Advertisement

Longitudinal and transverse proton collective dynamics on a two-dimensional multistable substrate

  • St. Pnevmatikos
  • A. V. Savin
  • A. V. Zolotaryuk
Part I : Hydrogen-Bonded Chains
Part of the Lecture Notes in Physics book series (LNP, volume 353)

Abstract

The longitudinal and transverse collective dynamics of protons is studied in a zig-zag hydrogen-bonded model. Protons are interacting harmonically with their first proton neighbors and with Morse forces with the nine nearest negative ion neighbors that are considered rigid (frozen). Ionic and bonding defect solutions of soliton type are obtained numerically and their collision properties are analysed.

Keywords

Soliton Solution Path Bonding Bonding Defect Ionic Defect Incident Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Glasser, Chem. Rev. 75, 21, (1975)CrossRefGoogle Scholar
  2. 2.
    L. Onsager, Science 156, 541, (1967); 166, 1359, (1969)Google Scholar
  3. 3.
    J.F. Nagle and S. Tristram-Nagle, J. Membrane Biol. 74, 1, (1983)CrossRefGoogle Scholar
  4. 4.
    J.H. Weiner and A. Askar, Nature 226, 842, (1970); S. Yomosa, J. Phys.Soc.Jpn, 51, 3318, (1982); O.E. Yanovitskii and E.S. Kryachko, Phys.Stat.Sol. (b), 147, 69, (1988); L.N. Kristoforov and AV. Zolotaryuk, Phys.Stat.Sol. (b), 146, 487, (1988); A. Gordon, Physica B, 150, 319, (1988)CrossRefPubMedGoogle Scholar
  5. 5.
    St. Pnevmatikos, Phys.Rev.Lett, 60, 1534, (1988)CrossRefPubMedGoogle Scholar
  6. 6.
    AN. Zolotaryuk, in “Biophysical aspects of cancer”, ed. J. Fiala and J. Pokorny, (Charles University Press, Prague 1987)Google Scholar
  7. 7.
    S. Yomosa, J.Phys.Soc.Jpn. 52, 1866, (1983); V.Ya. Antonchenko, A.S. Davydov and AN. Zolotaryuk, Phys. Stat. Sol (b) 115, 631, (1983); St. Pnevmatikos, Phys. Lett. A, 122, 249, (1987)CrossRefGoogle Scholar
  8. 8.
    M. Peyrard, St. Pnevmatikos and N. Flytzanis, Phys.Rev.A, 36, 903, (1987)CrossRefPubMedGoogle Scholar
  9. 9.
    M. Springborg, Phys.Rev.B 38, 1438, (1988-I); R.W. Jansen et al, Phys.Rev.B 35, 9830, (1987-II)CrossRefGoogle Scholar
  10. 10.
    AN. Savin, AN. Zolotaryuk and St. Pnevmatikos, unpublished, (1989)Google Scholar
  11. 11.
    St. Pnevmatikos, AN. Savin, I. Stylianou and AN. Zolotaryuk, in preparation, (1989)Google Scholar
  12. 12.
    D.K. Campbell, M. Peyrard and P. Sodano, Physica 19D, 165, (1986).Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • St. Pnevmatikos
    • 1
  • A. V. Savin
    • 2
  • A. V. Zolotaryuk
    • 3
  1. 1.Research Center of CreteCreteGreece
  2. 2.Institute for Physico-Technical ProblemsMoscowUSSR
  3. 3.Institute for Theoretical PhysicsUkrSSR Academy of SciencesKievUSSR

Personalised recommendations