Characterization and classification of printed text in a multiscale context

  • Veronique Eglin
  • Stéphane Bres
  • Hubert Emptoz
Poster Papaers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1451)

Abstract

In this paper, we present a new method for printed text characterization. This method is based on a text visibility and legibility criterion. The text is analyzed through its typographic form. So, we propose to label different kinds of text according to their visual aspect and their textural contents (especially their size, their density but also the line and letter spacing). A scale of legibility and of structural relief of forms has realized this discrimination. The texture is characterized with a statistical analysis of density, which is impervious (insensitive) to our multiscale approach. This statistical analysis is at the basis of the text labeling. This work is a part of a complete scheme of physical and logical document segmentation. It is dedicated to the classification of texts according to their eye-catching properties.

Keywords

Texture analysis multiresolution approach legibility text composition 

References

  1. [Ak93]
    Akindele, Belaid, A labeling approach for mixed Document Blocks, Proceedings of ICDAR 93, 2nd International Conference on Document Analysis and Recognition, Japan, pp.749–752, 1993.Google Scholar
  2. [An92]
    J.C. Anigbogu, Reconnaissance de textes imprimés mulitfontes à l'aide de modéles stochastiques. Thèse de doctorat: Université de Nancy, 1992.Google Scholar
  3. [Bo91]
    C. Bonnet and B. Dresp. Psychophysique de l'extraction des contours en vision humaine, RF IA 3,102–109, 1991.Google Scholar
  4. [Ch96]
    E. Charlaix, D. Derrien-Peden, Reconnaissance de la structure logique de documents par programmation par contraintes sur les styles,CNED'96, pp.61–68, 1996.Google Scholar
  5. [Eg97]
    V. Eglin, Structuration de documents par une modélisation floue de l'information visuelle. Logique Floue et Application, LFA'97, 10p., 1997.Google Scholar
  6. [Ja92]
    A.K. Jain, K. Bhattacharjee, Test segmentation' using Gabor filters for automatic document processing, MVA'92, pp. 169–184, 1992.Google Scholar
  7. [Ju85]
    B. Julesz, Preconscious and Conscious Processes in Vision. Bell Laboratories. Murray Hill, New Jersey. Pattern Recognition Mechanisms, pp. 333–359, 1985.Google Scholar
  8. [Lec92]
    J.C. Lecas, L'attention visuelle, Liège: Pierre Mardaga, 1992, 310p.Google Scholar
  9. [Ni91]
    J. Ninio, L'empreinte des sens, Perception, mémoire, langage. Odile Jabob, 310p., 1991.Google Scholar
  10. [Ri89]
    F. Richeaudeau, Manuel de typographie et de mise en page, 1989.Google Scholar
  11. [We93]
    J. Wey-Wen, H.E. Meadows, Classification and compression on digital newspaper images, VCIP, pp.96–105, 1993.Google Scholar
  12. [Zr94]
    A. Zramdini, R.Ingold, Optical font recognition from projection profiles. Third International Conference on Raster Imaging and Digital Typography, Darmstadt, Allemagne, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Veronique Eglin
    • 1
  • Stéphane Bres
    • 1
  • Hubert Emptoz
    • 1
  1. 1.Laboratoire de Reconnaissance de Formes et VisionVilleurbanne cedex

Personalised recommendations