Radiative damping of driven sine-Gordon breathers

  • R. Döttling
  • J. Eßlinger
  • W. Lay
  • A. Seeger
Part III : Nonlinear Wave Propaganda : Numerical and Theoretical Studies
Part of the Lecture Notes in Physics book series (LNP, volume 353)


The paper studies the behaviour of breather solutions of the sine-Gordon (Enneper) equation under the action of a constant external force s. As a first step the modification of the breather solution by the external force is calculated in the so called adiabatic approximation. In a second step the coupling of the breather motion to the “heavy phonons” of the system is obtained by a perturbation treatment based on the inverse scattering transform. The results are used to calculate to the order s2 the radiative damping of breathers in the limits of small or large breather amplitudes.


Phonon Mode Dislocation Line Inverse Scattering Adiabatic Approximation Breather Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A.Eaneper, Über asymptotische Linien' in: Nachr. Königl. Gesellsch. d. Wiss., Göttingen, 1870, p.493Google Scholar
  2. [2]
    A.V.Bäcklund, ‘Om ytor med konstant negative krókning’ in: Lunds Universitets Ars-skrift XIX, IV, p. 1, 1882–83Google Scholar
  3. [3]
    L.Bianchi,: Rend. Acc. Naz. Lincei (5) 1 (2°em.), 1892, p. 3Google Scholar
  4. [4]
    A.Seeger: Diploma thesis, Technische Hochschule Stuttgart 1948/49Google Scholar
  5. [5]
    F.C.Frank, J.H.van derMerwe: Proc. Roy. Soc. London A, 201, 261 (1950)Google Scholar
  6. [6]
    A.Seeger, A.Kochendörfer: Z. Physik 130, 321 (1951)CrossRefGoogle Scholar
  7. [7]
    A.Seeger, H.Donth, A.Kochendórfer: Z. Physik 134, 173 (1953)CrossRefGoogle Scholar
  8. [8]
    A.Seeger: Z. Naturforschung 8a, 246 (1953)Google Scholar
  9. [9]
    N.J.Zabusky and M.D.Kruskal: Phys. Rev. Letters 15, 240 (1965)CrossRefGoogle Scholar
  10. [10]
    C.S.Gardner, J.M.Greene, M.D.Kruskal, R.M.Miura: Phys. Rev. Letters 19, 1095 (1967)CrossRefGoogle Scholar
  11. [11]
    A.Seeger, P.Schiller, ‘Kinks in Dislocation Lines and Their Effects on the Internal Friction in Crystals’ in: Physical Acoustics, Vol IIIA (W.P.Mason ed.), p.361, Academic Press, New-York and London 1966Google Scholar
  12. [12]
    A.Seeger: 'structure and Diffusion of Kinks in: Monoatomic Crystals’ in: Dislocation 1984 (Ed. Centre Nationale de la Recherche Scientific) p.141, Paris 1984Google Scholar
  13. [13]
    V.I.Arnol'd: ‘Mathematical Methods of Classical Mechanics, Springer Verlag, New YorkHeidelberg-Berlin, 1978Google Scholar
  14. [14]
    V.I.Karpman, E.M.Maslov, V.V.Solov'ev: Sov. Phys.-JETP 57, 167 (1983)Google Scholar
  15. [15]
    S.Novikov, S.V.Manakov, L.P.Pitaevskii, V.I.Zakharov: Theory of Solitons-The Inverse Scattering Method, Consultants Bureau, New-York and London 1984Google Scholar
  16. [16]
    B.A.Malomed: Physica 27D, 113 (1987)Google Scholar
  17. [17]
    Y.S.Kivshar, B.A.Malomed: Europhys. Lett. 4, 1215 (1987)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • R. Döttling
    • 1
  • J. Eßlinger
    • 1
  • W. Lay
    • 1
  • A. Seeger
    • 1
  1. 1.Max-Planck-Institut für Metallforschung, Institut für Physik andUniversität Stuttgart, Institut für Theoretische und Angewandte PhysikStuttgart 80Germany

Personalised recommendations