Defects in non-linear waves in convection

  • A. Joets
  • R. Ribotta
Part III : Nonlinear Wave Propaganda : Numerical and Theoretical Studies
Part of the Lecture Notes in Physics book series (LNP, volume 353)


Time-dependent structures in convection such as traveling patterns are examples of nonlinear waves and represent space-time ordered structures. They can be described by an amplitude equation (the complex Landau-Ginzburg-Newell model). Defects occur as the result of localized modulations of the phase and play a major role in the mechanisms of progressive disorganization of the coherent structures. Most of our experimental findings concerning the nucleation and the stability of the defects are numerically simulated by the appropriate Landau-Ginzburg-Newell model.


Standing Wave Nonlinear Wave Nematic Liquid Crystal Initial Wave Amplitude Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Whitham, G.B. Linear and Nonlinear Waves, John Wiley & Sons, New York, 1974.Google Scholar
  2. [2]
    Bekki, N. and Nozaki, K. Phys. Lett. A110, 133 (1985).Google Scholar
  3. [3]
    Joets, A. and Ribotta, R. in P. Coullet and P. Huerre (eds.), New trends in nonlinear dynamics and pattern forming phenomena: the geometry of nonequilibrium, Nato Asi series B, Plenum Press (Cargese Workshop Aug. 1988) (1989); also in the Proceedings of “Nonlinear Coherent Structures in Physics, Mechanics and Biological Systems” (Paris, June 1988), J. de Phys. C3, 171 (1989).Google Scholar
  4. [4]
    Newell, A.C. and Whitehead, J.A., J. Fluid. Mech., 38, 279, (1969).Google Scholar
  5. [4]a
    Segel, L.A., J. Fluid Mech., 38, 203, (1969).Google Scholar
  6. [4]b
    Newell, A.C., Lect. Appl. Math. 15, 157, (1974).Google Scholar
  7. [5]
    Kogelman, S. and DiPrima, R.C., Phys. Fluids 13, 1 (1970).CrossRefGoogle Scholar
  8. [6]
    Blennerhassett, P.J., Phil. Trans. Roy. Soc. Lond. A298, 451, (1980).Google Scholar
  9. [7]
    Stewartson, K., and Stuart, J.T., J. Fluid Mech. 48, 529, (1971).Google Scholar
  10. [8]
    Brand, H.R., Lomdahl, P. and Newell, A., Phys. Let. A118, 67, (1986).CrossRefGoogle Scholar
  11. [9]
    Coullet, P., Elphick, C., Gil, L. and Lega, J., Phys. Rev. Lett. 59, 884 (1987)CrossRefPubMedGoogle Scholar
  12. [9]a
    Coullet, P. and Lega, J., Europhys. Lett. 7, 511 (1988).Google Scholar
  13. [10]
    de Gennes, P. G., The Physics of Liquid Crystals, Clarendon, Oxford, 1974.Google Scholar
  14. [11]
    Joets, A. and Ribotta, R., Phys. Rev. Lett. 60, 2164 (1988).CrossRefPubMedGoogle Scholar
  15. [12]
    Ribotta R. and Joets A., to appear in the Proceedings of “Partially Integrable Nonlinear Evolution Equations and their Physical Applications”, NATO ASI series (Les Houches, march 1989).Google Scholar
  16. [13]
    Ribotta R. and Joets A., in preparation.Google Scholar
  17. [14]
    Joets, A. and Ribotta, R., J. Phys. (Paris) 47, 595 (1986).Google Scholar
  18. [14]a
    Yang, X. D., Joets, A. and Ribotta, R., Physica 23D, 235 (1986).Google Scholar
  19. [14]
    bRibotta, R., in L. Kubin, G. Martin, (eds.), Non-linear phenomena in materials science, Trans Tech Publications, Switzerland (1988).Google Scholar
  20. [15]
    Stuart, J.T. and DiPrima, R.C., Proc. R. Soc. Lond. A 362, 27 (1978).Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • A. Joets
    • 1
  • R. Ribotta
    • 1
  1. 1.Laboratoire de Physique des SolidesBât.510 Université de Paris-SudOrsay CedexFrance

Personalised recommendations