Advertisement

Fluxon trapping by inhomogeneities in long Josephson junctions

  • Tassos Bountis
  • Stephanos Pnevmatikos
  • Stavros Protogerakis
  • George Sohos
Part III. Nonlinear Wave Propagation: Numerical and Theoretical Studies
Part of the Lecture Notes in Physics book series (LNP, volume 353)

Abstract

Following the approach of collective coordinates for the location X(t), and speed U(t), of a fluxon travelling in a long Josephson junction (LJJ), we show that the conditions of fluxon trapping by an array of N point-like inhomogeneities are determined by the relative location of the separatrices of N unstable fixed points in the U,X phase plane. In the particular case of experimental interest in which the inhomogeneities are “microresistors” , we find specific parameter values and initial conditions such that each “microresistor” will trap one fluxon thus turning the LJJ into a quantum flux ‘shuttle’. We also solve for the same parameter values, the corresponding PDE numerically and verify the validity of the results obtained by the ODE's of the collective coordinate approach.

Keywords

Invariant Manifold Josephson Junction Quantum Flux Stable Fixed Point Experimental Interest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A, Barone and G. Paterno, “Physics and Application of the Josephson Effect” (Wiley, Interscience, New York, 1982).Google Scholar
  2. [2]
    K.K. Likharev, “Dynamics of Josephson Junction and Circuits” (Gordon and Breach, New York 1986.Google Scholar
  3. [3]
    J.G. Bednorz and K.A. Müller, Z.Phys. B64, 189 (1986); M.K. Wu et al, Phys. Rev. Lett. 58, 908 (1987).CrossRefGoogle Scholar
  4. [4]
    M.J. Ablowitz and H. Segur, “Solitons and the Inverse Scattering Transform” (SIAM Studies in Appl. Math. Philadelphia, 1981); “Solitons”, S.E. Trullinger, V.E. Zakharov and V.L. Pokrovsky (eds), in Modern problems inCondensed Matter Sciences, Vol. 17, (North Holland, Amsterdam 1986).Google Scholar
  5. [5]
    P. Cvitanovic, ed. “Universality in Chaos” (Hilger Bristol, 1984).Google Scholar
  6. [6]
    H.G. Schuster, “Deterministic Chaos” (Physik Verlag, Weinheim, 1986).Google Scholar
  7. [7]
    N.F. Pedersen, Physica Scripta, vol. T13, 129 (1986).Google Scholar
  8. [8]
    P.L. Christiansen and N.E. Pedersen, in “Singular Behaviour and Nonlinear Dynamics” St. Pnevmatikos, T. Bountis and Sp. Pnevmatikos eds. (World Scientific Singapore, 1989).Google Scholar
  9. [9]
    G. Reinisch and J.C. Fernandez, in same volume as ref.8.Google Scholar
  10. [10]
    M.B. Fogel, S.E. Trullinger, A.R. Bishop and J.A. Krumhansl, Phys. Rev. Lett. 36 1411 (1976); see also Phys.Rev. B15, 1578 (1977).CrossRefGoogle Scholar
  11. [11]
    J.P. Keener and D.W. McLaughlin, Phys.Rev. A16, 777 (1977); see also J.Math.Phys. 18, 2008 (1977).Google Scholar
  12. [12]
    D.W. McLaughlin and A.C. Scott, Phys. Rev. A18, 1652 (1978).Google Scholar
  13. [13]
    Y.S. Kivshar and B.A. Malomed, Phys. Lett. 111A (8,9), 427 (1985); Phys. Lett. 118A(2), 85 (1986); Phys. Lett. 119A(5), 237 (1986); Phys. Lett. 129A(8,9), 443 (1988).Google Scholar
  14. [14]
    I.L. Serpuchenko and A.V. Ustinov, JETP Lett. 46(11), 549 (1987).Google Scholar
  15. [15]
    A.A. Golubov, I.L. Serpuchenko and A.V. Ustinov, JETP 94, 297, (1988).Google Scholar
  16. [16]
    T. Bountis and St. Pnevmatikos, Phys. Lett. A, submitted, (1989).Google Scholar
  17. [17]
    S. Pagano, private communication, (1989).Google Scholar
  18. [18]
    St. Protogerakis, St. Pnevmatikos and T. Bountis, in preparation, (1989).Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Tassos Bountis
    • 1
  • Stephanos Pnevmatikos
    • 2
  • Stavros Protogerakis
    • 3
  • George Sohos
    • 1
  1. 1.Department of MathematicsUniversity of PatrasPatrasGreece
  2. 2.Research Center of CreteCreteGreece
  3. 3.Physics Depart.University of CreteCreteGreece

Personalised recommendations