Algebraic view of grammatical inference

  • Alexander S. Saidi
  • Souad Tayeb-bey
Poster Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1451)


We consider the problem of grammatical inference (GI) for classes of structured documents like summaries, dictionaries, bibliographic data basis, encyclopaedias and so on. The inference is based on examples of individual sample of these documents. In this paper, we present an algebraic framework of the GI in which rewrite rules will define the process of generalisation. The implementation algorithm discussed here is used in a document handling project in which paper documents are typographically tagged and then recognised. One of the current applications in this project is to translate paper documents into machine readable form


Regular Expression Regular Language Derivation Tree Paper Document Deterministic Finite Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    S. Tayeb-Bey, A. S. Saidi “Grammatical Formalism for Document Understanding system:: From Document towards HTML Text”. BSDIA97, November 1497, Brasilia.Google Scholar
  2. [2]
    E.M.GoId,“Languange identification in the limit”, Information and Control, 10(5). 1967.Google Scholar
  3. [3]
    HS, Fu and T. Booth: “Grammatical Inference. Introduction and Survey”. parts 1 & 2 IEEE Trans. Sys. man and Cybe.SMC-5:95–11Google Scholar
  4. [4]
    R. C. Gonzalez and M. G. Thomason “Syntactic Pattern Recognition, an Introduction”. Addison Wesley. Reading Mass1978Google Scholar
  5. [5]
    H.S. Fu. “Syntactic Pattern Recognition and Applications”. Prentice hall, N.Y. 1982.Google Scholar
  6. [6]
    L. Miclet. “Grammmatical Inference”. syntactic and Structural Pattern Recognition. H. Bunk and San Feliu eds. World ScientificGoogle Scholar
  7. [7]
    J. Orica, P. Garcia. “Inferring regular Languages in Polynomial Update time”. Pattern Recognition and Analysis. 1992.Google Scholar
  8. [8]
    P. Dupont, L. Miclet & E. Vidal. “What is the search space of Regular Inference?”. ICGI 94 Grammatical Inference and Applications. Springer-Verlag-94.Google Scholar
  9. [9]
    L. Fribourg, M. V. Peixoto. “Automates concurrents Contraintes”. TSL.13(6), 1994.Google Scholar
  10. [10]
    J. A. Goguen, J. W. Tatcher, E. G. Wagner, J. B. Wright. “Initial Algebra Semantics and Continues Algebra”, JACM 24(1), 1977.Google Scholar
  11. [11]
    A. S. Saidi: “Extensions Grammaticales de la Programmation Logique”, PhD. 1992.Google Scholar
  12. [12]
    A. S. Saidi. “On the unification of phrases”. IFIP-94.Google Scholar
  13. [13]
    H. Ehrig, B. Mahr. “Fundamentals of Algebraic Specification”. Vol-1&2. Springer-Verlag 1985.Google Scholar
  14. [14]
    E.M. Gold. “Complexity of automaton identification from given data”. Information and Control, 37-1978.Google Scholar
  15. [15]
    J.E. Hopcroft, J.D. Ullmann. “Formal Languages and their Relation to Automata”, Addison-Wesley 1969.Google Scholar
  16. [16]
    F.Bancilhon & all. “Magic Sets and Other Strange Ways to Implement Logic Programs”, Proc. ACM Symp. on principles of Databses Systems, Boston 1986.Google Scholar
  17. [17]
    F. Coste, J. Nicols: “Regular Inference as a graph coloring Problem”. ICML'97.1997.Google Scholar
  18. [18]
    K.R. Apt, M.H. Van Emden: “Contribution to the Theory of Logic Programming”. JACM.29(3o), 1982.Google Scholar
  19. [19]
    R.S. Michalski & all. “Machine Learning” An Artificial Intelligence Approach”, vol. 1 & 2 Springer-Verlag 1984 and Morgan Kaufmann 1986.Google Scholar
  20. [20]
    H. Ahohen, H. Mannila. “Forming Grammars for structured documents”. Research report. University of Helsinki, 1994.Google Scholar
  21. [20]
    P. Frankhauser, Y. Xu. “MarkitUP! an incremental approach to document structure recognition". Electronic Publishing-Organisation Dissemination and Design, 6(4), 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Alexander S. Saidi
    • 1
    • 2
  • Souad Tayeb-bey
    • 1
  1. 1.Laboratoire de Reconnaissance de Formes et Vision INSA de Lyon- Bât. 403Villeurbanne
  2. 2.Dépt. MathématiquesInformatique et SystèmesEcully

Personalised recommendations