A, (1981), 276–278.CrossRefGoogle Scholar
  11. [11]
    STEEB W.H. and WILHELM F., “Non-linear Autonomous Systems of Differential Equations and Carleman Linearization Procedure”, J. Math. Anal. Appl. 77 (1980) 601–611.CrossRefGoogle Scholar
  12. [12]
    KUS M. ldIntegrals of Motion for the Lorenz System”, J. Phys. A. Math. Gen. 16 (1983), L 689–691.CrossRefGoogle Scholar
  13. [13]
    GUCKENHEIMER J. and HOLMES P. “Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields”, Chapter 7.5, Springer Verlag, 1985.Google Scholar
  14. [14]
    MAY R.M., LEONARD W.J. “Nonlinear Aspects of Competition between three Species”, SIAM J. Appl. Math. 29 (1975) 243–253.CrossRefGoogle Scholar
  15. [15]
    Coste J., Peyraud J. and COULLET P. “Asymptotic Behaviours in the Dynamics of Competing Species”, SIAM J. Appl. Math 36 (1979) 516–543.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Laurent Cairó
    • 1
  • Marc R. Feix
    • 1
  • Joao Goedert
    • 2
  1. 1.PMMS/CNRS - Université d'OrléansOrléans
  2. 2.Universidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations