Advertisement

Dynamics of nonlinear excitations in DNA

  • Michel Peyrard
  • A. R. Bishop
Part I : Hydrogen-Bonded Chains
Part of the Lecture Notes in Physics book series (LNP, volume 353)

Abstract

We investigate the dynamics of two lattice models for the denaturation of the DNA double helix associated with different degrees of freedom of the molecule. Using numerical simulations or the transfer integral method for the statistical mechanics, we investigte the formation of the large amplitude nonlinear excitations leading to denaturation. We show that a mechanism involving an energy localization analogous to self focusing may start the denaturation locally.

Keywords

Plane Wave Solitary Wave Denaturation Temperature Carrier Wave Base Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Freifelder, Molecular Biology, Jones and Bartlett Publishers, Boston 1987Google Scholar
  2. 2.
    S. W. Englander, N. R. Kallenbach, A. J. Heeger, J. A. Krumhansl and S. Litwin, Proc. Nat. Acad. Sci. USA 777, 7222 (1980)Google Scholar
  3. 3.
    Krumhansl Lombdhal paperGoogle Scholar
  4. 4.
    S. Yomosa, Phys. Rev. A27, 2120 (1983) and A30, 474 (1984)Google Scholar
  5. 5.
    S. Takeno and S. Homma, Prog. Theor. Phys. 77, 548 (1987)Google Scholar
  6. 6.
    Chun-Ting Zhang, Phys. Rev. A35, 886 (1987)Google Scholar
  7. 7.
    E. W. Prohofsky, K. C. Lu, L. L. Van Zandt and B. E. Putnam, Physics Letters 70A, 492 (1979)Google Scholar
  8. 8.
    Y. Gao and E. W. Prohofsky, J. Chem. Phys. 80, 2242 (1984)CrossRefGoogle Scholar
  9. 9.
    Y. Gao, K. V. Devi-Prasad and E. W. Prohofsky, J. Chem. Phys. 80, 6291 (1984)CrossRefGoogle Scholar
  10. 10.
    Y. Kim, K. V. Devi-Prasad and E. W. Prohofsky, Phys. Rev. B32, 5185 (1985)Google Scholar
  11. 11.
    D. J. Scalapino, M. Sears and R. A. Ferrel, Phys. Rev. B6, 3409 (1972)Google Scholar
  12. 12.
    J. A. Krumhansl and J. R. Schrieffer, Phys. Rev. B11, 3535 (1975)Google Scholar
  13. 13.
    P. M. Morse, Phys. Rev 1, 57 (1929)CrossRefGoogle Scholar
  14. 14.
    G. Dana Brabson, J. of Chemical Education 50, 397 (1973)Google Scholar
  15. 15.
    D. J. Kaup and A.C. Newell, Phys. Rev. B18, 5162 (1978)Google Scholar
  16. 16.
    Tt. Pnevmatikos, N. Flytzanis, M. Remoissenet, Phys. Rev. 33, 2308 (1986)CrossRefGoogle Scholar
  17. 17.
    M. Remoissenet, Phy. Rev. B33, 2386 (1986)Google Scholar
  18. 18.
    J. L. Lebowitz, H. A. Rose and E. R. Speer, J. Stat. Phys. 50, 657 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Michel Peyrard
    • 1
  • A. R. Bishop
    • 2
  1. 1.Physique Non Linéaire : Ondes et Structures CohérentesFaculté des SciencesDijonFrance
  2. 2.Theoretical Division and Center for Nonlinear StudiesLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations