Skip to main content

A systematic approach to finding new lead structures having biological activity

  • Molecular Modeling
  • Conference paper
  • First Online:
  • 186 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1278))

Abstract

The development of a new drug is an enormously largescale and expensive process. Thus, computer simulation methods become to play an increasing role in the development of new pharmacologically active compounds. Most of the commercial software presently used, comes from the U.S.; their deficits have become more and more obvious during the last years. Several methods have been developed in our project to alleviate these problems. The search for new lead structures starts with analyzing large databases of compounds (several hundreds of thousands up to several millions of compounds) zeroing into a few promising structures by increasing sophistication of structure representation. Due to the large number of chemical compounds, a systematic scheme for representing structures was developed: The starting point is the constitution, followed by calculation of the 3D structure, then including conformational flexibility. At each step, a variety of chemical properties can be taken into consideration. In addition, new programs have been developed for the treatment of conformational flexibility. The methods presented are also useful for other areas of application dealing with chemical information. Thus, it was shown that one of these new structure representations is suitable for treating problems in combinatorial synthesis. Neural networks and genetic algorithms are highly important for the investigation of the correlation between structure and biological activity. Complex relationships and huge amounts of data can be processed by these methods. Implementation of these procedures on highly parallel computers has proved that datasets of several hundreds of thousands of structures can be treated with acceptable computation times.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.-J. Böhm, J. Comp.-Aided Mol. Design 1992, 6, 593–606.

    Article  Google Scholar 

  2. V. J. Gillet, W. Newell, P. Mata, G. Myatt, S. Sike, Z. Zsoldos, A. P. Johnson, J. Chem. Inf. Comput. Sci. 1994,34,207–217.

    Article  PubMed  Google Scholar 

  3. P. Willett, Three-Dimensional Chemical Structure Handling, Research Studies Press Ltd., Taunton, 1991.

    Google Scholar 

  4. C. Pepperrell, Three-Dimensional Chemical Similarity Searching, Research Studies Press Ltd., Taunton,1994.

    Google Scholar 

  5. C. Burt, W G. Richards, J. Comput. Chem. 1990,11/10,1139–1146.

    Article  Google Scholar 

  6. H.-J. Böhm, G. Klebe, H. Kubinyi, Wirkstofdesign, Spektrum Akademischer Verlag, Heidelberg, 1996.

    Google Scholar 

  7. H. Kubinyi, QSAR: Hansch Analysis and Related Approaches, VCH, Weinheim, 1993.

    Google Scholar 

  8. G. W. A. Milne, S. Wang, M. C. Nicklaus, J. Chem. Inf. Comput. Sci. 1996,36,726–730.

    Article  PubMed  Google Scholar 

  9. J. Sadowski, J. Gasteiger, Chem. Reviews 1993, 93, 2567–2581.

    Article  Google Scholar 

  10. J. Sadowski, J. Gasteiger, G. Klebe, J. Chem. Inf. Comput. Sci. 1994, 34,1000–1008.

    Article  Google Scholar 

  11. C. H. Schwab, Diplomarbeit, Universität Erlangen-Nürnberg 1996.

    Google Scholar 

  12. J. H. Schuur, P. Selzer, J. Gasteiger, J Chem. Inf. Comput. Sci 1996, 36, 334–344.

    Article  Google Scholar 

  13. T. Kohonen „Self-Organization and Associative Memory”, 3rd ed., Springer,1989.

    Google Scholar 

  14. J. Zupan, J. Gasteiger „Neural Networks for Chemists-An Introduction”, VCH, Weinheim,1993.

    Google Scholar 

  15. A. Zell „Simulation neuronaler Netze”, Addison-Wesley, Bonn, 1994.

    Google Scholar 

  16. J. Gasteiger, J. Zupan, Angew. Chem. 1993, 105, 510–536; Angew. Chem. Int. Ed. Engl. 1993, 32, 503-527.

    Google Scholar 

  17. G. Moreau, P. Broto, Nouv. J. Chim. 1980,4,359–360.

    Google Scholar 

  18. J. Gasteiger, M. Marsili, Tetrahedron 1980,36,3219–3228.

    Article  Google Scholar 

  19. J. Gasteiger, M. G. Hutchings, J. Chem. Soc. Perkin 2 1984, 559–564.

    Google Scholar 

  20. J. Gasteiger, H. Saller, Angew. Chem. 1985, 97, 699–701; Angew. Chem. Int. Ed. Engl. 1985,24,687–689.

    Google Scholar 

  21. H. Bauknecht, A. Zell, H. Bayer, P. Levi, M. Wagener, J. Sadowski, J. Gasteiger in: „Bioinformatics: From Nucleic Acids and Proteins to Cell Metabolism”, D. Schomburg, U. Lessel (Editors), VCH, Weinheim,1995,153–167.

    Google Scholar 

  22. H. Bauknecht, A. Zell, H. Bayer, P. Levi, M. Wagener, J. Sadowski, J. Gasteiger, J. Chem. Inf. Comput. Sci. 1996, 36, 1205–1213.

    Article  PubMed  Google Scholar 

  23. G. Klebe, T. Mietzner, J. Comp.-Aided Mol. Design 1994,8,583–606.

    Article  Google Scholar 

  24. P. Carloni, P. Orioli, S. Mangani, J Mol. Biol. 1992, 223, 573–578.

    Article  PubMed  Google Scholar 

  25. D. E. Clark G. Jones, P. Willett, P. W. Kenney, R. C. Glen, Presentation at the “Chemical Structures Conference”, Noordwijkerhout, Netherlands, June 1993.

    Google Scholar 

  26. C. W. Crandell, D. H.Smith, J. Chem. Inf. Comput. Sci. 1983, 23,186–197.

    Article  Google Scholar 

  27. A. T. Brint, P. Willett, J. Chem. Inf. Comput. Sci. 1987,27,152–158.

    Article  Google Scholar 

  28. P. Willett, Three-Dimensional Chemical Structure Handling, Research Studies Press Ltd.: Taunton, England, 1991.

    Google Scholar 

  29. Y. Takahashi, S. Maeda, S. I. Sasaki, Anal. Chim. Acta, 1987, 200, 363–377.

    Article  Google Scholar 

  30. Y. C. Martin, M. G. Bures, E. A. Danaher, J. DeLazzer, I. Lico, P. A. Pavlik, J. Comput. Aided Mol. Design, 1993, 7,83–102.

    Article  Google Scholar 

  31. G. Jones, P. Willett, R. C. Glen, J. Comp.-Aided Mol. Design 1995,9,352–549.

    Article  Google Scholar 

  32. J. M. Schulman, M. L. Sabio, R. L. Disch, J. Med. Chem. 1983,26,817–823.

    Article  PubMed  Google Scholar 

  33. J. M. Schulman, R. C. Peck, R. L. Disch, J Med. Chem. 1991,34,1455–1459.

    Article  PubMed  Google Scholar 

  34. M. Wagener, J. Gasteiger, Angew. Chem. 1994,106, 1245–1248; Angew. Chem. Int. Ed. Engl. 1994, 33,1189–1192.

    Google Scholar 

  35. S. Handschuh, Diplomarbeit, Universität Erlangen-Nürnberg 1996.

    Google Scholar 

  36. R. D. Cramer III, D. E. Patterson, J. D. Bunce, J. Am. Chem. Soc. 1988, 110, 5959–5967.

    Article  Google Scholar 

  37. H. Kubinyi, (Ed.), 3D QSAR in Drug Design: Theory Methods and Applications, ESCOM, Leiden 1993.

    Google Scholar 

  38. A. C. Good, S. S. So, W. G. Richards, J. Med. Chem. 1993,36,433–438.

    Article  PubMed  Google Scholar 

  39. A. N. Jain, K. Koile, D. Chapman, J. Med. Chem. 1994,37,2315–2327.

    Article  PubMed  Google Scholar 

  40. Sybyl, Tripos Associates Inc., St. Louis, MO, USA.

    Google Scholar 

  41. J. F. Dunn, B. C. Nisula, D. Rodbard, Crin. Endocrin. Metab. 1981,53,58–68.

    Google Scholar 

  42. K. E. Mickelson, J. Fosthoefel, U. Westphal, Biochemistry 1981,20,6211–6218.

    Article  PubMed  Google Scholar 

  43. M. Wagener, J. Sadowski, J. Gasteiger, J. Am. Chem. Soc. 1995,117, 7769–7775.

    Article  Google Scholar 

  44. J. Sadowski, M. Wagener, J. Gasteiger, Angew. Chem. 1995,107, 2892–2895; Angew. Chem. Int. Ed. Engl. 1995,34,2674–2677.

    Google Scholar 

  45. T. Carell, E. A. Witner, A. Bashir-Hashemi, J. Rebek Jr., Angew. Chem. Int. Ed. Engl. 1994, 33,2059–2061; T Carell, E. A. Wintner, J. Rebek Jr., ibid., 2061–2064.

    Article  Google Scholar 

  46. S. Anzali, G. Barnickel, M. Krug, J. Sadowski, M. Wagener, J. Gasteiger, J. Polanski, J. Comput. Aided Mol. Design 1996,10,521–534.

    Article  Google Scholar 

  47. S. Anzali, G. Barnickel, M. Krug, J. Sadowski, M. Wagener, J. Gasteiger, in “Neural Networks in QSAR and Drug Design”, J. Devillers (Ed.), Academic Press, London, 1996,209–222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ralf Hofestädt Thomas Lengauer Markus Löffler Dietmar Schomburg

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schwab, C.H. et al. (1997). A systematic approach to finding new lead structures having biological activity. In: Hofestädt, R., Lengauer, T., Löffler, M., Schomburg, D. (eds) Bioinformatics. GCB 1996. Lecture Notes in Computer Science, vol 1278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0033215

Download citation

  • DOI: https://doi.org/10.1007/BFb0033215

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63370-9

  • Online ISBN: 978-3-540-69524-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics