Skip to main content

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 113))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson ED (1982) The location and synthesis of transferrin in mouse embryos and teratocarcinoma cells. Dev Biol 91:227–234

    Article  PubMed  Google Scholar 

  • Aisen P (1980) Iron transport and storage proteins. Annu Rev Biochem 49:357–393

    Article  PubMed  Google Scholar 

  • Aisenberg AC, Wilkes BM (1980) Unusual human lymphoma phenotype defined by monoclonal antibody. J Exp Med 152:1126–1131

    Article  PubMed  Google Scholar 

  • Anderson BF, Baker HM, Dodson EJ, Norris GE, Rumball SV, Waters JM, Baker EN (1987) Structure of human lactoferrin at 3.2-Å resolution. Proc Natl Acad Sci USA 84:1769–1773

    PubMed  Google Scholar 

  • Bajusz E (1964) “Red” skeletal muscle fibers: relative independence of neutral control. Science 145:938–939

    PubMed  Google Scholar 

  • Baker EN, Rumball SV, Anderson BF (1987) Transferrins: insights into structure and function from studies on lactoferrin. TIBS 12:350–353

    Google Scholar 

  • Barnes D, Sato G (1980a) Methods for growth of cultured cells in serum-free medium. Anal Biochem 102:255–270

    Article  PubMed  Google Scholar 

  • Barnes D, Sato G (1980b) Serum-free cell culture: a unifying approach. Cell 22:649–655

    Article  PubMed  Google Scholar 

  • Barrett JN, Crill WE (1974) Specific membrane properties of cat motoneurones. J Physiol 239:301–324

    PubMed  Google Scholar 

  • Beach RL, Popiela H, Festoff BW (1983) The identification of neurotrophic factor as a transferrin. FEBS Lett 156:151–156

    Article  PubMed  Google Scholar 

  • Beach RL, Popiela H, Festoff BW (1985) Specificity of chicken and mammalian transferrins in myogenesis. Cell Differ 16:93–100

    Article  PubMed  Google Scholar 

  • Bennett MR (1983) Development of neuromuscular synapses. Physiol Rev 63:915–1048

    PubMed  Google Scholar 

  • Bennett MR, Davey DF, Uebel KE (1980) The growth of segmental nerves from the brachial myotomes into the proximal muscles of the chick forelimb during development. J Comp Neurol 189:335–357

    Article  PubMed  Google Scholar 

  • Besancon F, Bourgeade M-F, Testa U (1985) Inhibition of transferrin receptor expression by interferon-α in human lymphoblastoid cells and mitogen-induced lymphocytes. J Biol Chem 260:13074–13080

    PubMed  Google Scholar 

  • Bezkorovainy A (1980) Biochemistry of nonheme iron. Plenum, New York

    Google Scholar 

  • Bezkorovainy A, Zschocke RH (1974) Structure and function of transferrins. I. Physical, chemical, and iron-binding properties. Arzneimittelforschung 24:476–485

    PubMed  Google Scholar 

  • Bischoff B (1986a) Proliferation of muscle satellite cells on intact myofibers in culture. Dev Biol 115:129–139

    Article  PubMed  Google Scholar 

  • Bischoff R (1986b) A satellite cell mitogen from crushed adult muscle. Dev Biol 115:140–147

    Article  PubMed  Google Scholar 

  • Bleijenberg BG, van Eijk HG, Leijnse B (1971) The determination of non-heme iron and transferrin in cerebrospinal fluid. Clin Chim Acta 31:277–281

    Article  PubMed  Google Scholar 

  • Bloch B, Popovici T, Levin MJ, Tuil D, Kahn A (1985) Transferrin gene expression visualized in oligodendrocytes of the rat brain by using in situ hybridization and immunohistochemistry. Proc Natl Acad Sci USA 82:6706–6710

    PubMed  Google Scholar 

  • Bloch B, Popovici T, Chouham S, Levin MJ, Tuil D, Kahn A (1987) Transferrin gene expression in choroid plexus of the adult rat brain. Brain Res Bull 18:573–576

    Article  PubMed  Google Scholar 

  • Bonner PH, Hauschka SD (1974) Clonal analysis of vertebrate myogenesis. I. Early developmental events in the chick limb. Dev Biol 37:317–328

    Article  PubMed  Google Scholar 

  • Bothwell TH, Charlton RW, Cook JD, Finch CA (1979) Iron metabolism in man. Blackwell Scientific, Oxford

    Google Scholar 

  • Bramwell ME, Harris H (1978a) An abnormal membrane glycoprotein associated with malignancy in a wide range of different tumours. Proc R Soc Lond [Biol] 201:87–106

    Google Scholar 

  • Bramwell ME, Harris H (1978b) Some further information about the abnormal membrane glycoprotein associated with malignancy. Proc R Soc Lond [Biol] 203:93–99

    Google Scholar 

  • Bridge DT, Allbrock D (1970) Growth of striated muscle in an Australian marsupial. J Anat 106:285–295

    PubMed  Google Scholar 

  • Bridges KR, Cudkowicz A (1984) Effect of iron chelators on the transferrin receptor in K562 cells. J Biol Chem 259:12970–12977

    PubMed  Google Scholar 

  • Brown MS, Anderson RGW, Goldstein JL (1983) Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell 32:663–667

    Article  PubMed  Google Scholar 

  • Bruns RR, Palade GE (1968) Studies on blood capillaries. II. Transport of ferritin molecules across the wall of muscle capillaries. J Cell Biol 37:277–299

    Article  PubMed  Google Scholar 

  • Buckley PA, Konigsberg IR (1974) The avoidance of stimulatory artifacts in cell cycle determinations. Dev Biol 37:186–192

    Article  PubMed  Google Scholar 

  • Burke RE (1981) Motor units: anatomy, physiology, and functional organization. In: Brookhart JM, Mountcastle VB (eds) Handbook of physiology. The nervous system, vol II. Part I. American Physiological Society, Bethesda, pp 345–422

    Google Scholar 

  • Butler J, Cosmos E (1981) Differentiation of the avian latissimus dorsi primordium: analysis of fiber type expression using the myosin ATPase histochemical reaction. J Exp Zool 218:219–232

    Article  Google Scholar 

  • Butler J, Cosmos E, Brierley J (1982) Differentiation of muscle fiber types in aneurogenic brachial muscles of the chick embryo. J Exp Zool 224:65–80

    Article  PubMed  Google Scholar 

  • Butler J, Cauwenbergs P, Cosmos E (1986) Fate of brachial muscles of the chick embryo innervated by inappropriate nerves: structural, functional and histochemical analyses. J Embryol Exp Morphol 95:147–168

    PubMed  Google Scholar 

  • Cannon JC, Chasteen ND (1975) Nonequivalence of the metal binding sites in vanadyl-labeled human serum transferrin. Biochemistry 14:4573–4577

    Article  PubMed  Google Scholar 

  • Caravatti M, Perriard J-C, Eppenberger HM (1979) Developmental regulation of creatine kinase isoenzymes in myogenic cell cultures from chicken. J Biol Chem 254:1388–1394

    PubMed  Google Scholar 

  • Cardasis CA, Cooper GW (1975) An analysis of nuclear numbers in individual muscle fibers during differentiation and growth: a satellite cell-muscle fiber growth unit. J Exp Zool 191:347–358

    PubMed  Google Scholar 

  • Carrel A (1913) Artificial activation of the growth in vitro of connective tissue. J Exp Med 17:14–19

    Article  Google Scholar 

  • Carrel A (1924) Tissue culture and cell physiology. Physiol Rev 4:1–20

    Google Scholar 

  • Casey JL, Jeso BD, Rao K, Klausner RD, Harford JB (1988a) Two genetic loci participate in the regulation by iron of the gene for the human transferrin receptor. Proc Natl Acad Sci USA 85:1787–1791

    PubMed  Google Scholar 

  • Casey JL, Hentze MW, Koeller DM, Caughman SW, Rouault TA, Klausner RD, Harford JB (1988b) Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation. Science 240:924–928

    PubMed  Google Scholar 

  • Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y (1982) Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 257:7847–7851

    PubMed  Google Scholar 

  • Cavanaugh PF, Porter CW, Tukalo D, Frankfurt OS, Pavelic ZP, Bergeron RJ (1985) Characterization of L1210 cell growth inhibition by the bacterial iron chelators parabactin and compound II. Cancer Res 45:4754–4759

    PubMed  Google Scholar 

  • Cheek DB (1985) The control of cell mass and replication. The DNA unit — a personal 20-year study. Early Hum Dev 12:211–239

    Article  PubMed  Google Scholar 

  • Cheek DB, Hill DE (1970) Muscle and liver cell growth: role of hormones and nutritional factors. Fed Proc 29:1503–1509

    PubMed  Google Scholar 

  • Chevallier A, Kieny M, Mauger A (1977) Limb-somite relationship: origin of the limb musculature. J Embryol Exp Morphol 41:245–258

    PubMed  Google Scholar 

  • Chi JCH, Rubinstein H, Strahs K, Holtzer H (1975) Synthesis of myosin heavy chain and light chain in muscle cultures. J Cell Biol 67:523–537

    Article  PubMed  Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1974) Über den Ursprung der Flügelmuskulatur. Experimentelle Untersuchungen mit Wachtel-und Hühnerembryonen. Experientia 30:1446–1449

    Article  PubMed  Google Scholar 

  • Ciechanover A, Schwartz AL, Dautry-Varsat A, Lodish HF (1983a) Kinetics of internalization and recycling of transferrin and the transferrin in a human hepatoma cell line. J Biol Chem 258:9681–9689

    PubMed  Google Scholar 

  • Ciechanover A, Schwartz AL, Lodish HF (1983b) The asialoglycoprotein receptor internalizes and recycles independently of the transferrin and insulin receptors. Cell 32:267–275

    Article  PubMed  Google Scholar 

  • Cochet M, Perrin F, Gannon F, Krust A, Chambon P, McKnight GS, Lee DC, Mayo KE, Palmiter R (1979) Cloning of an almost full-length chicken conalbumin double-stranded cDNA. Nucleic Acids Res 6:2435–2452

    PubMed  Google Scholar 

  • Coll J, Ingram VM (1981) Identification of ovotransferrin as a heme-, colony-and burst-stimulating factor in chick erythroid cell cultures. Exp Cell Res 131:173–184

    Article  PubMed  Google Scholar 

  • Connor JR, Phillips TM, Lakshman MR, Barron KD, Fine RE, Csiza CK (1987) Regional variation in the levels of transferrin in the CNS of normal and myelin-deficient rats. J Neurochem 49:1523–1529

    PubMed  Google Scholar 

  • Coon HG (1966) Clonal stability and phenotypic expression of chick cartilage cells in vitro. Proc Natl Acad Sci USA 55:66–73

    PubMed  Google Scholar 

  • Cooper WG, Konigsberg IR (1961) Dynamics of myogenesis in vitro. Anat Rec 140:195–205

    Article  PubMed  Google Scholar 

  • Craw CH (1928) The distribution of the nerve cells in the ventral columns of the spinal cord. J Comp Neurol 45:283–299

    Article  Google Scholar 

  • Crichton RR, Charloteaux-Wauters M (1987) Iron transport and storage. Eur J Biochem 164:485–506

    Article  PubMed  Google Scholar 

  • Dautry-Varsat A, Ciechanover A, Lodish HF (1983) pH and the recycling of transferrin during receptor-mediated endocytosis. Proc Natl Acad Sci USA 80:2258–2262

    PubMed  Google Scholar 

  • Davis HL (1985) Myotrophic effects on denervation atrophy of hindlimb muscles of mice with systemic administration of nerve extract. Brain Res 343:176–179

    Article  PubMed  Google Scholar 

  • Davis HL (1988) Trophic influences of neurogenic substances on adult skeletal muscles in vivo. In: Fernandez HL, Donoso JA (eds) Nerve-muscle cell trophic communication. CRC, Boca Raton, pp 101–145

    Google Scholar 

  • Davis HL, Heinicke EA (1984) Prevention of denervation atrophy in muscle: mammalian neurotrophic factor is not transferrin. Brain Res 309:293–298

    Article  PubMed  Google Scholar 

  • Davis HL, Kiernan JA (1980) Neurotrophic effects of sciatic nerve extract on denervated extensor digitorum longus muscle in the rat. Exp Neurol 69:124–134

    Article  PubMed  Google Scholar 

  • Davis HL, Kiernan JA (1981) Effect of nerve extract on atrophy of denervated or immobilized muscles. Exp Neurol 72:582–591

    Article  PubMed  Google Scholar 

  • Davis HL, Heinicke EA, Cook RA, Kiernan JA (1985) Partial purification from mammalian peripheral nerve of a trophic factor that ameliorates atrophy of denervated muscle. Exp Neurol 89:159–171

    Article  PubMed  Google Scholar 

  • Davis RJ, Meisner H (1987) Regulation of transferrin receptor cycling by protein kinase C is independent of receptor phosphorylation at serine 24 in swiss 3T3 fibroblasts. J Biol Chem 262:16041–16047

    PubMed  Google Scholar 

  • Davis RJ, Johnson GL, Kelleher DJ, Anderson JK, Mole JE, Czech MP (1986) Identification of serine 24 as the unique site on the transferrin receptor phosphorylated by protein kinase C. J Biol Chem 261:9034–9041

    PubMed  Google Scholar 

  • Davson H, Welch K, Segal MB (1987) Physiology and pathophysiology of the cerebrospinal fluid. Churchill Livingstone, Edinburgh London Melbourne New York

    Google Scholar 

  • de la Haba G, Amundsen R (1972) The contribution of embryo extract to myogenesis of avian striated muscle in vitro. Proc Natl Acad Sci USA 69:1131–1135

    PubMed  Google Scholar 

  • Dennis MJ, Ziskind-Conhaim L, Harris AJ (1981) Development of neuromuscular junctions in rat embryos. Dev Biol 81:266–279

    Article  PubMed  Google Scholar 

  • Devlin RB, Emerson CP (1979) Coordinate accumulation of contractile protein mRNAs during myoblast differentiation. Dev Biol 69:202–216

    Article  PubMed  Google Scholar 

  • Dickson PW, Aldred AR, Marley PD, Guo-Fen T, Howlett GJ, Schreiber G (1985) High prealbumin and transferrin mRNA levels in the choroid plexus of rat brain. Biochem Biophys Res Commun 127:890–895

    Article  PubMed  Google Scholar 

  • Doering JL, Fischman DA (1977) A fusion-promoting macromolecular factor in muscle conditioned medium. Exp Cell Res 105:437–443

    Article  PubMed  Google Scholar 

  • Drachman DB (1974) The role of acetylcholine as a neurotrophic transmitter. Ann NY Acad Sci 228:160–176

    PubMed  Google Scholar 

  • Drachman DB, Houk J (1969) Effect of botulinum toxin on speed of skeletal muscle contraction. Am J Physiol 216:1453–1455

    PubMed  Google Scholar 

  • Drachman DB, Romanul FCA (1970) Effect or neuromuscular blockade on enzymatic activities of muscles. Arch Neurol 23:85–89

    PubMed  Google Scholar 

  • Dubowitz V, Brooke MH, Neville HE (1973) Muscle biopsy: a modern approach. 2nd edn. Saunders, London, p 101

    Google Scholar 

  • Duxson MJ, Ross JJ, Harris AJ (1986) Transfer of differentiated synaptic terminals from primary myotubes to new-formed muscle cells during embryonic development in the rat. Neuro Lett 71:147–152

    Article  Google Scholar 

  • Eccles JC (1941) Disuse atrophy of skeletal muscle. Med J Aust 2:160–164

    Google Scholar 

  • Eccles JC (1964) The physiology of synapses. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Elce JS, Hasspieler R, Boegman RJ (1983) Ca2+-activated protease in denervated rat skeletal muscle measured by an immunoassay. Exp Neurol 81:320–329

    Article  PubMed  Google Scholar 

  • Enesco M, Puddy D (1964) Increase in the number of nuclei and weight in skeletal muscle of rats of various ages. Am J Anat 114:235–244

    Article  PubMed  Google Scholar 

  • Engel AG, Stonnington HH (1974) Morphological effects of denervation of muscle. A quantitative ultrastructural study. Ann NY Acad Sci 228:68–88

    PubMed  Google Scholar 

  • Engel WK, Karpati G (1968) Impaired skeletal muscle maturation following neonatal neurectomy. Dev Biol 17:713–723

    Article  PubMed  Google Scholar 

  • Engstrom Y, Eriksson S, Jilevik I, Skog S, Thelander L, Tribukait B (1985) Cell cycle-dependent expression of mammalian ribonucleotide reductase. J Biol Chem 260:9114–9116

    PubMed  Google Scholar 

  • Enns CA, Sussman HH (1981) Physical characterization of the transferrin receptor in human placentae. J Biol Chem 256:9820–9823

    PubMed  Google Scholar 

  • Enns CA, Shindelman JE, Tonik SE, Sussman HH (1981) Radioimmunochemical measurement of the transferrin receptor in human trophoblast and reticulocyte membranes with a specific anti-receptor antibody. Proc Natl Acad Sci USA 78:4222–4225

    PubMed  Google Scholar 

  • Enns CA, Suomalainen HA, Gebhardt JE, Schroder J, Sussman HH (1982) Human transferrin receptor: expression of the receptor is assigned to chromosome 3. Proc Natl Acad Sci USA 79:3241–3245

    PubMed  Google Scholar 

  • Enns CA, Larrick JW, Suomalainen H, Schroder J, Sussman HH (1983) Co-migration and internalization of transferrin and its receptor on K562 cells. J Cell Biol 97:579–585

    Article  PubMed  Google Scholar 

  • Eppenberger HM, von Fellenberg R, Richterich R, Aebi H (1962/63) Die Ontogenese von zytoplasmatischen Enzymen beim Hühnerembryo. Enzymol Biol Clin 2:139–174

    Google Scholar 

  • Erb W (1868) cited by Gutmann E (1976) Ann Rev Physiol 38:177–216

    Google Scholar 

  • Fava RA, Comeau RD, Woodworth RC (1981) Specific membrane receptors for diferrictransferrin in cultured rat skeletal myocytes and chick-embryo cardiac myocytes. Biosci Rep 1:377–385

    Article  PubMed  Google Scholar 

  • Fernandez HL, Donoso JA (1988) Nerve-muscle cell trophic communication: introductory remarks. In: Fernandez HL, Donoso JA (eds) Nerve-muscle cell trophic communication. CRC, Boca Raton, pp 1–5

    Google Scholar 

  • Fischmann DA (1972) Development of striated muscle. In: Bourne GH (ed) The structure and function of muscle, vol. I, 2nd edn. Academic, New York, pp 75–148

    Google Scholar 

  • Florini JR (1987) Hormonal control of muscle growth. Muscle Nerve 10:577–598

    Article  PubMed  Google Scholar 

  • Ford-Hutchinson AW, Perkins DJ (1971) The binding of scandium ions to transferrin in vivo and in vitro. Eur J Biochem 21:55–59

    Article  PubMed  Google Scholar 

  • Galbraith RM, Werner P, Arnaud P, Galbraith GMP (1980) Transferrin binding to peripehral blood lymphocytes activated by phytohemagglutinin involves a specific receptor. Ligand interaction. J Clin Invest 66:1135–1143

    PubMed  Google Scholar 

  • Gauthier GF, Dunn RA (1973) Ultrastructural and cytochemical features of mammalian skeletal muscle fibres following denervation. J Cell Sci 12:525–547

    PubMed  Google Scholar 

  • Gerstenfeld LC, Crawford DR, Boedtker H, Doty P (1984) Expression of type I and III collagen genes during differentiation of embryonic chicken myoblasts in culture. Mol Cell Biol 4:1483–1492

    PubMed  Google Scholar 

  • Giese AC (1979) Cell physiology. Saunders, Philadelphia

    Google Scholar 

  • Godlewski E (1902) Die Entwicklung des Skelett-und Herzmuskelgewebes der Säugetiere. Arch Mikrosk Anat 60:111–156

    Google Scholar 

  • Goldberg AL (1969) Protein turnover in skeletal muscle. J Biol Chem 244:3223–3229

    PubMed  Google Scholar 

  • Goldspink DF (1976) The effects of denervation on protein turnover of rat skeletal muscle. Biochem J 156:71–80

    PubMed  Google Scholar 

  • Goldspink DF (1978) The effects of denervation on protein turnover of the soleus and extensor digitorum longus muscles of adult mice. Comp Biochem Physiol 61B:37–41

    Google Scholar 

  • Goldspink DF, Garlick PJ, McNurlan MA (1983) Protein turnover measured in vivo and in vitro in muscles undergoing compensatory growth and subsequent denervation atrophy. Biochem J 210:89–98

    PubMed  Google Scholar 

  • Goldspink G (1970) The proliferation of myofibrils during muscle fibre growth. J Cell Sci 6:593–603

    PubMed  Google Scholar 

  • Goldspink G (1971) Changes in striated muscle fibres during contraction and growth with particular reference to myofibril splitting. J Cell Sci 9:123–137

    PubMed  Google Scholar 

  • Goldspink G (1980) Growth of muscle. In: Goldspink DF (ed) Development and specialization of skeletal muscle. Cambridge University Press, Cambridge, pp 19–35

    Google Scholar 

  • Goodfellow PN, Banting G, Sutherland R, Greaves M, Solomon E, Povey S (1982) Expression of human transferrin receptor is controlled by a gene on chromosome 3: assignment using species specificity of a monoclonal antibody. Somatic Cell Genet 8:197–206

    Article  PubMed  Google Scholar 

  • Gould RP, Day A, Wolpert L (1972) Mesenchymal condensation and cell contact in early morphogenesis of the chick limb. Exp Cell Res 72:325–326

    Article  PubMed  Google Scholar 

  • Griffin GE, Williams PE, Goldspink G (1971) Region of longitudinal growth in striated muscle fibres. Nature [New Biol] 232:28–29

    Article  PubMed  Google Scholar 

  • Gutmann E (1962) Metabolic reactibility of the denervated muscle. In: Gutmann E, Bass A, Beranek R, Drahota Z, Gutmann E, Hnik P, Hudlicka O, Skorpil V, Vyklicky L, Zelena J, Zak R (eds) The denervated muscle. Publishing House of the Czechoslovak Academy of Sciences, Prague, pp 377–432

    Google Scholar 

  • Gutmann E (1964) Neurotrophic relations in the regeneration process. Brain Res 13:72–114

    Google Scholar 

  • Gutmann E (1976) Neurotrophic relations. Annu Rev Physiol 38:177–216

    Article  PubMed  Google Scholar 

  • Hagiwara Y, Ozawa E (1982) Class specificity of avian and mammalian sera in regards to myogenic cell growth in vitro. Dev Growth Differ 24:115–123

    Article  Google Scholar 

  • Hagiwara Y, Kimura I, Ozawa E (1981) Chick embryo extract, muscle trophic factor and chick and horse sera as environments for chick myogenic cell growth. Dev Growth Differ 23:249–254

    Article  Google Scholar 

  • Hagiwara Y, Atsumi S, Ozawa E (1985) Reversible suppression of growth and differentiation of cultured chick myogenic cells with very low concentrations of dibucaine. J Pharmacobiodyn 8:311–319

    PubMed  Google Scholar 

  • Hagiwara Y, Saito K, Atsumi S, Ozawa E (1987) Iron supports myogenic cell differentiation to the same degree as does iron-bound transferrin. Dev Biol 120:236–244

    Article  PubMed  Google Scholar 

  • Hagiwara Y, Shimo-Oka T, Okamura K, Ozawa E (1989a) Basis for the assay of myogenic cell growth in vitro using creatine kinase activity as an index, with special reference to measurement of power ratio of transferrins in growth promotion. Jpn J Pharmacol 49:53–58

    PubMed  Google Scholar 

  • Hagiwara Y, Yoshida M, Nonaka I, Ozawa E (1989b) Developmental expression of dystrophin on the plasma membrane of rat muscle cells. Protoplasma (in press)

    Google Scholar 

  • Hamberger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  Google Scholar 

  • Hamilton TA, Wada HG, Sussman HH (1979) Identification of transferrin receptors on the surface of human cultured cells. Proc Natl Acad Sci USA 76:6406–6410

    PubMed  Google Scholar 

  • Hanover JA, Willingham MC, Pastan I (1984) Kinetics of transit of transferrin and epidermal growth factor through clathrin-coated membranes. Cell 39:283–293

    Article  PubMed  Google Scholar 

  • Hanover JA, Beguinot L, Willingham MC, Pastan IH (1985) Transit of receptors for epidermal growth factor and transferrin through clathrin-coated pits. J Biol Chem 260:15938–15945

    PubMed  Google Scholar 

  • Harding C, Stahl P (1983) Transferrin recycling in reticulocytes: pH and iron are important determinants of ligand binding and processing. Biochem Biophys Res Commun 113:650–658

    Article  PubMed  Google Scholar 

  • Harding C, Heuser J, Stahl P (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97:329–339

    Article  PubMed  Google Scholar 

  • Hasegawa T, Ozawa E (1982) Transferrin receptor on chick fibroblast cell surface and the binding affinity in relevance to the growth promoting activity of transferrin. Dev Growth Differ 24:581–587

    Article  Google Scholar 

  • Hasegawa T, Saito K, Kimura I, Ozawa E (1981) Fe3+ promotes in vitro growth of myoblasts and other cells from chick embryos. Proc Jpn Acad 57:206–210

    Google Scholar 

  • Hauschka SD, Hainey C, Angello JC, Linkhart TA, Bonner PH, White NK (1977) Clonal studies of muscle development. In: Rowland LP (ed) Pathogenesis of human muscular dystrophies. Excerpta Medica, Amsterdam, pp 835–855

    Google Scholar 

  • Hayashi A (1984) Transferrin and its abnormalities (in Japanese). Taisha 21:561–569

    Google Scholar 

  • Hayashi I, Sato GH (1976) Replacement of serum by hormones permits growth of cells in a defined medium. Nature 259:132–134

    Article  PubMed  Google Scholar 

  • Haynes BF, Hemler M, Cotner T, Mann D, Eisenbarth GS, Strominger JL, Fauci AS (1981) Characterization of a monoclonal antibody (5E9) that defines a human cell surface antigen of cell activation. J Immunol 127:347–351

    PubMed  Google Scholar 

  • Hebbert D, Morgan EH (1985) Calmodulin antagonists inhibit and phorbol esters enhance transferrin endocytosis and iron uptake by immature erythroid cells. Blood 65:758–763

    PubMed  Google Scholar 

  • Heck CS, Davis HL (1988) Effect of denervation and nerve extract on ultrastructure of muscle. Exp Neurol 100:139–153

    Article  PubMed  Google Scholar 

  • Hemmaplardh D, Kailis SG, Morgan EH (1974) The effect of inhibitors of microtubule and microfilament function on transferrin and iron uptake by rabbit reticulocytes and bone marrow. Br J Haematol 28:53–65

    PubMed  Google Scholar 

  • Henneman E (1980) Skeletal muscle: the servant of the nervous system. In: Mountcastle VB (ed) Medical physiology. Mosby, St Louis, pp 674–702

    Google Scholar 

  • Herrmann H (1952) Studies of muscle development. Ann NY Acad Sci 55:99–108

    PubMed  Google Scholar 

  • Hess A, Rosner S (1970) The satellite cell bud and myoblast in denervated mammalian muscle fibers. Am J Anat 129:21–40

    Article  PubMed  Google Scholar 

  • Heywood SM, Havaranis AS, Herrmann H (1973) Myoglobin synthesis in cell cultures of red and white muscle. J Cell Physiol 82:319–322

    Article  PubMed  Google Scholar 

  • Heywood SM, Kennedy DS, Bester AJ (1974) Separation of specific initiation factors involved in the translation of myosin and myoglobin messenger RNAs and the isolation of a new RNA involved in translation. Proc Natl Acad Sci USA 71:2428–2431

    PubMed  Google Scholar 

  • Hilfer SR, Searls RL, Fonte VG (1973) An ultrastructural study of early myogenesis in the chick wing bud. Dev Biol 30:374–391

    Article  PubMed  Google Scholar 

  • Hirose-Kumagai A, Sakai H, Akamatsu N (1984) Increase of transferrin receptors in hepatocytes during rat liver regeneration. Int J Biol Chem 16:601–605

    Google Scholar 

  • Hofmann WW, Thesleff S (1972) Studies on the trophic influence of nerve on skeletal muscle. Eur J Pharmacol 20:256–260

    Article  PubMed  Google Scholar 

  • Holtzer H, Bischoff R (1970) Mitosis and myogenesis, In: Brisky EJ, Cassens RG, Marsh BB (eds) The physiology and biochemistry of muscle as a food, vol 2. University of Wisconsin Press, Madison, pp 29–51

    Google Scholar 

  • Holtzer H, Croop J, Dienstman S, Ishikawa H, Somlyo AP (1975) Effects of cytochalasin B and colcemide on myogenic cultures. Proc Natl Acad Sci USA 72:513–517

    PubMed  Google Scholar 

  • Hopkins CR, Trowbridge IS (1983) Internalization and processing of transferrin and the transferrin receptor in human carcinoma A431 cells. J Cell Biol 97:508–521

    Article  PubMed  Google Scholar 

  • Horton MA (1983) Expression of transferrin receptors during erythroid maturation. Exp Cell Res 144:361–366

    Article  PubMed  Google Scholar 

  • Huebers HA, Finch CA (1987) The physiology of transferrin and transferrin receptors. Physiol Rev 67:520–582

    PubMed  Google Scholar 

  • Huerre C, Uzan G, Grzeschik KH, Weil D, Levin M, Hors-Cayla M-C, Boue J, Kahn A, Junien C (1984) The structural gene for transferrin (TF) maps to 3q21–3qter. Ann Genet 27:5–10

    PubMed  Google Scholar 

  • Hussain H, Dudley GA, Johnson P (1987) Effects of denervation on calpain and calpastatin in hamster skeletal muscles. Exp Neurol 97:635–643

    Article  PubMed  Google Scholar 

  • Iacopetta BJ, Morgan EH (1983a) The kinetics of transferrin endocytosis and iron uptake from transferrin in rabbit reticulocytes. J Biol Chem 258:9108–9115

    PubMed  Google Scholar 

  • Iacopetta BJ, Morgan EH (1983b) An electron-microscope autoradiographic study of transferrin endocytosis by immature erythroid cells. Eur J Cell Biol 32:17–23

    PubMed  Google Scholar 

  • Iacopetta BJ, Morgan EH, Yeoh GCT (1982) Transferrin receptors and iron uptake during erythroid cell development. Biochim Biophys Acta 687:204–210

    PubMed  Google Scholar 

  • Iacopetta BJ, Morgan EH, Yeoh GCT (1983) Receptor-mediated endocytosis of trasferrin by developing erythroid cells from the fetal rat liver. J Histochem Cytochem 31:336–344

    PubMed  Google Scholar 

  • Ii I, Ozawa E (1985) Partial purification from chick embryos of a factor which promotes myoblast proliferation and delays fusion. Dev Growth Differ 27:717–728

    Article  Google Scholar 

  • Ii I, Kimura I, Hasegawa T, Ozawa E (1981) Transferrin is an essential component of chick embryo extract for avian myogenic cell growth in vitro. Proc Jpn Acad 57:211–216

    Google Scholar 

  • Ii I, Kimura I, Ozawa E (1982) A myotrophic protein from chick embryo extract: its purification, identity to transferrin, and indispensability for avian myogenesis. Dev Biol 94:366–377

    Article  PubMed  Google Scholar 

  • Ii I, Kimura I, Ozawa E (1985) Promotion of myoblast proliferation by hypoxanthine and RNA in chick embryo extract. Dev Growth Differ 27:101–110

    Article  Google Scholar 

  • Imbenotte J, Verber C (1980) Nature of the iron requirement for chick embryo cells cultured in the presence of horse serum. Cell Biol Int Rep 4:447–452

    Article  PubMed  Google Scholar 

  • Ishikawa H (1966) Electron microscopic observations of satellite cells with special reference to the development of mammalian skeletal muscles. Z Anat Entwicklungsgesch 125:43–63

    Article  PubMed  Google Scholar 

  • Jabaily JA, Singer M (1978) Neurotrophic stimulation of DNA synthesis in the regenerating forelimb of the newt, Triturus. J Exp Zool 199:251–256

    Article  Google Scholar 

  • Jacob M, Christ B, Jacob HJ (1978) On the migration of myogenic stem cells into the prospective wing region of chick embryos. Anat Embryol 153:179–193

    Article  PubMed  Google Scholar 

  • Jandl JH (1987) Blood: textbook of hematology. Little Brown, Boston, p 37

    Google Scholar 

  • Jandl JH, Katz JH (1963) The plasma-to-cell cycle of transferrin. J Clin Invest 42:314–326

    PubMed  Google Scholar 

  • Jandl JH, Inman JK, Simmons RL, Allen DW (1959) Transfer of iron from serum iron-binding protein to human reticulocytes. J Clin Invest 38:161–185

    PubMed  Google Scholar 

  • Jansen JKS, Lomo T, Nicolaysen K, Westgaard RH (1973) Hyperinnervation of skeletal muscle fibers: dependence on muscle activity. Science 181:559–561

    PubMed  Google Scholar 

  • Jefferies WA, Brandon MR, Williams AF, Hunt SV (1985) Analysis of lymphopoietic stem cells with a monoclonal antibody to the rat transferrin receptor. Immunology 54:333–341

    PubMed  Google Scholar 

  • Jeltsch JM, Chambon P (1982) The complete nucleotide sequence of the chicken ovotransferrin mRNA. Eur J Biochem 122:291–295

    Article  PubMed  Google Scholar 

  • Jeppsson JO (1967) Subunits of human transferrin. Acta Chem Scand 21:1686–1694

    PubMed  Google Scholar 

  • Johns TR, Thesleff S (1961) Effects of motor inactivation on the chemical sensitivity of skeletal muscle. Acta Physiol Scand 51:136–141

    PubMed  Google Scholar 

  • Jones R, Vrbova G (1974) Two factors responsible for the development of denervation hypersensitivity. J Physiol 236:517–538

    PubMed  Google Scholar 

  • Kagawa T, Chikata E, Tani J (1977) In vitro myogenesis of the mononucleate cells derived from regenerating muscles of adult mice. Dev Biol 55:402–407

    Article  PubMed  Google Scholar 

  • Kagawa T, Chikata E, Tani J, Tsutamune T (1978) In vitro myogenesis of the mononucleate cells derived from regenerating muscles of adult dystrophic mice (dy/dy). Dev Biol 65:526–530

    Article  PubMed  Google Scholar 

  • Kagen L, Freedman A (1973) Embryonic synthesis of myoglobin in vivo estimated by radio-immunoassay. Dev Biol 31:295–300

    Article  PubMed  Google Scholar 

  • Kagen LJ, Zyry B, Freedman A, Roberts L (1974) Myoglobin synthesis in embryonic cells: production by both “red” and “white” muscle in cell culture estimated by radioimmunoassay. Dev Biol 36:202–207

    Article  PubMed  Google Scholar 

  • Karin M, Mintz B (1981) Receptor-mediated endocytosis of transferrin in developmentally totipotent mouse teratocarcinoma stem cells. J Biol Chem 256:3245–3252

    PubMed  Google Scholar 

  • Karpati G, Engel WK (1968a) Correlative histochemical study of skeletal muscle after suprasegmental denervation, peripheral nerve section, and skeletal fixation. Neurology 18:681–692

    PubMed  Google Scholar 

  • Karpati G, Engel WK (1968b) Histochemical investigation of fiber type ratios with the myofibrillar ATP-ase reaction in normal and denervated skeletal muscles of guinea pig. Am J Anat 122:145–156

    Article  PubMed  Google Scholar 

  • Keilin D (1966) The history of cell respiration of cytochrome. Cambridge University Press, Cambridge

    Google Scholar 

  • Kelly AM, Zacks SI (1969a) The histogenesis of rat intercostal muscle. J Cell Biol 42:135–153

    Article  PubMed  Google Scholar 

  • Kelly AM, Zacks SI (1969b) The fine structure of motor endplate morphogenesis. J Cell Biol 42:154–169

    Article  PubMed  Google Scholar 

  • Kieny M, Chevallier A (1979) Anatonomy of tendon development in the embryonic chick wing. J Embryol Exp Morphol 49:153–165

    PubMed  Google Scholar 

  • Kimura I (1983) Developmental change in microheterogeneity of serum transferrin of chickens. Dev Growth Differ 25:531–535

    Article  Google Scholar 

  • Kimura I, Hasegawa T, Miura T, Ozawa E (1981) Muscle trophic factor is identical to transferrin. Proc Jpn Acad 57:200–205

    Google Scholar 

  • Kimura I, Hasegawa T, Ozawa E (1982) Indispensability of iron-bound chick transferrin for chick myogenesis in vitro. Dev Growth Differ 24:369–380

    Article  Google Scholar 

  • Kimura I, Hasegawa T, Ozawa E (1985) Molecular intactness of transferrin recycled in a myogenic chicken cell culture. Cell Struct Funct 10:17–27

    PubMed  Google Scholar 

  • Kimura I, Gotoh Y, Ozawa E (1989) Further purification of a fibroblast growth factor-like factor from chick embryo extract by heparin-affinity chromatography. In Vitro 25:236–242

    Google Scholar 

  • Klausner RD, Ashwell G, van Renswoude J, Harford JB, Bridges KR (1983a) Binding of apotransferrin to K562 cells: explanation of the transferrin cycle. Proc Natl Acad Sci USA 80:2263–2266

    PubMed  Google Scholar 

  • Klausner RD, van Renswoude J, Ashwell G, Kempf C, Schechter AN, Dean A, Bridges KR (1983b) Receptor-mediated endocytosis of transferrin in K562 cells. J Biol Chem 258:4715–4724

    PubMed  Google Scholar 

  • Klausner RD, Harford J, van Renswoude J (1984a) Rapid internalization of the transferrin receptor in K562 cells is triggered by ligand binding or treatment with a phorbol ester. Proc Natl Acad Sci USA 81:3005–3009

    PubMed  Google Scholar 

  • Klausner RD, van Renswoude J, Kempf C, Rao K, Bateman JL, Robbins AR (1984b) Failure to release iron from transferrin in a Chinese hamster ovary cell mutant pleiotropically defective in endocytosis. J Cell Biol 98:1098–1101

    Article  PubMed  Google Scholar 

  • Klug A, Rhodes D (1987) 'Zinc fingers': a novel protein motif for nucleic acid recognition. TIBS 12:464–469

    Google Scholar 

  • Kohama K, Ozawa E (1973) Time course during growth of the activity of a factor in serum promoting chicken myoblast multiplication. Proc Jpn Acad 49:857–860

    Google Scholar 

  • Kohama K, Ozawa E (1977) A statistical method to compare the degree of muscle cell multiplication in different culture dishes. Dev Growth Differ 19:139–148

    Article  Google Scholar 

  • Kohama K, Ozawa E (1978) Muscle trophic factor. II. Ontogenic development of activity of a muscle trophic factor in chicken serum. Muscle Nerve 1:236–241

    Article  PubMed  Google Scholar 

  • Kojima T, Saito K, Kakimi S (1972) Electron microscopic quantitative observations on the neuron and the terminal boutons contacted with it in the ventrolateral part of the anterior horn (C67) of the adult cat. Okajimas Folia Anat Jap 49:175–226

    Google Scholar 

  • Konigsberg IR (1958) Thyroid regulation of protein and nucleic acid accumulation in developing skeletal muscle of the chick embryo. J Cell Comp Physiol 52:13–41

    Article  Google Scholar 

  • Konigsberg IR (1963) Clonal analysis of myogenesis. Science 140:1273–1284

    PubMed  Google Scholar 

  • Konigsberg IR, Sollmann PA, Mixter LO (1978) The duration of the terminal G1 of fusing myoblasts. Dev Biol 63:11–26

    Article  PubMed  Google Scholar 

  • Konigsberg UR, Lipton BH, Konigsberg IR (1975) The regenerative response of single mature muscle fibers isolated in vitro. Dev Biol 45:260–275

    Article  PubMed  Google Scholar 

  • Kuffler SW (1943) Specific excitability of the endplate region in normal and denervated muscle. J Neurophysiol 6:99–110

    Google Scholar 

  • Kühn LC, McClelland A, Ruddle FH (1984) Gene transfer, expression, and molecular cloning of the human transferrin receptor gene. Cell 37:95–103

    Article  PubMed  Google Scholar 

  • Kutsky RJ (1959) Nucleoprotein constituents stimulating growth in tissue culture: active protein fraction. Science 129:1486–1487

    PubMed  Google Scholar 

  • Kutsky RJ, Harris M (1957) Effects of nucleoprotein fractions from adult and juvenile tissues on growth of chick fibroblasts in plasma cultures. Growth 21:53–72

    PubMed  Google Scholar 

  • Lederman HM, Cohen A, Lee JWW, Freedman MH, Gelfand EW (1984) Deferoxamine: a reversible S-phase inhibitor of human lymphocyte proliferation. Blood 64:748–753

    PubMed  Google Scholar 

  • Lewis MR (1915) Rhythmical contraction of the skeletal muscle tissue observed in tissue cultures. Am J Physiol 1:153–161

    Google Scholar 

  • Lewis WH (1910) The development of the muscular system. In: Keibel F, Mall FP (eds) Manual of human embryology. Lippincott, Philadelphia, pp 454–522

    Google Scholar 

  • Lømo T, Rosenthal J (1972) Control of ACh sensitivity by muscle activity in the rat. J Physiol 221:493–513

    PubMed  Google Scholar 

  • Louache F, Testa U, Thomopoulos P, Titeux M, Rochant H (1983) Modulation de l'expression des récepteurs de la transferrine par le fer, l'heme et la protoporphyrine. C R Acad Sci [III] 297:291–294

    Google Scholar 

  • Louache F, Testa U, Pelicci P, Thomopoulos P, Titeux M, Rochant H (1984) Regulation of transferrin receptors in human hematopoietic cell lines. J Biol Chem 259:11576–11582

    PubMed  Google Scholar 

  • Low H, Grebing C, Lindgren A, Tally M, Sun IL, Crane FL (1987) Involvement of transferrin in the reduction of iron by the transplasma membrane electron transport system. J Bioenerg Biomembr 19:535–549

    PubMed  Google Scholar 

  • Low RB, Rich A (1973) Myoglobin biosynthesis in the embryonic chick. Biochemistry 12:4555–4559

    Article  PubMed  Google Scholar 

  • Luk CK (1971) Study of the nature of the metal-binding sites and estimate of the distance between the metal-binding sites in transferrin using trivalent lanthanide ions as fluorescent probes. Biochemistry 10:2838–2843

    Article  PubMed  Google Scholar 

  • MacGillivray RTA, Mendez E, Sinha SK, Sutton MR, Lineback-Zins J, Brew K (1982) The complete amino acid sequence of human serum transferrin. Proc Natl Acad Sci USA 79:2504–2508

    PubMed  Google Scholar 

  • MacGillivray RTA, Mendez E, Shewale JG, Sinha SK, Lineback-Zins J, Brew K (1983) The primary structure of human serum transferrin. J Biol Chem 258:3543–3553

    PubMed  Google Scholar 

  • Markelonis GJ, Oh TH (1978) A protein fraction from peripheral nerve having neurotrophic effects on skeletal muscle cells in culture. Exp Neurol 58:285–295

    Article  PubMed  Google Scholar 

  • Markelonis GJ, Oh TH (1979) A sciatic nerve protein has a trophic effect on development and maintenance of skeletal muscle cells in culture. Proc Natl Acad Sci USA 76:2470–2474

    PubMed  Google Scholar 

  • Markelonis GJ, Oh TH (1981) Purification of sciatin using affinity chromatography on concanavalin A-agarose. J Neurochem 37:95–99

    PubMed  Google Scholar 

  • Markelonis GJ, Oh TH (1987) Transferrin: assay of myotrophic effects and method for immunocytochemical localization. Methods Enzymol 147:291–302

    PubMed  Google Scholar 

  • Markelonis GJ, Oh TH, Derr D (1980) Stimulation of protein synthesis in cultured skeletal muscle by a trophic protein from sciatic nerves. Exp Neurol 70:598–612

    Article  PubMed  Google Scholar 

  • Markelonis GJ, Bradshaw RA, Oh TH, Johnson JL, Bates OJ (1982a) Sciatin is a transferrin-like polypeptide. J Neurochem 39:315–320

    PubMed  Google Scholar 

  • Markelonis GJ, Oh TH, Eldefrawi ME, Guth L (1982b) Sciatin: a myotrophic protein increases the number of acetylcholine receptors and receptor clusters in cultured skeletal muscle. Dev Biol 89:353–361

    Article  PubMed  Google Scholar 

  • Markelonis GJ, Oh TH, Park LP, Cha CY, Sofia CA, Kim JW, Azari P (1985) Synthesis of the transferrin receptor by cultures of embryonic chicken spinal neurons. J Cell Biol 100:8–17

    Article  PubMed  Google Scholar 

  • Martin RB, Savory J, Brown S, Bertholf RL, Wills MR (1987) Transferrin binding of Al3+ and Fe3+. Clin Chem 33:405–407

    PubMed  Google Scholar 

  • Matsuda R, Spector D, Strohman RC (1984a) There is selective accumulation of a growth factor in chicken skeletal muscle. I. Transferrin accumulation in adult anterior latissimus dorsi. Dev Biol 103:267–275

    Article  PubMed  Google Scholar 

  • Matsuda R, Spector D, Micou-Eastwood J, Strohman RC (1984b) There is selective accmulation of a growth factor in chicken skeletal muscle. II: Transferrin accumulation in dystrophic fast muscle. Dev Biol 103:276–284

    Article  PubMed  Google Scholar 

  • Mattia E, Rao K, Shapiro DS, Sussman HH, Klausner RD (1984) Biosynthetic regulation of the human transferrin receptor by desferrioxamine in K562 cells. J Biol Chem 259:2689–2692

    PubMed  Google Scholar 

  • Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    PubMed  Google Scholar 

  • May WS, Cuatrecasas P (1985) Transferrin receptor: its biological significance. J Membrane Biol 88:205–215

    Article  Google Scholar 

  • May WS, Jacobs S, Cuatrecasas P (1984) Association of phorbol ester-induced hyperphosphorylation and reversible regulation of transferrin membrane receptors in HL60 cells. Proc Natl Acad Sci USA 81:2016–2020

    PubMed  Google Scholar 

  • May WS, Sahyoun N, Jacobs S, Wolf M, Cuatrecasas P (1985) Mechanism of phorbol diester-induced regulation of surface transferrin receptor involves the action of activated protein kinase C and intact cytoskeleton. J Biol Chem 260:9419–9426

    PubMed  Google Scholar 

  • May WS, Lapetina EG, Cuatrecases P (1986) Intracellular activation of protein kinase C and regulation of the surface transferrin receptor by diacylglycerol is a spontaneously reversible process that is associated with rapid formation of phosphatidic acid. Proc Natl Acad Sci USA 83:1281–1284

    PubMed  Google Scholar 

  • Mazurier J, Metz-Boutique M-H, Jolles J, Spik G, Montreuil J, Jolles P (1983) Human lactotransferrin: molecular, functional and evolutionary comparisons with human serum transferrin and hen ovotransferrin. Experientia 39:135–141

    Article  PubMed  Google Scholar 

  • McClelland A, Kuhn LC, Ruddle FH (1984) The human transferrin receptor gene: genomic organization, and the complete primary structure of the receptor deduced from a cDNA sequence. Cell 39:267–274

    Article  PubMed  Google Scholar 

  • McGraw TE, Dunn KW, Maxfield FR (1988) Phorbol ester treatment increases the exocytic rate of the transferrin receptor recycling pathway independent of serine-24 phosphorylation. J Cell Biol 106:1061–1066

    Article  PubMed  Google Scholar 

  • McKnight GS, Palmiter RD (1979) Transcriptional regulation of the ovalbumin and conalbumin genes by steroid hormones in chick oviduct. J Biol Chem 254:9050–9058

    PubMed  Google Scholar 

  • McKnight GS, Lee DC, Hemmaplardh D, Finch CA, Palmiter RD (1980a) Transferrin gene expression. Effects of nutritional iron deficiency. J Biol Chem 255:144–147

    PubMed  Google Scholar 

  • McKnight GS, Lee DC, Palmiter RD (1980b) Transferrin gene expression. Regulation of mRNA transcription in chick liver by steroid hormones and iron deficiency. J Biol Chem 255:148–153

    PubMed  Google Scholar 

  • McLachlan J, Wolpert L (1980) The spatial pattern of muscle development in chick limb. In: Goldspink DF (ed) Development and specialization of skeletal muscle. Cambridge University Press, Cambridge, pp 1–17

    Google Scholar 

  • Meek J, Adamson DE (1985) Transferrin in foetal and adult mouse tissues: synthesis, storage and secretion. J Embryol Exp Morphol 86:205–218

    PubMed  Google Scholar 

  • Mescher AL, Munaim SI (1988) Transferrin and the growth-promoting effect of nerves. Int Rev Cytol 110:1–26

    PubMed  Google Scholar 

  • Metz-Boutigue MH, Jolles J, Mazurier J, Schoentgen F, Legrand D, Spik G, Montreuil J, Jolles P (1984) Human lactotransferrin: amino acid sequence and structural comparisons with other transferrins. Eur J Biochem 145:659–676

    Article  PubMed  Google Scholar 

  • Miledi R, Slater CR (1968) Some mitochondrial changes in denervated muscle. J Cell Sci 3:49–54

    PubMed  Google Scholar 

  • Miller JB, Stockdale FE (1987) What muscle cells know that nerves don't tell them. TINS 10:325–329

    Google Scholar 

  • Miller JB, Crow MT, Stockdale FE (1985) Slow and fast myosin heavy chain content defines three types of myotubes in early muscle cell cultures. J Cell Biol 101:1643–1650

    Article  PubMed  Google Scholar 

  • Miller YE, Jones C, Scoggin C, Morse H, Seligman P (1983) Chromosome 3q (22-ter) encodes the human transferrin receptor. Am J Hum Genet 35:573–583

    PubMed  Google Scholar 

  • Millward DJ (1980) Protein degradation in muscle and liver. Compr Biochem 19B(1):153–232

    Google Scholar 

  • Mintz B, Baker WW (1967) Normal mammalian muscle differentiation and gene control of isocitrate dehydrogenase synthesis. Proc Natl Acad Sci USA 58:592–598

    PubMed  Google Scholar 

  • Miskimins WK, McClelland A, Roberts MP, Ruddle FH (1986) Cell proliferation and expression of the transferrin receptor gene: promoter sequence homologies and protein interactions. J Cell Biol 103:1781–1788

    Article  PubMed  Google Scholar 

  • Miyata Y, Yoshioka T (1980) Selective elimination of motor nerve terminals in the rat soleus muscle during development. J Physiol (Lond) 309:631–646

    PubMed  Google Scholar 

  • Morgan EH (1964) The interaction between rabbit, human and rat transferrin and reticulocytes. Br J Haematol 10:442–452

    PubMed  Google Scholar 

  • Morgan EH (1983) Effect of pH and iron content of transferrin on its binding to reticulocyte receptors. Biochim Biophys Acta 762:498–502

    Article  PubMed  Google Scholar 

  • Morgan EH, Appleton TC (1969) Autoradiographic localization of 125I-labelled transferrin in rabbit reticulocytes. Nature 223:1371–1372

    PubMed  Google Scholar 

  • Morgan EH, Baker E (1969) The effect of metabolic inhibitors on transferrin and iron uptake and transferrin release from reticulocytes. Biochim Biophys Acta 184:442–454

    PubMed  Google Scholar 

  • Mori T, Takai Y, Minakuchi R, Yu B, Nishizuka Y (1980) Inhibitory action of chlorpromazine, dibucaine, and other phospholipid-interacting drugs on calcium-activated, phospholipid-dependent protein kinase. J Biol Chem 255:8378–8380

    PubMed  Google Scholar 

  • Morley CGD, Bezkorovainy A (1985) Cellular iron uptake from transferrin: is endocytosis the only mechanism? Int J Biochem 17:553–564

    Article  PubMed  Google Scholar 

  • Moss FP (1968) The relationship between the dimensions of the fibres and the number of nuclei during normal growth of skeletal muscle in the domestic fowl. Am J Anat 122:555–564

    Article  PubMed  Google Scholar 

  • Moss FP, Leblond CP (1970) Nature of dividing nuclei in skeletal muscle of growing rats. J Cell Biol 44:459–466

    Article  PubMed  Google Scholar 

  • Moss FP, Leblond CP (1971) Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec 170:421–436

    Article  PubMed  Google Scholar 

  • Moss FP, Simmonds RA, McNary HW (1964) The growth and composition of skeletal muscle in chicken. Poult Sci 43:1086–1091

    Google Scholar 

  • Muchmore WB (1957) Differentiation of the trunk mesoderm in Ambystoma maculatum. J Exp Zool 134:293–313

    Article  PubMed  Google Scholar 

  • Muchmore WB (1958) The influence of embryonic neural tissues on differentiation of striated muscle in ambystoma. J Exp Zool 139:181–188

    Article  PubMed  Google Scholar 

  • Mulford CA, Lodish HF (1988) Endocytosis of the transferrin receptor is altered during differentiation of murine erythroleukemic cells. J Biol Chem 263:5455–5461

    PubMed  Google Scholar 

  • Nadal-Ginard B (1978) Commitment, fusion and biochemical differentiation of a myogenic cell line in the absence of DNA synthesis. Cell 15:855–864

    Article  PubMed  Google Scholar 

  • Neckers LM, Nordan RP (1988) Regulation of murine plasmacytoma transferrin receptor expression and G1 traversal by plasmacytoma cell growth factor. J Cell Physiol 135:495–501

    Article  PubMed  Google Scholar 

  • Needham DM (1971) Machina carnis: the biochemistry of muscular contraction in its historical development. Cambridge University Press, Cambridge

    Google Scholar 

  • Neumann RE, Tytell AA (1961) Iron replacement of lactalysate and embryo extract in growth of cell cultures. Proc Soc Exp Biol Med 107:876–880

    PubMed  Google Scholar 

  • Nguyen HT, Medford RM, Nadal-Ginard B (1983) Reversibility of muscle differentiation in the absence of commitment: analysis of a myogenic cell line temperature-sensitive for commitment. Cell 34:281–293

    Article  PubMed  Google Scholar 

  • Niederle B, Mayr R (1978) Course of denervation atrophy in type I and type II fibres of rat extensor digitorum longus muscle. Anat Embryol 153:9–21

    Article  PubMed  Google Scholar 

  • Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308:693–697

    PubMed  Google Scholar 

  • Nishizuka Y (1986) Studies and perspectives of protein kinase C. Science 233:305–312

    PubMed  Google Scholar 

  • Obinata T, Maruyama K, Sugita H, Kohama K, Ebashi S (1981) Dynamic aspects of structural proteins in vertebrate skeletal muscle. Muscle Nerve 4:456–488

    Article  PubMed  Google Scholar 

  • Ochs S (1988) An historical introduction to the trophic regulation of skeletal muscle. In: Fernandez HL, Donoso JA (eds) Nerve-muscle cell trophic communication, CRC, Boca Raton, pp 7–22

    Google Scholar 

  • Octave J-N, Schneider Y-J, Hoffmann P, Trouet A, Crichton RR (1979) Transferrin protein and iron uptake by cultured rat fibroblasts. FEBS Lett 108:127–130

    Article  PubMed  Google Scholar 

  • Octave J-N, Schneider Y-J, Crichton RR, Trouet A (1981) Transferrin uptake by cultured rat embryo fibroblasts. The influence of temperature and incubation time, subcellular distribution and short-term kinetic studies. Eur J Biochem 115:611–618

    PubMed  Google Scholar 

  • Octave J-N, Schneider Y-J, Hoffmann P, Trouet A, Crichton RR (1982) Transferrin uptake by cultured rat embryo fibroblasts. The influence of lysosomotropic agents, iron chelators and colchicine on the uptake of iron and transferrin. Eur J Biochem 123:235–240

    Article  PubMed  Google Scholar 

  • Oh TH (1975) Neurotrophic effects: characterization of the nerve extract that simulates muscle development in culture. Exp Neurol 46:432–438

    Article  PubMed  Google Scholar 

  • Oh TH (1976) Neurotrophic effects of sciatic nerve extracts on muscle development in culture. Exp Neurol 50:376–386

    Article  PubMed  Google Scholar 

  • Oh TH, Johnson DD (1972) Effects of acetyl-β-methylcholine on development of acetylcholinesterase and butyrylcholinesterase activities in cultured chick embryonic skeletal muscle. Exp Neurol 37:360–370

    Article  PubMed  Google Scholar 

  • Oh TH, Markelonis GJ (1978) Neurotrophic protein regulates muscle acetylcholinesterase in culture. Science 200:337–339

    PubMed  Google Scholar 

  • Oh Th, Markelonis GJ (1980) Dependence of in vitro myogenesis on a trophic protein present in chicken embryo extract. Proc Natl Acad Sci USA 77:6922–6925

    PubMed  Google Scholar 

  • Oh TH, Markelonis GJ (1982a) Chicken serum transferrin duplicates the myotrophic effects of sciatin on cultured muscle cells. J Neurosci Res 8:535–545

    Article  PubMed  Google Scholar 

  • Oh TH, Markelonis GJ (1982b) Sciatin: purification, characterization, localization and biological properties of a myotrophic protein from sciatic nerves. In: Yoshida H, Hagihara Y, Ebashi S (eds) Advances in pharmacology and therapeutics. Vol. II. Pergamon, Oxford, pp 293–299

    Google Scholar 

  • Oh TH, Markelonis GJ (1984) Sciatin (transferrin) and other muscle trophic factors. In: Guroff G (ed) Growth and maturation factors, a Wiley-Interscience publication. Wiley, New York, pp 55–85

    Google Scholar 

  • Oh TH, Markelonis GJ, Reier PJ, Zalewski AA (1980) Persistence in degenerating sciatic nerve of substances having a trophic influence upon cultured muscle. Exp Neurol 67:646–654

    Article  PubMed  Google Scholar 

  • Oh TH, Sofia CA, Kim YC, Carroll C, Kim HH, Markelonic GJ, Reier PJ (1981) Immunocytochemical localization of a myotrophic protein in chicken neural tissues. J Histochem Cytochem 29:1205–1212

    PubMed  Google Scholar 

  • Oh TH, Markelonis GJ, Shim SH (1988) Trophic influences of neurogenic substances on skeletal muscle differentiation and growth in vitro. In: Fernandez HL, Donoso JA (eds) Nerve-muscle cell trophic communication. CRC, Boca Raton, pp 55–85

    Google Scholar 

  • Ohshima Y, Maruyama K, Noda H (1965) Developmental changes in chick muscle contractile proteins. In: Ebashi S, Oosawa F, Sekine T, Tonomura Y (eds) Molecular biology of muscular contraction. Igaku Shoin, Tokyo, Elsevier, Amsterdam, pp 132–144

    Google Scholar 

  • Ohtsuki I, Ozawa E (1977) Difference in saponin sensitivity between myotubes and mononucleated cells from chick breast muscle. Cell Struct Funct 2:367–370

    Google Scholar 

  • Okazaki K, Holtzer H (1965) An analysis of myogenesis in vitro using fluorescein-labeled antimyosin. J Histochem Cytochem 13:726–739

    PubMed  Google Scholar 

  • Okazaki K, Holtzer H (1966) Myogenesis: fusion, myosin synthesis, and the mitotic cycle. Proc Natl Acad Sci USA 56:1484–1490

    PubMed  Google Scholar 

  • Omary MB, Trowbridge IS, Minowada J (1980) Human cell-surface glycoprotein with unusual properties. Nature 286:888–891

    Article  PubMed  Google Scholar 

  • Ontell M, Kozeka K (1984) The organogenesis of murine striated muscle: a cytoarchitectural study. Am J Anat 171:133–148

    Article  PubMed  Google Scholar 

  • Owen D, Kühn LC (1987) Noncoding 3′ sequences of the transferrin receptor gene are required for mRNA regulation by iron. EMBO J 6:1287–1293

    PubMed  Google Scholar 

  • Ozawa E (1977) Trophic effects on chick muscle cells of a factor promoting chick myoblast multiplication. Proc Jpn Acad 53(B):130–132

    Google Scholar 

  • Ozawa E (1978) Differences in sensitivity to Ca ion lack between myoblasts and large myotubes from chicken breast muscle. Dev Growth Differ 20:179–189

    Article  Google Scholar 

  • Ozawa E (1981) Discussion against Oh's presentation at the workshop in 8th international congress of pharmacology. In: Obata K (1982) Chairman's note (in Japanese). Seitaino Kagaku 33:74–75

    Google Scholar 

  • Ozawa E (1985) Trophic and myogenic effects with special reference to transferrin. In: Strohman RC, Wolf S (eds) Gene expression in muscle. Plenum, New York, pp 123–127 (Advances in experimental medicine and biology, vol 182)

    Google Scholar 

  • Ozawa E, Hagiwara Y (1981) Avian and Mammalian transferrins are required for chick and rat myogenic cell growth in vitro, respectively, Proc Jpn Acad 57(B):406–409

    Google Scholar 

  • Ozawa E, Hagiwara Y (1982) Degeneration of large myotubes following removal of transferrin from culture medium. Biomed Res 3:16–23

    Google Scholar 

  • Ozawa E, Kohama K (1973) Partial purification of a factor promoting chicken myoblast multiplication in vitro. Proc Jpn Acad 49:852–856

    Google Scholar 

  • Ozawa E, Kohama K (1978a) Muscle trophic factor. I. Assay of a muscle trophic factor by measurement of muscle cell nuclei. Muscle Nerve 1:230–235

    Article  PubMed  Google Scholar 

  • Ozawa E, Kohama K (1978b) Muscle trophic factor. III. Effect of hormones and tissue extracts on muscle trophic-factor activity. Muscle Nerve 1:314–319

    Article  PubMed  Google Scholar 

  • Ozawa E, Kimura I, Hasegawa T, Ii I, Saito K, Hagiwara Y, Shimo-Oka T (1983) Iron-bound transferrin as a myotrophic factor. In: Ebashi S, Ozawa E (eds) Muscular dystrophy: biochemical aspects. Japan Scientific Societies, Tokyo, Springer, Berlin Heidelberg New York, pp 53–60

    Google Scholar 

  • Pan B-T, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33:967–977

    Article  PubMed  Google Scholar 

  • Pater JL, Kohn RR (1967) Turnover of structural protein fractions in denervated muscle. Proc Soc Exp Biol Med 125:476–481

    PubMed  Google Scholar 

  • Paterson B, Strohman RC (1972) Myosin synthesis in cultures of differentiating chicken embryo skeletal muscle. Dev Biol 29:113–138

    Article  PubMed  Google Scholar 

  • Pearse BMF (1982) Coated vesicles from human placenta carry ferritin, transferrin, and immunoglobulin G. Proc Natl Acad Sci USA 79:451–455

    PubMed  Google Scholar 

  • Penhallow RC, Brown-Mason A, Woodworth RC (1986) Comparative studies of the binding and growth-supportive ability of mammalian transferrins in human cells. J Cell Physiol 128:251–260

    Article  PubMed  Google Scholar 

  • Perriard JC, Perriard ER, Eppenberger HM (1978) Detection and relative quantitation of mRNA for creatine kinase isoenzymes in RNA from myogenic cell cultures and embryonic chicken tissues. J Biol Chem 253:6529–6535

    PubMed  Google Scholar 

  • Peters A, Palay SL, Webster HDF (1970) The fine structure of the nervous system. Hoeber Medical Division, Harper and Row, New York

    Google Scholar 

  • Phillips JL, Azari P (1974) Zinc transferrin. Enhancement of nucleic acid synthesis in phytohemagglutinin-stimulated human lymphocytes. Cell Immunol 10:31–37

    Article  PubMed  Google Scholar 

  • Phillips WD, Bennett MR (1984) Differentiation of fiber types in wing muscles during embryonic development: effect of neural tube removal. Dev Biol 106:457–468

    Article  PubMed  Google Scholar 

  • Plowman GD, Brown JP, Enns CA, Schroder J, Nikinmaa B, Sussman HH, Hellstrom KE, Hellstrom I (1983) Assignment of the gene for human melanoma-associated antigen p97 to chromosome 3. Nature 303:70–72

    Article  PubMed  Google Scholar 

  • Popiela H (1976) In vivo limb tissue development in the absence of nerves: A quantitative study. Exp Neurol 53:214–226

    Article  PubMed  Google Scholar 

  • Popiela H (1977) In vivo limb muscle differentiation in the absence of nerves: a quantitative study. Exp Neurol 55:160–172

    Article  PubMed  Google Scholar 

  • Popiela H (1978) Trophic effects of adult peripheral nerve extract on muscle cell growth and differentiation in vitro. Exp Neurol 62:405–416

    Article  PubMed  Google Scholar 

  • Popiela H, Ellis S (1981) Neurotrophic factor: characterization and partial purification. Dev Biol 83:266–277

    Article  PubMed  Google Scholar 

  • Popiela H, Ellis S, Festoff BW (1982) Dose-dependent initiation of myogenesis by neurotrophic factor. J Neurosci Res 8:547–567

    Article  PubMed  Google Scholar 

  • Popiela H, Taylor D, Ellis S, Beach R, Festoff B (1984) Regulation of mitotic activity and the cell cycle in primary chick muscle cells by neurotransferrin. J Cell Physiol 119:234–240

    Article  PubMed  Google Scholar 

  • Poritsky R (1969) Two and three dimensional ultrastructure of boutons and glial cells on the motoneuronal surface in the cat spinal cord. J Comp Neurol 135:423–452

    Article  PubMed  Google Scholar 

  • Purves D, Sakmann B (1974) The effect of contractile activity on fibrillation and extrajunctional acetylcholine-sensitivity in rat muscle maintained in organ culture. J Physiol 237:157–182

    PubMed  Google Scholar 

  • Rao K, van Renswoude J, Kempf C, Klausner RD (1983) Separation of Fe3+ from transferrin endocytosis. Role of the acidic endosome. FEBS Lett 160:213–216

    Article  PubMed  Google Scholar 

  • Rao K, Shapiro D, Mattia E, Bridges K, Klausner R (1985) Effects of alterations in cellular iron on biosynthesis of the transferrin receptor in K562 cells. Mol Cell Biol 5:595–600

    PubMed  Google Scholar 

  • Rao K, Harford JB, Rouault T, McClelland A, Ruddle FH, Klausner RD (1986) Transcriptional regulation by iron of the gene for the transferrin receptor. Mol Cell Biol 6:236–240

    PubMed  Google Scholar 

  • Redfern P, Lundh H, Thesleff S (1970) Tetrodotoxin resistant action potentials in denervated rat skeletal muscle. Eur J Pharmacol 11:263–265

    Article  PubMed  Google Scholar 

  • Reichard P (1978) From deoxynucleotides to DNA synthesis. Fed Proc 37:9–14

    PubMed  Google Scholar 

  • Reporter MC, Konigsberg IR, Strehler BL (1963) Kinetics of accumulation of creatine phosphokinase activity in developing embryonic skeletal muscle in vivo and in monolayer culture. Exp Cell Res 30:410–417

    Article  PubMed  Google Scholar 

  • Ross JJ, Duxson MJ, Harris AJ (1987a) Formation of primary and secondary myotubes in rat lumbrical muscles. Dev Biol 100:383–394

    Google Scholar 

  • Ross JJ, Duxson MJ, Harris AJ (1987b) Neural determination of muscle fibre numbers in embryonic rat lumbrical muscles. Dev Biol 100:395–409

    Google Scholar 

  • Rothenberger S, Iacopetta BJ, Kuhn LC (1987) Endocytosis of the transferrin receptor requires the cytoplasmic domain but not its phosphorylation site. Cell 49:423–431

    Article  PubMed  Google Scholar 

  • Rouault T, Rao K, Harford J, Mattia E, Klausner RD (1985) Hemin, chelatable iron, and the regulation of transferrin receptor biosynthesis. J Biol Chem 260:14862–14866

    PubMed  Google Scholar 

  • Rovera G, Ferrero D, Pagliardi GL, Vartikar J, Pessano S, Bottero L, Abraham S, Lebman D (1982) Induction of differentiation of human myeloid leukemias by phorbol diesters: phenotypic changes and mode of action. Ann NY Acad Sci 397:211–220

    PubMed  Google Scholar 

  • Rowe RWD, Goldspink G (1969) Muscle fibre growth in five different muscles in both sexes of mice. I. Normal mice. J Anat 104:519–530

    PubMed  Google Scholar 

  • Rubinstein NR, Kelly AM (1981) Development of muscle fiber spcialization in the rat hindlimb. J Cell Biol 90:128–144

    Article  PubMed  Google Scholar 

  • Rudolph JR, Regoeczi E, Chindemi PA, Debanne MT (1986) Preferential hepatic uptake of iron from rat asialo-transferrin: possible engagement of two receptors. Am J Physiol 251(31):G398–404

    PubMed  Google Scholar 

  • Rudolph NS, Ohlsson-Wilhelm BM, Leary JF, Rowley PT (1985) Regulation of K562 cell transferrin receptors by exogenous iron. J Cell Physiol 122:441–450

    Article  PubMed  Google Scholar 

  • Sager PR, Brown PA, Berlin RD (1984) Analysis of transferrin recycling in mitotic and interphase HeLa cells by quantitative fluorescence microscopy. Cell 39:275–282

    Article  PubMed  Google Scholar 

  • Saito K, Hagiwara Y, Hasegawa T, Ozawa E (1982) Indispensability of iron for the growth of cultured chick cells. Dev Growth Differ 24:571–580

    Article  Google Scholar 

  • Sanders EJ (1986) Changes in the transferrin requirement of cultured chick embryo mesoderm cells during early differentiation. J Embryol Exp Morphol 95:81–93

    PubMed  Google Scholar 

  • Sanders EJ, Cheung E (1988) Transferrin and iron requirements of embryonic mesoderm cells cultured in hydrated collagen matrices. In Vitro Cell Dev Biol 24:581–587

    PubMed  Google Scholar 

  • Sauvage CA, Mendelsohn JC, Lesley JF, Trowbridge IS (1987) Effects of monoclonal antibodies that block transferrin receptor function on the in vivo growth of a syngeneic murine leukemia. Cancer Res 47:747–753

    PubMed  Google Scholar 

  • Sawyer ST, Krantz SB (1986) Transferrin receptor number, synthesis, and endocytosis during erythropoietin-induced maturation of friend virus-infected erythroid cells. J Biol Chem 261:9187–9195

    PubMed  Google Scholar 

  • Schneider C, Sutherland R, Newman R, Greaves M (1982) Structural features of the cell surface receptor for transferrin that is recognized by the monoclonal antibody OKT9. J Biol Chem 257:8516–8522

    PubMed  Google Scholar 

  • Schneider C, Kurkinen M, Greaves M (1983) Isolation of cDNA clones for the human transferrin receptor. EMBO J 2:2259–2263

    PubMed  Google Scholar 

  • Schneider C, Owen MJ, Banville D, Williams JG (1984) Primary structure of human transferrin receptor deduced from the mRNA sequence. Nature 311:675–678

    Article  PubMed  Google Scholar 

  • Schultz E (1974) A quantitative study of the satellite cell population in postnatal mouse lumbrical muscle. Anat Rec 180:589–596

    Article  PubMed  Google Scholar 

  • Schultz E (1976) Fine structure of satellite cells in growing skeletal muscle. Am J Anat 147:49–70

    Article  PubMed  Google Scholar 

  • Seligman PA, Schleicher RB, Allen RH (1979) Isolation and characterization of the transferrin receptor from human placenta. J Biol Chem 254:9943–9946

    PubMed  Google Scholar 

  • Seligman PA, Butler CD, Massay EJ, Kaur JA, Brown JP, Plowman GD, Miller Y, Jones C (1986) The p97 antigen is mapped to the q24-qter region of chromosome 3; the same region as the transferrin receptor. Am J Hum Genet 38:540–548

    PubMed  Google Scholar 

  • Sephton RG, Kraft N (1978) 67Ga and 59Fe uptakes by cultured human lymphoblasts and lymphocytes. Cancer Res 38:1213–1216

    PubMed  Google Scholar 

  • Shainberg A, Yagil G, Yaffe D (1970) Control of myogenesis in vitro by Ca2+ concentration in nutritional medium. Exp Cell Res 58:163–167

    Article  Google Scholar 

  • Shellswell GB (1977) The formation of discrete muscles from the chick wing dorsal and ventral muscle masses in the absence of nerves. J Embryol Exp Morphol 41:269–277

    PubMed  Google Scholar 

  • Shimo-Oka T, Hagiwara Y, Ozawa E (1986) Class specificity of transferrin as a muscle trophic factor. J Cell Physiol 126:341–351

    Article  PubMed  Google Scholar 

  • Shoji A, Ozawa E (1985a) Suppression of RNA synthesis following transferrin removal in chick myotubes. Proc Jpn Acad 61(B):233–236

    Google Scholar 

  • Shoji A, Ozawa E (1985b) Requirement of Fe ion for activation of RNA polymerase. Proc Jpn Acad 61(B):494–496

    Google Scholar 

  • Shoji A, Ozawa E (1986) Necessity of transferrin for RNA synthesis in chick myotubes. J Cell Physiol 127:349–356

    Article  PubMed  Google Scholar 

  • Simionescu N, Simionescu M, Palade GE (1973) Permeability of muscle capillaries to exogenous myoglobin. J Cell Biol 57:424–452

    Article  PubMed  Google Scholar 

  • Sirkin CR, Kuhlenbeck H (1966) Preliminary computations of the number of motor neurons in the human spinal cord. Anat Rec 154:489

    Google Scholar 

  • Skinner MK, Griswold MD (1980) Sertoli cells synthesize and secrete transferrin-like protein. J Biol Chem 255:9523–9525

    PubMed  Google Scholar 

  • Slater CR (1976) Control of myogenesis in vitro by chick embryo extract. Dev Biol 50:264–284

    Article  PubMed  Google Scholar 

  • Sohal GS, Holt RK (1980) Role of innervation on the embryonic development of skeletal muscle. Cell Tissue Res 210:383–393

    Article  PubMed  Google Scholar 

  • Sorokin LM, Morgan EH (1988) Species specificity of transferrin binding, endocytosis and iron internalization by cultured chick myogenic cells. J Comp Physiol [B] 158:559–566

    Google Scholar 

  • Sorokin LM, Morgan EH, Yeoh GCT (1987) Transferrin receptor numbers and transferrin and iron uptake in cultured chick muscle cells at different stages of development. J Cell Physiol 131:342–353

    Article  PubMed  Google Scholar 

  • Sorokin LM, Morgan EH, Yeoh GCT (1988) Differences in transferrin receptor function between normal developing and transformed myogenic cells as revealed by differential effects of phorbol ester on receptor distribution and rates of iron uptake. J Biol Chem 263:14128–14133

    PubMed  Google Scholar 

  • Spik G, Coddeville B, Legrand D, Mazurier J, Leger D, Goavec M, Montreuil J (1985) A comparative study of the primary structure of glycans from various sero-, lacto-and ovotransferrins. Role of human lactotransferrin glycans. In: Spik G, Montreuil J, Crichton RR, Magurier J (eds) Proteins of iron storage and transport. Elsevier Science, Amsterdam, pp 47–51

    Google Scholar 

  • Stamatos C, Fine RE (1986) Chick embryo myotubes contain transferrin receptors and internalize and recycle transferrin. J Neurosci Res 15:529–542

    Article  PubMed  Google Scholar 

  • Stamatos C, Squicciarini J, Fine RE (1983) Chick embryo spinal cord neurons synthesize a transferrin-like myotrophic protein. FEBS Lett 153:387–390

    Article  PubMed  Google Scholar 

  • Stein BS, Sussman HH (1986) Demonstration of two distinct transferrin receptor recycling pathways and transferrin-independent receptor internalization in K562 cells. J Biol Chem 261:10319–10331

    PubMed  Google Scholar 

  • Stickland NC (1982) Scanning electron microscopy of prenatal muscle development in the mouse. Anat Embryol 164:379–385

    Article  PubMed  Google Scholar 

  • Stjernholm R, Warner FW, Robinson JW, Ezekiel E, Katayama N (1978) Binding of platinum to human transferrin. Bioorg Chem 9:277–280

    Google Scholar 

  • Stockdale FE, Holtzer H (1961) DNA synthesis and myogenesis. Exp Cell Res 24:508–520

    Article  PubMed  Google Scholar 

  • Straus WL, Rawles ME (1953) An experimental study of the origin of the trunk musculature and ribs in the chick. Am J Anat 92:471–510

    Article  PubMed  Google Scholar 

  • Sun IL, Garcia-Canero R, Liu W, Toole-Simms W, Crane FL, Morre DJ, Low H (1987a) Diferric transferrin reduction stimulates the Na+/H+ antiport of HeLa cells. Biochem Biophys Res Commun 145:467–473

    Article  PubMed  Google Scholar 

  • Sun IL, Navas P, Crane FL, Morre DJ, Low H (1987b) NADH diferric transferrin reductase in liver plasma membrane. J Biol Chem 262:15915–15921

    PubMed  Google Scholar 

  • Sunderland S, Ray LJ (1950) Denervation changes in mammalian striated muscle. J Neurol Neurosurg Psychiatry 13:159–177

    PubMed  Google Scholar 

  • Suzuki K, Ohno S, Emori Y, Imajoh S, Kawasaki H (1987) Calcium-activated neutral protease (CANP) and its biological and medical implications. Prog Clin Biochem Med 5:44–65

    Google Scholar 

  • Tan AT, Woodworth RC (1969) Ultraviolet difference spectral studies of conalbumin complexes with transition metal ions. Biochemistry 8:3711–3716

    Article  PubMed  Google Scholar 

  • Tei I, Makino Y, Sakagami H, Kanamaru I, Konno K (1982) Decrease of transferrin receptor during mouse myeloid leukemia (M1) cell differentiation. Biochem Biophys Res Commun 107:1419–1424

    Article  PubMed  Google Scholar 

  • Testa EP, Testa U, Samoggia P, Salvo G, Camagna A, Peschle C (1986) Expression of transferrin receptors in human erythroleukemic lines: regulation in the plateau and exponential phase of growth. Cancer Res 46:5330–5334

    PubMed  Google Scholar 

  • Testa U, Thomopoulos P, Vinci G, Titeux M; Bettaieb A, Vainchenker W, Rochant H (1982) Transferrin binding to K562 cell line. Exp Cell Res 140:251–260

    Article  PubMed  Google Scholar 

  • Thelander L, Reichard P (1979) Reduction of ribonucleotides. Annu Rev Biochem 48:133–158

    Article  PubMed  Google Scholar 

  • Thelander M, Graslund A, Thelander L (1985) Subunit M2 of mammalian ribonucleotide reductase. Characterization of a homogeneous protein isolated from M2-overproducing mouse cells. J Biol Chem 260:2737–2741

    PubMed  Google Scholar 

  • Thesleff S (1960) Supersensitivity of skeletal muscle produced by botulinum toxin. J Physiol 151:598–607

    PubMed  Google Scholar 

  • Thomson JD (1952) Effect of electrotherapy on twitch time and acetylcholine sensitivity in denervated skeletal muscle. Am J Physiol 171:773

    Google Scholar 

  • Tomanek RJ, Lund DD (1973) Degeneration of different types of skeletal muscle fibres. I. Denervation. J Anat 116:395–407

    PubMed  Google Scholar 

  • Tomlinson BE, Irving D (1977) The numbers of limb motor neurons in the human lumbosacral cord throughout life. J Neurol Sci 34:213–219

    Article  PubMed  Google Scholar 

  • Tomlinson BE, Irving D, Rebeiz JJ (1973) Total numbers of limb motor neurones in the human lumbosacral cord and an analysis of the accuracy of various sampling procedures. J Neurol Sci 20:313–327

    Article  PubMed  Google Scholar 

  • Tormey DC, Mueller GC (1972) Biological effects of transferrin on human lymphocytes in vitro. Exp Cell Res 74:220–226

    Article  PubMed  Google Scholar 

  • Tower SS (1937a) Function and structure in the chronically isolated lumbo-sacral spinal cord of the dog. J Comp Neurol 67:109–131

    Article  Google Scholar 

  • Tower SS (1937b) Trophic control of non-nervous tissues by the nervous system: a study of muscle and bone innervated from an isolated and quiescent region of spinal cord. J Comp Neurol 67:241–267

    Article  Google Scholar 

  • Tower SS (1939) The reaction of muscle to denervation. Physiol Rev 19:1–48

    Google Scholar 

  • Toyota N, Shimada Y (1983) Isoform variants of troponin in skeletal and cardiac muscle cells cultured with and without nerves. Cell 33:297–304

    Article  PubMed  Google Scholar 

  • Trowbridge IS, Domingo DL (1981) Anti-transferrin receptor monoclonal antibody and toxinantibody conjugates affect growth of human tumour cells. Nature 294:171–173

    Article  PubMed  Google Scholar 

  • Trowbridge IS, Lopez F (1982) Monoclonal antibody to transferrin receptor blocks transferrin binding and inhibits human tumor cell growth in vitro. Proc Natl Acad Sci USA 79:1175–1179

    PubMed  Google Scholar 

  • Trowbridge IS, Omary MB (1981) Human cell surface glycoprotein related to cell proliferation is the receptor for transferrin. Proc Natl Acad Sci USA 78:3039–3043

    PubMed  Google Scholar 

  • Trowbridge IS, Lesley J, Schulte R (1982) Murine cell surface transferrin receptor: studies with an anti-receptor monoclonal antibody. J Cell Physiol 112:403–410

    Article  PubMed  Google Scholar 

  • Trowbridge IS, Newman RA, Domingo DL, Sauvage C (1984) Transferrin receptors: structure and function. Biochem Pharmacol 33:925–932

    Article  PubMed  Google Scholar 

  • Tsavaler L, Stein BS, Sussman HH (1986) Demonstration of the specific binding of bovine transferrin to the human transferrin receptor in K562 cells: evidence for interspecies transferrin internalization. J Cell Physiol 128:1–8

    Article  PubMed  Google Scholar 

  • Tsukagoshi H, Yanagisawa N, Oguchi K, Nagashima K, Murakami T (1979) Morphometric quantification of the cervical limb motor cells in controls and in amyotrophic lateral sclerosis. J Neurol Sci 41:287–297

    Article  PubMed  Google Scholar 

  • Turner DC, Maier V, Eppenberger HM (1974) Creatine kinase and aldolase isoenzyme transitions in cultures of chick skeletal muscle cells. Dev Biol 37:63–89

    Google Scholar 

  • Turner DC, Gmur R, Siegrist M, Burckhardt E, Eppenberger HM (1976) Differentiation in cultures derived from embryonic chicken muscle. I. Muscle-specific enzyme changes before fusion in EGTA-synchronized cultures. Dev Biol 48:258–283

    Article  PubMed  Google Scholar 

  • Uzan G, Frain M, Park I, Besmond C, Maessen G, Trepat JS, Zakin MM, Kahn A (1984) Molecular cloning and sequence analysis of cDNA for human transferrin. Biochem Biophys Res Commun 119:273–281

    Article  PubMed  Google Scholar 

  • van Bockxmeer FM, Yates GK, Morgan EH (1978) Interaction of transferrin with solubilized receptors from reticulocytes. Eur J Biochem 92:147–154

    Article  PubMed  Google Scholar 

  • van Renswoude J, Bridges KR, Harford JB, Klausner RD (1982) Receptor-mediated endocytosis of transferrin and the uptake of Fe in K562 cells: identification of a nonlysosomal acidic compartment. Proc Natl Acad Sci USA 79:6186–6190

    PubMed  Google Scholar 

  • Verger C, Sassa S, Kappas A (1983) Growth-promoting effects of iron-and cobalt-protoporphyrins on cultured embryonic cells. J Cell Physiol 116:135–141

    Article  PubMed  Google Scholar 

  • Verhoef NJ, Kremers JH, Leijnse B (1973) The effect of heterologous transferrin on the uptake of iron and heme synthesis by bone marrow cells. Biochim Biophys Acta 304:114–122

    PubMed  Google Scholar 

  • Vogt A, Mishell RI, Dutton RW (1969) Stimulation of DNA synthesis in cultures of mouse spleen cell suspensions by bovine transferrin. Exp Cell Res 54:195–200

    Article  PubMed  Google Scholar 

  • Wada HG, Hass PE, Sussman HH (1979) Transferrin receptor in human placental brush border membranes. J Biol Chem 254:12629–12635

    PubMed  Google Scholar 

  • Ward JH (1987) The structure, function, and regulation of transferrin receptors. Invest Radiol 22:74–83

    PubMed  Google Scholar 

  • Ward JH, Kushner JP, Kaplan J (1982) Regulation of HeLa cell transferrin receptors. J Biol Chem 257:10317–10323

    PubMed  Google Scholar 

  • Ward JH, Jordan I, Kushner JP, Kaplan J (1984) Heme regulation of HeLa cell transferrin receptor number. J Biol Chem 259:13235–13240

    PubMed  Google Scholar 

  • Warren G, Davoust J, Cockcroft A (1984) Recycling of transferrin receptors in A431 cells is inhibited during mitosis. EMBO J 3:2217–2225

    PubMed  Google Scholar 

  • Watts C (1985) Rapid endocytosis of the transferrin receptor in the absence of bound transferrin. J Cell Biol 100:633–637

    Article  PubMed  Google Scholar 

  • Weber EH (1851) Über die Abhängigkeit der Entstehung der animalischen Muskeln von den animalischen Nerven, erläutert durch eine von ihm und Eduard Weber untersuchte Missbildung. Müllers Arch Anat Physiol Wiss Med 548–566

    Google Scholar 

  • Weippl G, Pantlitschko M, Bauer P et al. (1973) Normal values and distribution of single values of serum iron in cord blood. Clin Chim Acta 44:147–149

    Article  PubMed  Google Scholar 

  • Williams J, Elleman TC, Kingston IB, Wilkins AG, Kuhn KA (1982a) The primary structure of hen ovotransferrin. Eur J Biochem 122:297–303

    Article  PubMed  Google Scholar 

  • Williams J, Grace SA, Williams JM (1982b) Evolutionary significance of the renal excretion of transferrin half-molecule fragments. Biochem J 201:417–419

    PubMed  Google Scholar 

  • Willingham MC, Hanover JA, Dickson RB, Pastan I (1984) Morphologic characterization of the pathway of transferrin endocytosis and recycling in human KB cells. Proc Natl Acad Sci USA 81:175–179

    PubMed  Google Scholar 

  • Witt CP, Woodworth RC (1978) Identification of the transferrin receptor of the rabbit reticulocyte. Biochemistry 17:3913–3917

    Article  PubMed  Google Scholar 

  • Woodworth RC, Morallee KG, Williams RJP (1970) Perturbations of the proton magnetic resonance spectra of conalbumin and siderophilin as a result of binding Ga3+ or Fe3+. Biochemistry 9:839–842

    Article  PubMed  Google Scholar 

  • Wu R, Sato GH (1978) Replacement of serum in cell culture by hormones: a study of hormonal regulation of cell growth and specific gene expression. J Toxicol Environ Health 4:427–448

    PubMed  Google Scholar 

  • Yaffe D, Feldman M (1965) The formation of hybrid multinucleated muscle fibers from myoblasts of different genetic origin. Dev Biol 11:300–317

    Article  PubMed  Google Scholar 

  • Yang F, Lum JB, McGill JR, Moore CM, Naylor SL, van Bragt PH, Baldwin WD, Bowman BH (1984) Human transferrin: cDNA characterization and chromosomal localization. Proc Natl Acad Sci USA 81:2752–2756

    PubMed  Google Scholar 

  • Yeh C-JG, Papamichael M, Faulk WP (1982) Loss of transferrin receptors following induced differentiation of HL-60 promyelocytic leukemia cells. Exp Cell Res 138:429–433

    Article  PubMed  Google Scholar 

  • Zak R, Martin AF, Blough R (1979) Assessment of protein turnover by use of radioisotrophic tracers. Physiol Rev 59:407–447

    PubMed  Google Scholar 

  • Zelena J (1962) The effect of denervation on muscle development. In: Gutmann E (ed) The denervated muscle. Publishing House of the Czechoslovak Academy of Sciences, Prague, pp 103–126

    Google Scholar 

  • Zerial M, Melancon P, Schneider C, Garoff H (1986) The transmembrane segment of the human transferrin receptor functions as a signal peptide. EMBO J 5:1543–1550

    PubMed  Google Scholar 

  • Zerial M, Suomalainen M, Zanetti-Schneider M, Schneider C, Garoff H (1987) Phosphorylation of the human transferrin receptor by protein kinase C is not required for endocytosis and recycling in mouse 3T3 cells. EMBO J 6:2661–2667

    PubMed  Google Scholar 

  • Zschocke RH, Bezkorovainy A (1974) Structure and function of transferrins. II. Transferrin and iron metabolism. Arzneimittel-Forschung 24:726–773

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this chapter

Cite this chapter

Ozawa, E. (1989). Transferrin as a muscle trophic factor. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 113. Reviews of Physiology, Biochemistry and Pharmacology, vol 113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0032676

Download citation

  • DOI: https://doi.org/10.1007/BFb0032676

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50948-6

  • Online ISBN: 978-3-540-46123-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics