Skip to main content

Quartic equations and algorithms for riemann tensor classification

  • Applications 1
  • Conference paper
  • First Online:
EUROSAM 84 (EUROSAM 1984)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 174))

Included in the following conference series:

Abstract

The Petrov classification of the Weyl conformal curvature and the Plebanski or Segre classification of the Ricci tensor of spacetimes in general relativity both depend on multiplicities of the roots of quartic equations. The coefficients in these quartic equations may be complicated functions of the space-time coordinates. We review briefly the general theory of quartic equations and then consider practical algorithms for determination of the multiplicities of their roots and hence for the classification of Riemann tensors. Preliminary results of tests of computer implementations of these algorithms, using the computer algebra system SHEEP, are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Kramer, H. Stephani, M. MacCallum, and E. Herlt (1980). Exact solutions of Einstein's field equations. Deutscher Verlag der Wissenschaften, Berlin, and Cambridge University Press.

    Google Scholar 

  2. J.E. Åman and A. Karlhede (1980). Phys. Lett. A 80, 229.

    Google Scholar 

  3. J.E. Åman and A. Karlhede (1980). Proceedings of the ACM conference, Snowbird, Utah

    Google Scholar 

  4. A. Karlhede (1980). Gen. Rel. Grav. 12, 693.

    Google Scholar 

  5. A. Karlhede and M.A.H. MacCallum (1982). Gen. Rel. Grav. 14, 672.

    Google Scholar 

  6. M.A.H. MacCallum (1983). In: Unified Field Theories of more than 4 dimensions, including exact solutions, ed. V. de Sabbata and E. Schmutzer. World Scientific: Singapore.

    Google Scholar 

  7. L. Witten (1959). Phys. Rev. 113, 357.

    Google Scholar 

  8. S.T.C. Siklos (1976). Ph. D. thesis, University of Cambridge.

    Google Scholar 

  9. J. Plebanski (1964). Acta Phys. Polon. 26, 963.

    Google Scholar 

  10. G.S. Hall (1979). Lectures at the Stefan Banach Centre, Warsaw.

    Google Scholar 

  11. I. Todhunter (1888). Theory of Equations. Macmillan: London.

    Google Scholar 

  12. W.S. Burnside and A.W. Panton (1935). Theory of Equations (10th edn.). Dublin Univ. Press: Dublin and Longmans, Green: London.

    Google Scholar 

  13. C.V. Durrell and A. Robson (1956). Advanced Algebra. G. Bell and Sons: London.

    Google Scholar 

  14. R.L. Agacy and L.M. Clendinning (1982). J. Math. Phys. 22, 1445.

    Google Scholar 

  15. R.A. d'Inverno and R.A. Russell-Clark (1971). J. Math. Phys. 12, 1258.

    Google Scholar 

  16. I. Frick (1977). The computer algebra system SHEEP, what it can and cannot do in general relativity. Univ. of Stockholm report.

    Google Scholar 

  17. R.A. d'Inverno and I. Frick (1982). Gen. Rel. and Grav. 14, 835.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

John Fitch

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Åman, J.E., d'Inverno, R.A., Joly, G.C., MacCallum, M.A.H. (1984). Quartic equations and algorithms for riemann tensor classification. In: Fitch, J. (eds) EUROSAM 84. EUROSAM 1984. Lecture Notes in Computer Science, vol 174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0032829

Download citation

  • DOI: https://doi.org/10.1007/BFb0032829

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13350-6

  • Online ISBN: 978-3-540-38893-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics