Skip to main content

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 93))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CNS:

Central nervous system

EPSP:

Excitatory postsynaptic potential

IPSP:

Inhibitory postsynaptic potential

IU:

International unit for tetanus antitoxin. The IU is equivalent to 0.03384 mg of the Second International Standard for Tetanus Antitoxin (Spaun and Lyng 1970)

L+:

The L+ (or L+1/10 etc.) defines an amount of toxin or

(L+1/10 etc.):

toxin derivative by its toxicity. The L+ (or L+1/10 etc.) is the lowest amount of toxin or derivative that, after incubation with 1 (or 1/10 etc.) international unit (IU) of antitoxin in a final volume of 0.5 ml for 1 h at 20°C and pH 7.5 and after subsequent intramuscular (i.m.) or subcutaneous (s.c.) injection into one mouse, becomes lethal to 50% of the injected mice within the next 4 days (Ipsen 1951; van Heyningen 1960; Barile et al. 1970; Bizzini et al. 1973b; Winsnes and Christiansen 1979)

Lf:

The Lf defines an amount of toxin or toxin derivative by its immunoreactivity in a flocculation assay. If different amounts of toxin (or of one of its immunoreactive derivatives) are mixed with a constant amount of 1 IU of tetanus antitoxin, the rapidity of flocculation runs through a maximum for a certain amount of toxin (or derivative). This amount of toxin (or derivative) is defined to contain 1 Lf unit. For practical purposes, the technique of Ramon (1922) is used. In this procedure the amount and concentration of antitoxin is held constant and the amount of toxin is varied (see also Dean and Webb 1926; Girard et al. 1965)

mepp:

Miniature end-plate potential

MLD:

The MLD defines an amount of toxin or toxin derivative by its toxicity. Unless special reference is made to the antimal species, the MLD refers to mice. Unfortunately, three different definitions have been used for the MLD. The MLD is the lowest amount of toxin or toxin derivative per mouse that, after injection [i.m., s.c., intraperitoneal (i.p.)]: 1. becomes lethal to 100% of the mice within the next 4 days (commonly used definition, example: Bizzini et al. 1973b) 2. becomes lethal to 50% of the mice within the next 4 days (example: Ipsen 1951) 3. becomes just not lethal to any of the mice (rarely and no longer used definition). The MLD according to 1. is about 1.4 times higher than the MLD according to 2., which in turn is about 1.7 times higher than the MLD according to 3. (van Heyningen and Mellanby 1971). The dose-response curve is very steep in a toxicity assay in mice (van Heyningen 1959b).

PAGE:

Polyacrylamide gel electrophoresis

SDmin :

The SDmin defines an amount of toxin by its toxicity. The SDmin is the dose of tetanus toxin per animal that can be given such that further increase of the dose does not decrease survival time (minimum saturation dose). The SDmin has been defined and used by Zacks and Sheff (1970). According to them, the SDmin in adult mice is about 4 × 104 times the MLD at 35°C

SDS:

Sodium dodecylsulfate

TSH:

Thyroid stimulating hormone

References

  • Abel JJ, Hampil B (1935) Researches on tetanus. IV. Some historical notes on tetanus and commentaries thereon. Johns Hopkins Hosp J 57:343–372

    Google Scholar 

  • Abel JJ, Evans EA Jr, Hampil B, Lee FC (1935a) Researches on tetanus. II. The toxin of bacillus tetani is not transported to the central nervous system by any component of the peripheral nerve trunk. Johns Hopkins Hosp J 56:81–114

    Google Scholar 

  • Abel JJ, Hampil B, Jonas AF Jr (1935b) Researches on tetanus. III. Further experiments to prove that tetanus toxin is not carried in peripheral nerve to the central nervous system. Johns Hopkins Hosp J 56:317–336

    Google Scholar 

  • Abel JJ, Firor WM, Chalina W (1938) Researches on tetanus. IX. Further evidence to show what tetanus toxin is not carried to central neurones by way of the axis cylinders of motor nerves. Johns Hopkins Hosp J 63:373–403

    Google Scholar 

  • Acheson GH, Ratnoff OD, Schoenbach EB (1942) The localized action on the spinal cord of intramuscularly injected tetanus toxin. J Exp Med 75:465–480

    Google Scholar 

  • Ackerman HW, Fredette TV, Vinet G (1978) Particules phagiques produites par clostridium tetani. Rev Can Biol 37:43–46

    Google Scholar 

  • Adams EB, Laurence DR, Smith JWG (1969) Tetanus. Blackwell, Oxford Edinburgh

    Google Scholar 

  • Ado AD, Burlakov GV, Sverdlov YuS (1966) Continuous inhibition of monosynaptic refractory discharges of motoneurons of flexors and deflexors in cats with local tetanus. Dokl Akad Nauk SSSR 167:478–481

    Google Scholar 

  • Aliev MN, Kryzhanovsky GN (1979) Experimental stereotypy induced by disturbance of GABA-ergic mechanisms in the caudate nuclei. Bull Exp Biol Med 87:315–318

    Google Scholar 

  • Ambache N, Lippold OCH (1949) Bradycardia of central origin produced by injections of tetanus toxin into the vagus nerve. J Physiol (Lond) 108:186–196

    Google Scholar 

  • Ambache N, Morgan RS, Wright GP (1948a) The action of tetanus toxin on the rabbit's iris. J Physiol (Lond) 107:45–53

    Google Scholar 

  • Ambache N, Morgan RS, Wright GP (1948b) The action of tetanus toxin on the acetylcholine and choline esterase content of the rabbit's iris. Br J Exp Path 29:408–418

    Google Scholar 

  • An der Lahn B, Habig WH, Hardegree MC, Chrambach A (1980) Heterogeneity of I-125-labeled tetanus toxin in isoelectric-focusing on polyacrylamide-gel and polyacrylamide-gel electrophoresis. Arch Bioch Biophys 200:206–215

    Google Scholar 

  • Barile MF, Hardegree MC, Pittman M (1970) Immunization against neonatal tetanus in New Guinea. 3. The toxin-neutralization test and the response of guinea pigs to the toxoids as used in the immunization schedules in New Guinea. Bull WHO 43:453–459

    Google Scholar 

  • Balyis JH, Mackintosh J, Morgan RS, Wright GP (1952) The effect of sclerosis of the nerve trunk on the aspect of tetanus toxin in the sciatic nerve of rabbits and on the development of local tetanus. J Pathol 64:33–45

    Google Scholar 

  • Benecke R, Takano K, Schmidt J, Henatsch H-D (1977) Tetanus toxin induced actions on spinal renshaw cells and Ia-inhibitory interneurons during development of local tetanus in the cat. Exp Brain Res 27:271–286

    Google Scholar 

  • Bernheimer AW, Heyningen WE van (1961) The relation between the tetanus toxinfixing and influenza virus-inhibiting properties of ganglioside. J Gen Microbiol 24:121–127

    Google Scholar 

  • Bigalke H, Habermann E (1980) Blockade by tetanus and botulinum A toxin of post-ganglionic cholinergic nerve endings in the myenteric plexus. Naunyn Schmiedebergs Arch Pharmacol 312:255–263

    Google Scholar 

  • Bigalke H, Dimpfel W, Habermann E (1978) Suppression of 3H-acetylcholine release from primary nerve cell cultures by tetanus and botulinum-A toxin. Naunyn Schmiedebergs Arch Pharmacol 303:133–138

    Google Scholar 

  • Bigalke H, Ahnert-Hilger G, Habermann E (1981a) Tetanus toxin and botulinum A toxin inhibit acetylcholine release from but not calcium uptake into brain tissue. Naunyn Schmiedebergs Arch Pharmacol 316:143–148

    Google Scholar 

  • Bigalke H, Heller I, Bizzini B, Habermann E (1981b) Tetanus toxin and botulinum A toxin inhibit release and uptake of various transmitters, as studied by particular preparations from rat brain and spinal cord. Naunyn Schmiedebergs Arch Pharmacol 316:244–251

    Google Scholar 

  • Bizzini B (1976) Tetanus structure as a basis for elucidating its immunological and neuropharmacological activities, the specificity and action of animal, bacterial and plant toxins. In: Cuatrecasas P (ed) Receptors and recognition, Series B, vol 1. Chapman and Hall, London, pp 177–218

    Google Scholar 

  • Bizzini B (1978) Properties of the binding to gangliosides and synaptosomes of a fragment of the tetanus toxin molecule. Toxicon (Suppl) 1:961–969

    Google Scholar 

  • Bizzini B (1979) Tetanus toxin. Microbiol Rev 43:224–240

    Google Scholar 

  • Bizzini B, Raynaud M (1974a) Etude immunologique et biologique de sous-unités de la toxin tétanique. CR Acad Sc (D) (Paris) 279:1809–1812

    Google Scholar 

  • Bizzini B, Raynaud M (1974b) La détoxication des toxines protéiques par le formol: mécanismes supposés et nouveaux développments. Biochimie 56:297–303

    Google Scholar 

  • Bizzini B, Raynaud M (1975a) Studies on the antigenic structure of tetanus toxin. Ann Immunol (Paris) 126C:159–176

    Google Scholar 

  • Bizzini B, Raynaud M (1975b) Activité biologique et immunologique des fragments de la toxin tétanique. In: Fondation Mérieux (ed) Proceedings of the fourth international conference on tetanus, Dakar/Senegal. Lyon, pp 631–637

    Google Scholar 

  • Bizzini B, Turpin A, Raynaud M (1969) Production et purification de la toxine tétanique. Ann Inst Pasteur 116:686–712

    Google Scholar 

  • Bizzini B, Blass J, Turpin A, Raynaud M (1970) Chemical characterization of tetanus toxin and toxoid. Amino acid composition, number of SH and S-S groups and N-terminal amino acid. Eur J Biochem 17:100–105

    Google Scholar 

  • Bizzini B, Turpin A, Raynaud M (1971) Pouvoir immunogène d'anatoxines tétanique de divers degrés de pureté et de polymérisation. Ann Inst Pasteur 120:791–799

    Google Scholar 

  • Bizzini B, Turpin A, Raynaud M (1973a) On the structure of tetanus toxin. Naunyn Schmiedebergs Arch Pharmacol 276:271–288

    Google Scholar 

  • Bizzini B, Turpin A, Raynaud M (1973b) Immunochemistry of tetanus toxin. The nitration of tyrosyl residues in tetanus toxin. Eur J Biochem 39:171–181

    Google Scholar 

  • Bizzini B, Turpin A, Raynaud M (1974) Immunochimie et mecanisme d'action de la toxine tétanique. Bull Inst Pasteur 72:177–219

    Google Scholar 

  • Bizzini B, Turpin A, Carroger G, Raynaud M (1975) Immunochemistry of tetanus toxin, effects of the modification of lysyl residues of tetanus toxin on its toxic and immunological activities. In: Fondation Mérieux (ed) Proceedings of the fourth international conference on tetanus, Dakar/Senegal. Lyon, pp 145–158

    Google Scholar 

  • Bizzini B, Stoeckel K, Schwab M (1977) An antigenic polypeptide fragment isolated from tetanus toxin: chemical characterization, binding to gangliosides and retrograde axonal transport in various neuron systems. J Neurochem 28:529–542

    Google Scholar 

  • Bizzini B, Grob P, Glicksman MA, Akert K (1980a) Use of the B-IIb tetanus toxin derived fragment as a specific neuropharmacological transport agent. Brain Res 193:221–227

    Google Scholar 

  • Bizzini B, Akert K, Glicksman M, Grob P (1980b) Preparation of conjugates using two tetanus toxin derived fragments: their binding to gangliosides and isolated synaptic membranes and their immunological properties. Toxicon 18:561–572

    Google Scholar 

  • Bizzini B, Grob DK, Akert K (1981) Papain-derived fragment IIc of tetanus toxin: its binding to isolated synaptic membranes and retrograde axonal transport. Brain Res 210:291–299

    Google Scholar 

  • Bolton AE, Hunter WM (1973) The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acetylating agent. Biochem J 133:529–539

    Google Scholar 

  • Bondarchuk NG (1973) Binding of tetanus toxin by muscle sarcosomes in the presence of antitoxins. Bull Exp Biol Med 76:1341–1343

    Google Scholar 

  • Bondarchuk NG, Kirilenko OA, Kryzhanovsky GN, Rozanov AYa (1971) Protagon binding of tetanus toxin neutralized by antitoxin. Bull Exp Biol Med 10:71–74

    Google Scholar 

  • Bondarchuk NG, Kryzhanovsky GN, Rozanov AYa (1973) Effect of antitoxin on tetanus toxin fixation by subcellular structures of the brain. Bull Exp Biol Med 75:39–41

    Google Scholar 

  • Breton M, Petit G (1908) Passage de la toxine et de l'antitoxine tétanique à travers du gros intestin. CR Soc Biol (Paris) 64:160

    Google Scholar 

  • Brieger L, Cohn G (1893) Untersuchungen über das Tetanusgift. Z Hyg Infektionskrankh 15:1–10

    Google Scholar 

  • Brooks VB, Asanuma H (1962) Action of the tetanus toxin in the cerebral cortex. Science 137:674–676

    Google Scholar 

  • Brooks VB, Curtis DR, Eccles JC (1955) Mode of action of tetanus toxin. Nature 175:120–121

    Google Scholar 

  • Brooks VB, Curtis DR, Eccles JC (1957) The action of tetanus toxin on the inhibition of motoneurones. J Physiol 135:655–672

    Google Scholar 

  • Bruschettini A (1892) Sulla diffusione del veleno del tetano nell'organismo. Riforma Med 8:256–259, 270–273

    Google Scholar 

  • Carrea R, Lanari A (1962) Chronic effect of tetanus toxin applied locally to the cerebral cortex of the dog. Science 137:342–343

    Google Scholar 

  • Carroll PT, Price DL, Griffin JW, Morris J (1978) Tetanus toxin: immunocytochemical evidence for retrograde transport. Neurosci Lett 8:335–339

    Google Scholar 

  • Choudhury RP, Chatterjee SMR, Narayanaswami A (1972) Site of action of tetanus toxin in the central nervous system — subcellular site of binding of tetanus toxin in the cerebrum. Indian J Med Res 60:1175–1180

    Google Scholar 

  • Clowes AW, Cherry RJ, Chapman D (1972) Physical effects of tetanus toxin on model membranes containing ganglioside. J Molec Biol 67:49–57

    Google Scholar 

  • Collingridge GL, Collins GGS, Davies J, James TA, Neal MJ, Tongroach P (1980) Effect of tetanus toxin on transmitter release from the substantia nigra and striatum in vitro. J Neurochem 34:540–547

    Google Scholar 

  • Craven CJ, Dawson DJ (1973) The chain composition of tetanus toxin. BBA 317:277–285

    Google Scholar 

  • Curtis DR (1959) Pharmacological investigations upon inhibition of spinal motoneurones. J Physiol 145:175–192

    Google Scholar 

  • Curtis DR (1971) Tetanus toxin as a neuropharmacological tool. In: Simpson LL (ed) Neuropoisons — their pathophysiological actions, vol I. Plenum Press, New York London, pp 263–282

    Google Scholar 

  • Curtis DR, Groat WC de (1968) Tetanus toxin and spinal inhibition. Brain Res 10:208–212

    Google Scholar 

  • Curtis DR, Felix D, Game CJA, McCulloch RM (1973) Tetanus toxin and the synaptic release of GABA. Brain Res 51:358–362

    Google Scholar 

  • Curtis DR, Game CJA, Lodge D, McCulloch RM (1976) A pharmacological study of Renshaw cell inhibition. J Physiol 258:227–242

    Google Scholar 

  • Daguillard R, Fontaine L, Parent C, Lacoste R (1975) Etudes in vivo et in vitro de le réponse immunologique a l'anatoxine tétanique. In: Fondation Mérieux (ed) Proceedings of the fourth international conference on tetanus, Dakar/Senegal. Lyon, pp 627–530

    Google Scholar 

  • D'Antona D (1949) La propagation de la toxine tétanique par la voie nerveuse démontrée par la résection des nerfs chez les animaux en état d'immunité. Rev Immunol 13:128–141

    Google Scholar 

  • D'Antona D (1951) Le tétanos: synthèse théorique et practique de nos principales connaissances. Rev Immunol 15:93–157

    Google Scholar 

  • Danysz J (1899) Contribution a l'étude de l'action de la toxine tétanique sur la substance nerveuse. Ann Inst Pasteur 13:156–168

    Google Scholar 

  • Dasgupta BR, Sugiyama H (1977) Biochemistry and pharmacology of botulinum and tetanus neurotoxins. In: Bernheimer AW (ed) Perspectives in toxicology. Wiley, Chichester, pp 87–119

    Google Scholar 

  • Davies J, Tongroach P (1979) Tetanus toxin and synaptic inhibition in the substantia nigra and striatum of the rat. J Physiol 290:23–26

    Google Scholar 

  • Davies JR, Morgan RS, Wright EA, Wright GP (1954) Effect of local tetanus intoxication on the hind limb reflexes of the rabbit. Arch Int Physiol 62:248–263

    Google Scholar 

  • Dawson DJ (1975) The properties of sulfite-treated tetanus toxin. Febs Lett 56:175–178

    Google Scholar 

  • Dawson DJ, Mauritzen CM (1967) Studies on tetanus toxin and toxoid. I. Isolation of the tetanus toxin using DEAE cellulose. Aust J Biol Sci 20:253–263

    Google Scholar 

  • Dawson DJ, Mauritzen CM (1969) Studies on tetanus toxin and toxoid. IV. Interaction of formaldehyde with tetanus toxin. Aust J Biol Sci 22:1217–1227

    Google Scholar 

  • Dawson DJ, Nichol LW (1969) Studies on tetanus toxin and toxoid. III. Sedimentation of toxin and derivatives obtained by sulphite and aldehyde treatments. Aust J Biol Sci 22:247–255

    Google Scholar 

  • Dean HR, Webb RA (1926) The influence of optimal proportions of antigen and antibody in the serum precipitation reaction. J Pathol 29:473–492

    Google Scholar 

  • Diamond J, Mellanby J (1971) The effect of tetanus toxin the goldfish. J Physiol 215:727–741

    Google Scholar 

  • Dimpfel W (1979) Hyperexcitability of cultured central nervous system neurons caused by tetanus toxin. Exp Neurol 65:53–65

    Google Scholar 

  • Dimpfel W, Habermann E (1973) Histoautoradiographic localization of 125I-labeled tetanus toxin in rat spinal cord. Naunyn Schmiedebergs Arch Pharmacol 280:177–182

    Google Scholar 

  • Dimpfel W, Habermann E (1977) Binding characteristics of 125I-labeled tetanus toxin to primary tissue cultures from mouse embryonic CNS. J Neurochem 29:1111–1120

    Google Scholar 

  • Dimpfel W, Huang RTC, Habermann E (1977) Gangliosides in nervous tissue cultures and binding of 125I-labeled tetanus toxin, a neuronal marker. J Neurochem 29:329–334

    Google Scholar 

  • Dimpfel W, Neale JH, Habermann E (1975) 125I-labeled tetanus toxin as a neuronal marker in tissue cultures derived from embryonic CNS. Naunyn Schmiedebergs Arch Pharmacol 290:329–333

    Google Scholar 

  • Dixon FJ, McConahey PJ (1966) A method of trace iodination of proteins for immunologic studies. Int Arch Allergy Appl Immunol 29:185–189

    Google Scholar 

  • Doerr R, Seidenberg S, Magrassi Fl (1936) Kritische und experimentelle Studien zur Frage des Nachweises von Tetanustoxin in peripheren Nerven. Z Hygiene 118:92–116

    Google Scholar 

  • Duchen LW (1973a) The effects of tetanus toxin on the motor end-plates of the mouse — an electron microscopic study. J Neurol Sci 19:153–167

    Google Scholar 

  • Duchen LW (1973b) The local effects of tetanus toxin on the electron microscopic structure of skeletal muscle fibres of the mouse. J Neurol Sci 19:169–177

    Google Scholar 

  • Duchen LW, Tonge DA (1973) The effects of tetanus toxin on neuromuscular transmission and on the morphology of motor end-plate in slow and fast skeletal muscle of the mouse. J Physiol 228:157–172

    Google Scholar 

  • Dumas M, Schwab ME, Baumann R, Thoenen H (1979) Retrograde transport of tetanus toxin through a chain of 2 neurons. Brain Res 165:354–357

    Google Scholar 

  • Eisen HN (1973) Immunology. In: Davis BD, Dulbecco R, Eisen HN, Ginsberg HS, Wood WB (eds) Microbiology, 2nd edn. Harper & Row, Hagerstown/MD, pp 349–624

    Google Scholar 

  • Eisenbarth GS, Shimizu K, Bowring MA, Wells S (1981) Receptors for tetanus toxin and monoclonal antibody A2B5 on human islet cells and endocrine tumors. Clin Res 29:404A

    Google Scholar 

  • Erdmann G, Habermann E (1977) Histoautoradiography of central nervous system in rats with generalized tetanus due to 125I-toxin. Naunyn Schmiedebergs Arch Pharmacol 301:135–138

    Google Scholar 

  • Erdmann G, Wiegand H, Wellhöner HH (1975) Intraaxonal and extraaxonal transport of 125I-tetanus toxin in early local tetanus. Naunyn-Schmiedebergs Arch Pharmacol 290:357–373

    Google Scholar 

  • Erdmann G, Hanauske A, Wellhöner HH (1981) Intraspinal distribution and reaction in the grey matter with tetanus toxin of intracisternally injected anti-tetanus toxoid F(ab)2 fragments. Brain Res 211:367–377

    Google Scholar 

  • Erzina GA, Sverdlov YuS (1975) Electronic dorsal-root potentials of the frog spinal cord in experimental tetanus. Bull Exp Biol Med 80:740–742

    Google Scholar 

  • Fedinec AA (1962a) Transport of tetanus toxin across the rabbit placenta and fetal membranes. J Lab Clin Med 60:606–611

    Google Scholar 

  • Fedinec AA (1962b) Localization of tetanus toxin with fluorescent antibody technique. Anat Rec 142:304

    Google Scholar 

  • Fedinec AA (1962c) Absorption of tetanus toxin by the gut of the newborn rat. Anat Rec 142:231

    Google Scholar 

  • Fedinec AA (1967) Absorption and distribution of tetanus toxin in experimental animals. In: Eckmann L (ed) Principles on tetanus. Huber, Bern, pp 169–176

    Google Scholar 

  • Fedinec AA (1973) Antitoxin's effect on tetanus toxin-induced sphincter pupillae paralysis in the rabbit. Naunyn Schmiedebergs Arch Exp Path Pharmacol 276:311–320

    Google Scholar 

  • Fedinec AA, King LE Jr (1969) Glycine's reversal of tetanus toxin induced mydriasis in rabbits' eyes. Physiologist 12:221

    Google Scholar 

  • Fedinec AA, Matzke HA (1959) The relationship of toxin and antitoxin injection site to tetanus development in the rat. J Exp Med 110:1023–1040

    Google Scholar 

  • Fedinec AA, Shank RP (1971) Effect of tetanus toxin on the content of glycine, gamma-amino-butyric acid, glutamate, glutamine and asparate in the rat spinal cord. J Neurochem 18:2229–2234

    Google Scholar 

  • Fermi C, Celli F (1892) Beitrag zur Kenntnis des Tetanusgiftes. Zbl Bakt 12:617–619

    Google Scholar 

  • Fildes P (1925) Tetanus: agglutination and toxicity of B. tetani. Br J Exp Path 6:91–98

    Google Scholar 

  • Fildes P (1927) Tetanus: non-toxic variants of B. tetani. Br J Exp Path 8:219–226

    Google Scholar 

  • Fildes P, Bulloch W, O'Brien RA, Glenny AT (1929) Bacillus tetani. In: Fildes P (ed) A system of bacteriology in relation to medicine, vol 3, chap X. H M Stationary Office, London, pp 298–372

    Google Scholar 

  • Francois C (1970) Tetanus toxin and muscle relaxation. Toxicon 8:247–248

    Google Scholar 

  • Friedeman U, Hollander A, Tarlov IM (1941) Investigations on the pathogenesis of tetanus III. J Immunol 40:325–364

    Google Scholar 

  • Fulthorphe AJ (1956) Adsorption of tetanus toxin by brain tissue. J Hygiene 54:315–327

    Google Scholar 

  • Gardner DP, Fedinec AA (1975) Localization of tetanus toxin in the rat sciatic nerve. In: Fondation Mérieux (ed) Proceedings of the fourth international conference on tetanus, Dakar/Senegal. Lyon, pp 163–169

    Google Scholar 

  • Geinisman YuYa, Kryzhanovsky GN, Polgar AA (1966) Level of activity of motor neurons of the spinal cord and changes in RNA concentration in their cytoplasm in local tetanus. Bull Exp Biol Med 61:370–374 (engl transl)

    Google Scholar 

  • Geinisman YuYa, D'yakanova VN, Kryzhanovsky GN (1967) Effect of tetanus on morphological and functional state of synapses on spinal motoneurons. Bull Exp Med 64:1203–1206 (engl transl)

    Google Scholar 

  • Giessen M van der, Groeneboer-Kempers O (1976) The subclasses of human IgG antibodies against tetanus toxoid. Clin Exp Immunol 25:117–121

    Google Scholar 

  • Girard O, Nicol L, Turpin A (1965) Les floculations contrôlées. Ann Inst Pasteur 109:151–154

    Google Scholar 

  • Green J, Erdmann G, Wellhöner HH (1977) Is there retrograde axonal transport of tetanus toxin in both α and γ-fibres? Nature 265:370

    Google Scholar 

  • Green JM, Erdmann G, Wellhöner HH (1978) Distribution of 125I-tetanus toxin in goldfish, (abstr). Fifth international Conference on tetanus, Ronneby/Sweden, p 50

    Google Scholar 

  • Greenwood FC, Hunter WM, Glover JS (1963) The preparation of 131I-labelled human growth hormone of high specific radioactivity. Biochem J 89:114–123

    Google Scholar 

  • Gushchin IS, Kozhechkin SN, Sverdlov YuS (1969a) Presynaptic nature of depression by tetanus toxin of postsynaptic inhibition. Dokl Biol Sci Proc Nat Acad Sci 187:604–606

    Google Scholar 

  • Gushchin IS, Kozhechkin SN, Sverdlov YuS (1969b) On the presynaptic nature of the suppression of postsynaptic inhibition by tetanic toxin. Dokl Biol Sci Proc Nat Acad Sci 187:685–688

    Google Scholar 

  • Gushchin IS, Kozhechkin SN, Sverdlov YuS (1970) Hyperpolarizing action of glycine on motoneurons blocked by tetanus toxin. Bull Exp Biol Med 70:874–876

    Google Scholar 

  • Habermann E (1970) Pharmakokinetische Besonderheiten des Tetanustoxins und ihre Beziehung zur Pathogenese des lokalen bzw. generalisierten Tetanus. Naunyn Schmiedebergs Arch Pharmacol 267:1–19

    Google Scholar 

  • Habermann E (1972) Distribution of 125I-tetanus toxin and 125I-toxoid in rats with local tetanus, as influenced by antitoxin. Naunyn Schmiedebergs Arch Pharmacol 272:85–88

    Google Scholar 

  • Habermann E (1973a) Discrimination between binding to CNS, toxicity and immunereactivity of derivatives of tetanus toxin. Med Microbiol Immunol 159:89–100

    Google Scholar 

  • Habermann E (1973b) Interaction of labelled tetanus toxin and toxoid with substructures of rat brain and spinal cord in vitro. Naunyn Schmiedebergs Arch Pharmacol 276:341–359

    Google Scholar 

  • Habermann E (1976) Affinity chromatography of tetanus toxin, tetanus toxoid, and botulinum A toxin on synaptosomes, and differentiation of their acceptors. Naunyn Schmiedebergs Arch Pharmacol 293:1–9

    Google Scholar 

  • Habermann E (1978) Tetanus. In: Vinken PJ, Bruyn GW (eds) Infections of the nervous system, part I. North Holland Publ, Amsterdam (Handbook of clinical neurology, vol 33, pp 491–547)

    Google Scholar 

  • Habermann E, Dimpfel W (1973) Distribution of 125I-tetanus toxin and 125I-toxoid in rats with generalized tetanus, as influenced by antitoxin. Naunyn Schmiedebergs Arch Pharmacol 176:327–340

    Google Scholar 

  • Habermann E, Erdmann G (1978) Pharmacokinetic and histoautoradiographic evidence for the intraaxonal movement of toxin in the pathogenesis of tetanus. Toxicon 16:611–623

    Google Scholar 

  • Habermann E, Dimpfel W, Räker KO (1973) Interaction of labelled tetanus toxin with substructures of rat spinal cord in vivo. Naunyn Schmiedebergs Arch Pharmacol 276:361–374

    Google Scholar 

  • Habermann E, Wellhöner HH, Räker KO (1977) Metabolic fate of 125I-tetanus toxin in the spinal cord of rats and cats with early local tetanus. Naunyn Schmiedebergs Arch Pharmacol 299:187–196

    Google Scholar 

  • Habermann E, Dreyer F, Bigalke H (1980) Tetanus toxin blocks the neuromuscular transmission in vitro like botulinum A toxin. Naunyn Schmiedebergs Arch Pharmacol 311:33–40

    Google Scholar 

  • Habermann E, Bigalke H, Heller I (1981) Inhibition of synaptosomal choline uptake by tetanus and botulinum A toxin. Partial dissociation of fixation and effect of tetanus toxin. Naunyn Schmiedebergs Arch Pharmacol 316:135–142

    Google Scholar 

  • Hanson M, Tonge D, Edström A (1975) Tetanus toxin and axonal transport. Brain Res 100:462–466

    Google Scholar 

  • Hara T, Matsuda M, Yoneda M (1977) Isolation and some properties of non toxigenic derivatives of a strain of clostridium tetani. Biken J 20:105–115

    Google Scholar 

  • Hardegree MC, Wannamaker LW (1965) An electrophoretic study of the neurotoxin(s) of nine strains of clostridium tetani. Proc Soc Exp Biol Med 118:692–696

    Google Scholar 

  • Hardegree C, Baer H, London W, Hooton M, Fornwald R (1978) Induction of tetanus specific IgE: a monkey model (abstr). Fifth international conference on tetanus, Ronneby/Sweden, p 18

    Google Scholar 

  • Helting TB, Nau HH (1978) Protection against tetanus toxin by active immunization with toxin fragments (abstr). Fifth international conference on tetanus, Ronneby/Sweden, p 21

    Google Scholar 

  • Helting TB, Zwisler O (1974) Enzymatic breakdown of tetanus toxin. Biochem Biophys Res Commun 57:1263–1270

    Google Scholar 

  • Helting TB, Zwisler O (1975) Structure of tetanus toxin. Immunological distinction between polypeptide fragments. In: Fondation Mérieux (1975) Proceedings of the fourth international conference on tetanus, Dakar/Senegal. Lyon, pp 639–646

    Google Scholar 

  • Helting TB, Zwisler O (1977) Structure of tetanus toxin. I. Breakdown of the toxin molecule and discrimination between polypeptide fragments. J Biol Chem 252:187–193

    Google Scholar 

  • Helting TB, Zwisler O, Wiegandt H (1977) Structure of tetanus toxin. II. Toxin binding to ganglioside. J Biol Chem 252:194–198

    Google Scholar 

  • Helting TB, Ronneberger HJ, Vollerthun R, Neubauer V (1978) Toxicity of papaindigested tetanus toxin, pathological effect of fragment B in the absence of spastic paralysis. J Biol Chem 253:125–129

    Google Scholar 

  • Helting TB, Parschat S, Engelhard H (1979) Structure of tetanus toxin — demonstration and separation of a specific enzyme converting intracellular tetanus toxin to the extracellular form. J Biol Chem 254:10728–10733

    Google Scholar 

  • Hensel B, Seib UC, Wellhöner HH (1973) Vagal ascent and distribution of 125tetanus toxin after injection into the anterior wall of the stomach. Naunyn Schmiedebergs Arch Pharmacol 276:395–402

    Google Scholar 

  • Hernandez R, Just M, Bürgin-Wolff A (1973) Immunoglobulin classes of human antitoxin after tetanus vaccination studied by immunofluorescence with agarose bound tetanus toxoid. Z Immunitaetsforsch Immunobiol 145:376–384

    Google Scholar 

  • Heyningen S van (1976) Binding of ganglioside by the chains of tetanus toxin. FEBS Lett 68:5–7

    Google Scholar 

  • Heyningen WE van (1958) Identity of the tetanus toxin receptor nervous tissue. Nature 182:1809

    Google Scholar 

  • Heyningen WE van (1959a) The fixation of tetanus toxin by nervous tissue. J Gen Microbiol 20:291–300

    Google Scholar 

  • Heyningen WE van (1959b) Chemical assay of the tetanus toxin receptor in nervous tissue. J Gen Microbiol 20:301–309

    Google Scholar 

  • Heyningen WE van (1959c) Tentative identification of the tetanus toxin receptor in nervous tissue. J Gen Microbiol 20:310–320

    Google Scholar 

  • Heyningen WE van (1960) The assay of bacterial toxins. In: Lang K, Lehnartz E (eds) Handbook Physiol Pathol-Chem Anal, 10 edn, vol IV. Springer, Berlin Göttingen Heidelberg, pp 785–800

    Google Scholar 

  • Heyningen WE van (1963) The fixation of tetanus toxin, serotonin and other substances by ganglioside. J Gen Microbiol 31:375–389

    Google Scholar 

  • Heyningen WE van, Mellanby J (1968) The effects of cerebrosides and other lipids on the fixation of tetanus toxin by ganglioside. J Gen Microbiol 52:447–454

    Google Scholar 

  • Heyningen WE van, Mellanby JH van (1971) Tetanus toxin. In: Kadis S, Montie TC, Ajl SJ (eds) Microbial toxins II. Academic Press, New York London, pp 69–108

    Google Scholar 

  • Heyningen WE van, Miller PA (1961) The fixation of the tetanus toxin by ganglioside. J Gen Microbiol 24:107–119

    Google Scholar 

  • Hilbig G, Räker KO, Wellhöner HH (1979) Local tetanus in rats; concentration of amino acids as studied in spinal cord segments, spinal roots, and dorsal root ganglia. Naunyn Schmiedebergs Arch Pharmacol 307:287–290

    Google Scholar 

  • Hofmann WW, Feigen GA (1977) Attenuation of local tetanus by treatment of ipsilateral sciatic nerve with colchicin. Exp Neurol 54:77–90

    Google Scholar 

  • Holmes MJ, Ryan WL (1971) Amino acid analysis and molecular weight determination of tetanus toxin. Infect Immun 3:133–140

    Google Scholar 

  • Holmgren J, Elwing H, Fredman P, Svennerholm L (1980) Polystyrene-adsorbed gangliosides for investigation of the structure of the tetanus toxin receptor. Eur J Biochem 106:371–379

    Google Scholar 

  • Huck S (1978) General tetanus in rabbits: changes in the electrical activity of the cerebellar and cerebral cortex before and after immobilization. Period Biol 80:119–122

    Google Scholar 

  • Huck S, Gogolak G, Stumpf Ch (1976) Rhythmic cerebellar and cortical electric activity in tetanus intoxicated rabbits. Experientia 32:200–201

    Google Scholar 

  • Huck S, Kirchner F, Takano K (1977) Tetanus intoxication in rabbits: propagation of a supraspinal rhythm into the spinal cord. Pfluegers Arch (Suppl) 368:R36

    Google Scholar 

  • Illis LS, Mitchell J (1970) The effect of tetanus toxin on boutons terminaux. Brain Res 18:283–295

    Google Scholar 

  • Ipsen J (1951) The effect of environmental temperature on the reaction of mice to tetanus toxin. J Immunol 66:687–694

    Google Scholar 

  • James TA, Collingridge GL (1979) Rapid behavioral and biochemical effects of tetanus toxin microinjected into the substantia nigra: a dual role for GABA? Neurosci Lett 11:205–208

    Google Scholar 

  • Johnston GAR, Groat WC de, Curtis DR (1969) Tetanus toxin and amino acid levels in cat spinal cord. J Neurochem 16:797–800

    Google Scholar 

  • Kaeser HE, Saner A (1969) Tetanus toxin, a neuromuscular blocking agent. Nature 223:842

    Google Scholar 

  • Kano M, Ishikawa K (1972) Effect of tetanus toxin on the inhibitory neuromuscular junction of crayfish muscle. Exp Neurol 37:550–561

    Google Scholar 

  • Kassil GN, Kryzhanovsky GN, Matlina ESh, Pukhova GS, Grafova VN (1972) Metabolism of catecholamines in algesic tetanus. Proc Dokl Acad Sci USSR Biol Sci Sect 204:355–358

    Google Scholar 

  • Katzitadse VA (1957a) The results of injecting tetanus toxin into the vagus nerve. J Microbiol Epidemiol Immunobiol 28:848–852 (engl transl)

    Google Scholar 

  • Katzitadse VA (1957b) The course of experimental tetanus after the injection of tetanus toxin into organs by the cranial nerves. J Microbiol Epidemiol Immunobiol 28:1003–1007 (engl transl)

    Google Scholar 

  • Katzitadze VA (1957c) The characteristic features of the course of tetanus induced experimentally by inserting tetanus toxin into various parts of the brain. J Microbiol Epidemiol Immunobiol 28:1183–1187 (engl transl)

    Google Scholar 

  • Keilty SR, Gray RC, Dundee JW, McCullough H (1968) Catecholamine levels in severe tetanus. Lancet II:195

    Google Scholar 

  • Kerr J (1979) Current topics in tetanus. Intensive Care Med 5:105–110

    Google Scholar 

  • King LE, Fedinec AA (1973) Distribution of tetanus toxin in rat peripheral nerve trunks during the development of local tetanus. Acta Neuropathol 24:244–255

    Google Scholar 

  • King LE, Fedinec AA (1974) Pathogenesis of local tetanus in rats: neural ascent of tetanus toxin. Naunyn Schmiedebergs Arch Pharmacol 281:391–402

    Google Scholar 

  • King LE, Fedinec AA, Latham WC (1978) Effects of cyclic nucleotides on tetanus toxin paralyzed rabbit sphincter pupillae muscles. Toxicon 16:625–631

    Google Scholar 

  • Kirilenko OA, Minervin SM, Rozanov AYa (1965) Fate of labeled tetanus toxin in animal body. Fed Proc (trans suppl) 24:T921–T924

    Google Scholar 

  • Kitasato S (1891) Experimentelle Untersuchungen über das Tetanusgift. Z Hyg Infektkr 10:267–305

    Google Scholar 

  • Klinke R, Galley N, Pause M, Storch W-H (1973) Tetanus toxin blocks the efferent endings in the cochlea. Brain Res 49:447–450

    Google Scholar 

  • Konnikov BA, Rekhtman MB (1979) Neuropathological effects of injection of tetanus toxin into certain structures of the rat brain. Bull Exp Biol Med 87:98–101 (engl transl)

    Google Scholar 

  • Kozhechkin SN (1969) Order of disappearance of various types of postsynaptic inhibition in experimental tetanus. Bull Exp Biol Med 67:376–379 (engl transl)

    Google Scholar 

  • Kretschmar H, Kirchner F, Takano K (1980) Relations between the effect of tetanus toxin on the neuromuscular transmission and histological functional properties of various muscles of the rat. Exp Brain Res 38:181–187

    Google Scholar 

  • Kryzhanovsky GN (1958) Central nervous changes in experimental tetanus and the mode of action of the tetanus toxin. Communication I. Irradiation of the excitation on stimulating the tetanized limb. Bull Exp Biol Med 44:1456–1464 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN (1959) Central nervous changes in experimental tetanus and the mode of action of the tetanus toxin. Communication II. The part played by spinal mechanisms. Bull Exp Biol Med 48:1346–1350 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN (1960) Functional changes in the central nervous system in tetanus and the mode of action of tetanus toxin. III. The central and peripheral action of the tetanus toxin. Bull Exp Biol Med 49:34–39 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN (1966) Tetanus. State Publishing House “Medicine”, Moscow

    Google Scholar 

  • Kryzhanovsky GN (1967) The neural pathway of toxin. In: Eckmann L (ed) Principles on tetanus. Huber, Bern, pp 155–168

    Google Scholar 

  • Kryzhanovsky GN (1973) The mechanism of action of tetanus toxin: effect on synaptic processes and some particular features of toxin binding by the nervous tissue. Naunyn Schmiedebergs Arch Pharmacol 276:247–270

    Google Scholar 

  • Kryzhanovsky GN (1975a) Present data on the pathogenesis of tetanus. Prog Drug Res 19:301–313

    Google Scholar 

  • Kryzhanovsky GN (1975b) Tetanus: General and pathophysiological aspects: achievements, failures, perspectives of elaboration of the problem. Prog Drug Res 19: 314–322

    Google Scholar 

  • Kryzhanovsky GN, Aliev MN (1976) Creation of hyperactive determinant dispatch stations in the caudate nucleus in experimental neuropathological syndromes caused by tetanus toxin. Bull Exp Biol 81:477–479 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, D'yakonova MV (1964) Changes in the efferent pathway of the spinal cord in tetanus poisoning. Bull Exp Biol Med 58:1021–1025 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Igon'kina SI (1970) Experimental pain and itch syndromes of thalamic origin. Bull Exp Biol Med 81:804–806 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Kasymov AKh (1964) Action of tetanus toxin on neuromuscular transmission. Bull Exp Biol Med 58:1199–1203 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Lutsenko VK (1969a) Dorsal root potentials of the spinal cord in rats with convulsions due to ascending tetanus. Bull Exp Biol Med 67:113–115 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Lutsenko VK (1969b) Analysis of the composition of the wave of the dorsal surface potentials of the spinal cord in rats with ascending tetanus and a paroxysmal syndrome. Bull Exp Biol Med 67:371–375 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Sakharova OP (1972) The effect of neuraminidase on the protagontetanus toxin complex. Byull Eksp Biol Med 73:36–38 (russ)

    Google Scholar 

  • Kryzhanovsky GN, Sheikhon FD (1968) Inhibitory and facilitatory effects from the medulla in experimental local tetanus. Bull Exp Biol Med 66:1185–1189 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Sheikhon FD (1973) Descending suprasinal effects in tetanus intoxication of the spinal cord. Experimental Neurol 38:110–122

    Google Scholar 

  • Kryzhanovsky GN, Pevnitskii LA, Grafova VN, Polgar AA (1961a) Routes of tetanus toxin entrance into the central nervous system and some problems in the pathogenesis of experimental tetanus. I. Experiments on albino rats. Bull Exp Biol Med 51:298–304 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Pevnitskii LA, Grafova VN, Polgar AA (1961b) Routes of entrance of tetanus toxin into the central nervous system and some problems connected with the pathogenesis of experimental tetanus. II. Experiments on mice, guinea pigs, rabbits and cats. Bull Exp Biol Med 52:894–898 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Pevnitskii LA, Grafova VN, Polgar AA (1961c) Routes of tetanus toxin entrance into the central nervous system and some problems of experimental tetanus pathogenesis. III. Experiments on monkeys and dogs. Bull Exp Biol Med 52:1256–1262 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Pevnitskii LA, Grafova VN, Polgar AA (1961d) Routes of entrance of tetanus toxin into the central nervous system and certain questions in the pathogenesis of experimental tetanus. IV. On the pathogensis of ascending and descending tetanus. Bull Exp Biol Med 52:1370–1377 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Alexeev LP, Rozanova AYa (1970) Antitoxin neutralization of tetanus toxin bond with the cerebral substance. Byull Eksp Biol Med (russ) 70:63–65

    Google Scholar 

  • Kryzhanovsky GN, Kassil GN, Grafova VN, Pukhova GS (1971a) The state of catecholamine metabolism in tetanus. Bull Exp Biol Med 72:870–873 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Pozdynakov OM, D'yakonova MV, Polgar AA, Smirnova VS (1971b) Disturbance of neurosecretion in myoneural junctions of muscle poisoned with tetanus toxin. Bull Exp Biol Med 72:1387–1391 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Esipova JK, Kranchev AK (1973a) Microcirculatory changes in the lungs in experimental tetanus. Bull Exp Biol Med 75:79–83 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Kurchavyi GG, Sheikhon FD (1973b) Supraspinal effects on motoneurons in local tetanus. Bull Exp Biol Med 75:387–390 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Grafova VN, Tumanov VP, Vtyurin BV (1973c) Ultrastructural changes in the spinal cord produced by tetanus toxin. Bull Exp Biol Med 75:578–583 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Sheikhon FD, Igon'kina SI (1973d) Time course of descending inhibition of monosynaptic and polysynaptic reflexes in local tetanus. Bull Exp Biol Med 76:1285–1288 (engl transl)

    Google Scholar 

  • Krzyhanovsky GN, Rozanov AYa, Bondarchuk GN (1973e) In vitro release by neuraminidase of tetanotoxin fixed on brain structures. Bull Exp Biol Med 76:1404–1406 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Grafova VN, Danilova EI, Igon'kina SI (1974b) Investigation of the pain syndrome of spinal origin (on the concept of the generator mechanism of the pain syndrome) Bull Exp Biol Med 78:732–836 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Igon'kina SI, Grafova VN, Danilova EI (1974c) Experimental trigeminal neuralgia (the concept of the generator mechanism of the pain syndrome). Bull Exp Biol Med 78:1234–1237 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Rumbesht LM, Saakov BA, Polyak AI, Gulyants EX, Gavrilova TM (1974d) Response of the hypothalamic neurosecretory system to experimental tetanus. Bull Exp Biol Med 77:484–487 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Glebov RN, Dmitrieva NM, Fedorova VI (1974e) Effect of tetanus toxin on contractility of the actomyosinlike protein of rat brain. Bull Exp Biol Med 78:1365–1368 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Glebov RN, Dmitrieva NM, Grafova VN, Sakharova OP, Danilova EZ (1974f) Activity of transfer ATPase in subcellular fractions of the spinal cord tissue of rats poisoned with tetanus toxin. Bull Exp Biol Med 77:47–49 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Rozanov AYa, Kirilenko OA, Bondarchuk NG (1975a) Competition between tetanus toxoid and toxin. Bull Exp Biol Med 79:615–618 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Fedorova VI, Glebov RN, Kulygina RM, Sakharova OP (1975b) Effect of tetanus toxin on protein composition of synaptic structures of the rat brain and spinal cord. Bull Exp Biol Med 79:367–370 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Sheikhon FD, Rekhtman MB (1975c) Formation of an excitation generator in the medullary gigantocellular nucleus following disturbance of inhibition by tetanus toxin. Neurophysiology 7:471–477 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Rekhtman MB, Konnikov BA, Petlyuk VKh (1976a) Photogenic epilepsy with excitation generator located in the lateral geniculate body (the so-called determinant dispatch station phenomenon). Bull Exp Biol Med 81:26–29 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Rekhtman MB, Konnikov BA, Sheikhon FD (1976b) An experimental vestibulopathy produced by formation of a pathologically enhanced excitation generator in the vestibular nucleus (the determinant dispatch station phenomenon). Bull Exp Biol Med 81:142–145 (Engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Grafova VN, Danilova EI (1977a) Generators of pathologically enhanced excitation as determinant structures in the spinal cord. Bull Exp Biol Med 83:607–611 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Kotov AV, Kulygina OA, Tolpygo SM, Sudakov VB (1977b) Experimental stimulation of neuropathological syndromes by creating pathologically enhanced excitation generators in the rabbit hypothalamus. Bull Exp Biol Med 84:1397–1400 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Sandalov YuG, Rodina VI, Rozhanets VV, Glebov RN (1977c) Action of tetanus toxin and colchicine on synaptic membranes of the rat cerebral cortex. Bull Exp Biol Med 83:129–132 (engl transl)

    Google Scholar 

  • Kryzhanovsky GN, Glebov RN, Sandalov YG (1980) Contractile proteins of nerve-endings as a possible target for the presynaptic action of tetanus toxin. Bull Exp Biol Med 89:742–845 (engl transl)

    Google Scholar 

  • Künzel W, Meissner C (1978) Untersuchungen zur Entgiftung von Tetanustoxin. Arch Exp Veterinärmed (Leipzig) 32:823–830

    Google Scholar 

  • Lamanna C, Carr CJ (1967) The botulinal, tetanal and enterostaphylococcal toxins: a review. Clin Pharmacol Ther 8:286–332

    Google Scholar 

  • Largier JF (1956) Purification of tetanus toxin. Biochim Biophys Acta 21:433–438

    Google Scholar 

  • Laurence DR, Webster RA (1963) Pathologic physiology, pharmacology and therapeutics of tetanus. Clin Pharmacol Ther 4:36–73

    Google Scholar 

  • Ledeen RW, Mellanby J (1977) Gangliosides as receptors for bacterial toxins. In: Bernheimer AW (ed) Perspectives in toxicology. Wiley, Chichester, pp 15–42

    Google Scholar 

  • Ledley FD, Lee G, Kohn LD, Habig WH, Hardegree MC (1977) Tetanus toxin interactions with thyroid plasma membranes. Implications for structure and function of tetanus toxin receptors and potential pathophysiological significance. J Biol Chem 252:4049–4055

    Google Scholar 

  • Lee G, Grollman EF, Dyer S, Beguinod F, Kohn D, Habig WH, Hardegree MC (1979) Tetanus toxin and thyrotropin interactions with rat-brain membrane preparations. J Biol Chem 254:3826–3832

    Google Scholar 

  • Leonardi G (1975) New prospects in the chemotherapy of tetanus. In Fondation Mérieux Proceedings of the fourth international conference on tetanus, Dakar/Senegal, Lyon, pp 485–496

    Google Scholar 

  • Loewenstein E (1909) Über aktive Schutzimpfung bei Tetanus durch Toxoide. Z Hygiene Infektionskh 62:491–508

    Google Scholar 

  • Lutsenko VK, Kryzhanovsky GN (1973a) A new form of tetanus infection — pathologically intensified scratch reflex. Bull Exp Biol Med 76:756–759 (engl transl)

    Google Scholar 

  • Lutsenko VK, Kryzhanovsky GN (1973b) The mechanism of pathologically enhanced scratch reflex in animals with experimental tetanus. Bull Exp Biol Med 76:889–892 (engl transl)

    Google Scholar 

  • Lutsenko VK, Kryzhanovsky GN (1975a) Effect of local depression of inhibition on electrical activity of the spinal cord. Neurophysiology 7:394–401 (engl transl)

    Google Scholar 

  • Lutsenko VK, Kryzhanovsky GN (1975b) Electrical activity of the spinal cord with local depression of the inhibitory process. Neurophysiology 7:509–518 (engl transl)

    Google Scholar 

  • MacDonald RL, Bergey GK, Habig W (1979) Convulsant action of tetanus toxin on mammalian neurons in cell-culture. Neurology 29:588

    Google Scholar 

  • Maclennan JD (1939) Serological identification of clostridium tetani. Br J Exp Pathol 20:371–376

    Google Scholar 

  • Mangalo R, Bizzini B, Turpin A, Raynaud M (1968) The molecular weight of tetanus toxin. Biochim Biophys Acta 168:583–584

    Google Scholar 

  • Marie A (1898) Recherches sur les propriétés antitétaniques des centres nerveux de l'animal sain. Ann Inst Pasteur 12:91–95

    Google Scholar 

  • Matsuda M, Yoneda M (1974) Dissociation of tetanus neurotoxin into two polypeptide fragments. Biochem Biophys Res Commun 57:1257–1262

    Google Scholar 

  • Matsuda M, Yoneda M (1975) Isolation and purification of two antigenically active, “complementary” polypeptide fragments of tetanus neurotoxin. Infect Immun 12:1147–1153

    Google Scholar 

  • Matsuda M, Yoneda M (1976a) Structure-function relationship of tetanus neurotoxin molecule: analyses with two complementary polypeptide fragments and a subfragment. Int Soc Toxinol, Oficina Publicaciones Universidad, Costa Rica, p 135 BT 3

    Google Scholar 

  • Matsuda M, Yoneda M (1976b) Reconstitution of tetanus neurotoxin from two antigenically active polypeptide fragments. Biochem Biophys Res Commun 68:668–674

    Google Scholar 

  • Matsuda M, Yoneda M (1977) Antigenic substructure of tetanus neurotoxin. Biochem Biophys Res Commun 77:268–274

    Google Scholar 

  • Matsuda M, Hara T, Yoneda M (1975) Structure-function relationship of tetanustoxin: studies on “complementary” polypeptide fragments of the toxin. Jpn J Med Sci Biol 28:326–328

    Google Scholar 

  • Matsuda M, Kakinaga G, Hirai T (1978) Studies on the structure-function relationship of tetanus neurotoxin and their application to improved tetanus vaccine and the method of the standardization of tetanus antitoxin sera (abstr). Fifth international conference on tetanus, Ronneby/Sweden, p 26

    Google Scholar 

  • McCluer RH (1970) Chemistry of gangliosides. In: Sweeley CC (ed) Chemistry and metabolism of sphingolipids. North-Holland Publ, Amsterdam, pp 220–234

    Google Scholar 

  • McGeer PL, McGeer EG (1978) Intracerebral injections of kainic acid and tetanus toxin: possible models for the signs of chorea and dystonia. Adv Neurol 21:331–338

    Google Scholar 

  • McGeer PL, McGeer EG, Campbell JJ (1980) Rotatory effects of intra-cerebral tetanus toxin injections. Exp Neurol 67:363–367

    Google Scholar 

  • Mellanby J, Green J (1981) Commentary. How does tetanus toxin act? Neuroscience 6:281–300

    Google Scholar 

  • Mellanby J, Heyningen WE van (1967) Biochemical research on the mode of action of tetanus toxin. In: Eckmann L (ed) Principles on tetanus. Huber, Bern, pp 177–187

    Google Scholar 

  • Mellanby J, Pope D (1976) The relationship between the action of tetanus toxin and its binding by membranes and gangliosides. In: Porcellati G, Cecarelli B, Tettamenti G (eds) Ganglioside function: biochemical and pharmacological implications. Adv Exp Med Biol 71:215–229

    Google Scholar 

  • Mellanby J, Thompson PA (1972) The effect of tetanustoxin at the neuromuscular junction in the goldfish. J Physiol 224:407–419

    Google Scholar 

  • Mellanby J, Thompson PA (1975) The effect of lanthanum on miniature junction potentials at the goldfish neuromuscular junction after block by tetanus toxin. J Physiol 252:81

    Google Scholar 

  • Mellanby J, Whittaker VP (1968) The fixation of tetanus toxin by synaptic membranes. J Neurochem 15:205–208

    Google Scholar 

  • Mellanby J, Heyningen WE van, Whittaker VP (1965) Fixation of tetanus toxin by subcellular fractions of brain. J Neurochem 12:77–79

    Google Scholar 

  • Mellanby J, Pope D, Ambache N (1968a) The effect of the treatment of crude tetanus toxin with ganglioside cerebroside complex on sphincter paralysis in the rabbit's eye. J Gen Microbiol 50:479–486

    Google Scholar 

  • Mellanby J, Mellanby H, Pope D, Heyningen WE van (1968b) Ganglioside as a prophylactic agent in experimental tetanus in mice. J Gen Microbiol 54:161–168

    Google Scholar 

  • Mellanby J, George G, Robinson A, Thompson PA (1977) Epileptiform syndrome in rats produced by injecting tetanus toxin into the hippocampus. J Neurol Neurosurg Psychiatry 40:404–414

    Google Scholar 

  • Metchnikoff K (1898) Recherches sur l'influence de l'organisme sur les toxines. Ann Inst Pasteur 12:81–90

    Google Scholar 

  • Meyer H, Ransom F (1903) Untersuchungen über den Tetanus. Arch Exp Path Pharmakol 49:369–416

    Google Scholar 

  • Miike T, Chou SM, Payne WN (1980) Formations of rods, central cores-targetoids, and multicores in experimental local tetanus. Neurology 30:402

    Google Scholar 

  • Mikhailov VV, Chesnokova NP (1971) Changes in tissue concentration of catecholamines in experimental tetanus. Bull Exp Biol Med 71:19–22 (engl transl)

    Google Scholar 

  • Mikhailov VV, Morrison VV (1974) Mechanism of changes in the membrane potential in various types of muscle fibers in experimental tetanus. Bull. Exp Biol Med 78:871–874 (engl transl)

    Google Scholar 

  • Mikhailov VV, Shvarts IL (1969) Microphysiological analysis of electrical activity of spinal neurons of various types in experimental tetanus. Bull Exp Biol Med 68:1340–1342 (engl transl)

    Google Scholar 

  • Mikhailov VV, Sverdlov YuS (1960) The mechanism governing disturbances of the parasympathetic effects upon the heart in experimental tetanus. Archiv Pathologii 10:59–65 (russ)

    Google Scholar 

  • Mirsky R, Wendon LMB, Black P, Stolkin C, Bray D (1978) Tetanus-toxin: a cell surface for neurons in culture. Brain Res 148:251–259

    Google Scholar 

  • Miyasaki S, Okada K, Muto S, Itokazu T, Matsui M, Ebisawa I, Kagabe K, Kimuro T (1967) On the mode of action of tetanus toxin in rabbit. I. Distribution of tetanus toxin in vivo and development of paralytic signs under some conditions. Jpn J Exp Med 37:217–225

    Google Scholar 

  • Mori M, Chou SM, Gutmann L (1980) Neuro-muscular junction blockade in local tetanus. Neurology 30:387

    Google Scholar 

  • Morris NP, Consiglio E, Kohn L, Habig D, Hardegree WH, Helting TB (1980) Interaction of fragment-B and fragment-C of tetanus toxin with neural and thyroid membranes and with gangliosides. J Biol Chem 255:6071–6076

    Google Scholar 

  • Murphy SA, Miller KD (1967) Tetanus toxin and antigenic derivatives. I. Purification of the biologically active monomer. J Bacteriol 94:580–585

    Google Scholar 

  • Murphy SA, Plummer TH, Miller KD (1968) Physical and chemical characterization of tetanus toxin. Fed Proc 27:268

    Google Scholar 

  • Murphy SG (1967) Tetanus toxin and antigenic derivatives. II. Effect of protein and formaldehyde concentration on toxoid formation. J Bacteriol 94:586–589

    Google Scholar 

  • Nagel J, Cohen H (1973) Studies on tetanus antitoxins. II. Demonstration of at least four antitoxins of different specificity in antitoxic sera. J Immunol 110:1388–1393

    Google Scholar 

  • Nagel J, Svec D, Waters T, Fireman P (1977) IgE synthesis in man. I Development of specific IgE antibodies after immunization with tetanus-diphtheria (Td) toxoids. J Immunol 118:334–341

    Google Scholar 

  • Nathenson G, Litwin SD (1977) Partially restricted antitoxins of tetanus and diphtheria in man. Pediatr Res 11:1211–1214

    Google Scholar 

  • Neale JH, Dimpfel W (1976) Movement of labeled macromolecules to the goldfish optic tectum following intraocular injection of 125I-labeled tetanus toxin. Exp Neurol 53:355–362

    Google Scholar 

  • Neubauer V, Helting TB (1979) Structure of tetanus toxin. N-terminal amino acid analysis of the two molecular forms of tetanus toxin and its composite chains. Biochem Biophys Res Commun 86:635–642

    Google Scholar 

  • Neubauer V, Helting TB (1981) Structure of tetanus toxin. The arrangement of papain digestion products within the heavy chain-light chain framework of extracellular toxin. Biochim Biophys Acta 668:141–148

    Google Scholar 

  • Odusote KA, Sofola OA (1976) Haemodynamic changes during experimental tetanus toxicity in dogs. Naunyn Schmiedebergs Arch Pharmacol 295:159–164

    Google Scholar 

  • Opresko L, Wiley HS, Wallace RA (1980) Proteins iodinated by the chloramine-T method appear to be degraded at an abnormally rapid rate after endocytosis. Proc Natl Acad Sci USA 77:1556–1560

    Google Scholar 

  • Osborne RH, Bradford HF (1973a) Tetanus toxin inhibits amino acid release from nerve endings in vitro. Nature (New Biol) 244:157–158

    Google Scholar 

  • Osborne RH, Bradford HF (1973b) Patterns of amino acid release from nerve-endings isolated from spinal cord and medulla. J Neurochem 21:407–419

    Google Scholar 

  • Ourth DD, Edsall G (1972) Antibody activities of 19S and 7S globulin fractions from rabbit antisera to tetanus toxoid. Br J Exp Path 53:492–500

    Google Scholar 

  • Paar GH, Wellhöner HH (1973) The action of tetanus toxin on preganglionic sympathetic reflex discharges. Naunyn Schmiedebergs ARch Pharmacol 276:437–445

    Google Scholar 

  • Paar GH, Wiegand H, Wellhöner HH (1974) The influence of tetanus toxin on sympathetic reflex discharges into the renal nerves. Naunyn Schmiedebergs Arch Pharmacol 281:383–390

    Google Scholar 

  • Parsons RL, Hofmann WW, Feigen GA (1966) Mode of action of tetanus toxin on the neuromuscular junction. Am J Physiol 210:84–90

    Google Scholar 

  • Pochhammer C (1909) Experimentelle Untersuchungen über die Entstehung des Starrkrampfes und die Wirkung des Tetanustoxins im menschlichen und tierischen Organismus. Samml Klin Vorträge No 520, Leipzig

    Google Scholar 

  • Podzdnyakov OM, Polgar AA, Smirnova VS, Kryzhanovsky GN (1972) Changes in the ultrastructure of the neuromuscular synapse produced by tetanus toxin. Bull Exp Biol Med (engl transl) 74:852–855

    Google Scholar 

  • Polgar AA, Smirnova VS, Kryzhanovsky GN (1972) Activation of synaptic processes in the myoneural junction poisoned by tetanus toxin in response to repetitive nerve stimulation. Bull Exp Biol Med 73:504–508 (engl transl)

    Google Scholar 

  • Ponomarew AW (1928) Zur Frage der Pathogenese des Tetanus und des Fortbewegungsmechanismus des Tetanustoxins längs dem Nerven. Z Ges Exp Med 61:93–106

    Google Scholar 

  • Prevot AR (1955) Biologie des maladies dues aux anaérobies. Collection de l'Institut Pasteur, Edit. Medical Flammarion, Paris

    Google Scholar 

  • Price DL, Griffin JW (1977) Tetanus toxin: retrograde axonal transport of systemically administered toxin. Neurosci Lett 4:61–65

    Google Scholar 

  • Price DL, Griffin J, Young A, Peck K, Stocks A (1975) Tetanus toxin: direct evidence for retrograde intraaxonal transport. Science 188:945–947

    Google Scholar 

  • Price DL, Griffin JW, Peck K (1977) Tetanus toxin: evidence for binding at presynaptic nerve endings. Brain Res 121:379–384

    Google Scholar 

  • Rabinowitsch M (1907) Experimentelle Untersuchungen über die Wirkung der Tetanusbazillen und ihre Gifte vom Magendarmtraktus aus. Arch Hyg Berl 61:103–150

    Google Scholar 

  • Ramon G (1922) Sur une technique de titrage in vitro du sérum antidiphthérique. CR Sci Soc Biol (Paris) 86:711–712

    Google Scholar 

  • Ramon G, Descombey P (1927) L'anatoxine tétanique et la prophylaxe du tétanos chez le cheval et les animaux domestiques. Ann Inst Pasteur 41:835–847

    Google Scholar 

  • Ramon G, Zoeller G (1927) L'anatoxine tétanique et l'immunisation active de l'homme vis-à-vis du tétanos. Ann Inst Pasteur 41:803–833

    Google Scholar 

  • Ramos S, Grollman EF, Lazo PS, Dyer SHA, Habig WH, Hardegree MC, Kaback HR, Kohn LD (1979) Effect of tetanus toxin on the accumulation of the permeant lipholic cation by guinea pig brain synaptosomes. Proc Natl Acad Sci USA 76:4783–4787

    Google Scholar 

  • Raynaud M, Relyveld EH, Turpin A, Mangalo R (1959) Préparation d'anatoxines diphthérique, tétanique et staphylococcique de haute pureté, adsorbées sur phosphate de calcium (Brishite). Ann Inst Pasteur 96:60–71

    Google Scholar 

  • Raynaud M, Turpin A, Bizzini B (1960) Existence de la toxine tétanique sous plusieurs états d'aggregation. Ann Inst Pasteur 99:167–172

    Google Scholar 

  • Reddy PP, Vaishnava HP, Dave ML, Sanyal RK (1970) Sympathomimetic action of tetanus toxin. J Pharm Pharmac 22:464

    Google Scholar 

  • Relyveld EH (1973) Préparation des vaccins antitoxiques et antimicrobiens a l'aide du glutaraldéhyde. CR Acad Sci (D) (Paris) 277:613–616

    Google Scholar 

  • Relyveld EH (1975) Préparation des vaccins tétanique à l'aide du glutaraldéhyde. In: Fondation Mérieux (ed) Proceedings of the fourth international conference on tetanus, Dakar/Senegal. Lyon, pp 727–734

    Google Scholar 

  • Relyveld EH, Girard O, Desormeau-Bedot JP (1973) Procédé de fabrication de vaccins à l'aide du glutaraldéhyde. Ann Immun Ungaricae 17:21–31

    Google Scholar 

  • Relyveld EH, Girard O, Cheyroux M, Asso J, Rudder J de (1974) Nouveau procédé d'inactivation pour la préparation de vaccins. Dev Biol Stand 27:236–248

    Google Scholar 

  • Robinson JP, Leslie A, Holladay JB, Picklesheimer, Puett D (1974) Tetanus toxin conformation. Mol Cell Biochem 5:147–151

    Google Scholar 

  • Robinson JP, Picklesheimer JB, Puett D (1975) Tetanus toxin. The effect of chemical modifications on toxicity, immunogenicity and conformation. J Biol Chem 250:7435–7442

    Google Scholar 

  • Robinson JP, Chen HCJ, Hash H, Puett D (1978) Enzymatic fragmentation of tetanus toxin. Identification and characterization of an atoxic, immunogenetic fragment. Mol Cell Biochem 21:23–31

    Google Scholar 

  • Robinson JP, Cumming MA, Hash JH (1981) The purification of tetanus toxin and its peptide components by preparative gel-electrophoresis. Fed Proc 40:1581

    Google Scholar 

  • Rogers TB, Snyder SH (1981) High affinity binding of tetanus toxin to mammalian brain membranes. J Biol Chem 256:2402–2407

    Google Scholar 

  • Ronnevi LO, Byström J, Eriksson E, Ottova L (1973) Quantitative distribution of tetanus toxin in peripheral nerves and central nervous system. Eur Surg Res 5:401–413

    Google Scholar 

  • Roofe PG (1947) Role of the axis cylinder in transport of tetanus toxin. Science 105:180–181

    Google Scholar 

  • Rossolini A, Cellesi C, Marsili C (1979) Effect of tetanus toxin on rat liver. Boll Ist sieroter milan 56:169–171

    Google Scholar 

  • Rowson KEK (1961) The action of tetanus toxin in frogs. J Gen Microbiol 25:315–329

    Google Scholar 

  • Rozanova VD (1962) On the sensitivity, resistance and tolerance of rats of various ages to tetanus toxin. Bull Exp Biol Med 54:1341–1346 (engl transl)

    Google Scholar 

  • Sakharova OP, Lutsenko VK, Kulygina RM (1975) Oxidative phosphorylation in spinal cord mitochondria of rats with experimental tetanus. Bull Exp Biol Med 80:1422–1424 (engl transl)

    Google Scholar 

  • Salkowski E (1898) Über die Wirkung der Antiseptica auf Toxine. Berl klin Wschr 35:545

    Google Scholar 

  • Sanyal RK, Dave M (1971) Further studies on the sympathomimetic action of tetanus toxin. Jpn J Pharmacol 21:317–323

    Google Scholar 

  • Sawamura S (1909) Experimentelle Studien zur Pathogenese und Serumtherapie des Tetanus. Arbeit Inst Infektionskh 4:1–103

    Google Scholar 

  • Schwab ME, Thoenen H (1976) Electron microscopic evidence for a transsynaptic migration of tetanus toxin in spinal cord motoneurons: an autoradiographic and morphometric study. Brain Res 105:213–227

    Google Scholar 

  • Schwab ME, Thoenen H (1977) Selective trans-synaptic migration of tetanus toxin after retrograde axonal transport in peripheral sympathetic nerves: a comparison with nerve growth factor. Brain Res 122:459–474

    Google Scholar 

  • Schwab M, Agid Y, Glowinski J, Thoenen H (1977) Retrograde axonal transport of 125I-tetanus toxin as a tool for tracing fiber connections in the central nervous system. Connections of the rostral part of the rat neostriatum. Brain Res 126:211–224

    Google Scholar 

  • Schwab ME, Suda K, Thoenen H (1979) Selective retrograde transsynaptic transfer of a protein, tetanus toxin, subsequent to its retrograde axonal transport. J Cell Biol 82:798–810

    Google Scholar 

  • Seib UC, Hensel B, Wiegand H, Wellhöner HH (1973) Supporting evidence for a role of neural ascent of toxin in the pathogenesis of general tetanus in cats. Naunyn Schmiedebergs Arch Pharmacol 276:403–411

    Google Scholar 

  • Semba T, Kano M (1969) Glycine in the spinal cord of cats with local tetanus rigidity. Science 164:571–572

    Google Scholar 

  • Sheff MF, Zacks SI (1968) Tetanus-target cell interaction: a common mechanism in different vertebrate classes. J Cell Biology 39:123a

    Google Scholar 

  • Sheikhon FD, Kryzhanovsky GN (1975) Suprasegmental inhibition and facilitation after injection of tetanus toxin into the medullary nuclei (the so-called dispatch station phenomenon). Bull Exp Biol Med 75:23–27 (engl transl)

    Google Scholar 

  • Sherrington CS (1905) On reciprocal innervation of antagonistic muscles — eighth note. Proc R Soc Lond (Biol) 76:269–297

    Google Scholar 

  • Sikdar K, Ghosh JJ (1964) Histological changes in structural constituents of spinal motoneurons after picrotoxin, strychnine and tetanus toxin administration. J Neurochem 11:545–549

    Google Scholar 

  • Spaun J, Lyng J (1970) Replacement of the international standard for tetanus antitoxin and the use of the standard in the flocculation test. Bull WHO 42:523–534

    Google Scholar 

  • Stein Ph, Biel H (1973) Modification of tetanus toxin with selective chemical reagents. Z Immun Forsch 145:418–431

    Google Scholar 

  • Stevens RH, Saxon A (1979) Differential synthesis of IgM and IgG anti-tetanus toxoid antibody in vitro following in vivo booster immunization of humans. Cell Immunol 45:142–150

    Google Scholar 

  • Stöckel K, Schwab M, Thoenen H (1975) Comparison between the retrograde axonal transport of nerve growth factor and tetanus toxin in motor, sensory and adrenergic neurons. Brain Res 99:1–16

    Google Scholar 

  • Stöckel K, Schwab M, Thoenen H (1977) Role of gangliosides in the uptake and retrograde axonal transport of cholera and tetanus toxin as compared to nerve growth factor and wheat germ agglutinin. Brain Res 132:273–285

    Google Scholar 

  • Svennerholm L (1970) Gangliosides. In: Laitha A (ed) Handbook of neurochemistry, vol III. Plenum Press, New York, pp 425–452

    Google Scholar 

  • Sverdlov YuS (1960) Reflex activity of the spinal cord in the presence of local tetanus. Sechenov Physiol J USSR 46:1097–1105 (Lond, engl transl)

    Google Scholar 

  • Sverdlov YuS (1969) Potentials of spinal motoneurons in cats with experimental tetanus. Neurophysiology 1:18–25

    Google Scholar 

  • Sverdlov YuS (1974) Repeated discharges of motoneurons evoked by a depolarizing current in cats with experimental tetanus. Neurophysiology 6:80–82 (engl transl)

    Google Scholar 

  • Sverdlov YuS, Alekseeva VI (1966) Effect of tetanus toxin on presynaptic inhibition in the spinal cord. Fed Proc (transal) (Suppl) 25:T931–T936

    Google Scholar 

  • Sverdlov YuS, Burlakov GV (1960) The spinal cord reflex activity under local tetanus (electrophysiological studies). Fiziol Zh SSSR 46:941–947 (russ)

    Google Scholar 

  • Sverdlov YuS, Burlakov GV (1965) Inhibitory processes in the spinal cord in cats with local tetanus. Fiziol Zh SSSR 51:90–98 (russ)

    Google Scholar 

  • Takano K (1976a) The effects of tetanus toxin on the extensor and flexor muscles of the hind leg of the cat. In: Ohsaka A, Hayashi K, Sawai Y (eds) Animal, plant, and microbial toxins, vol 2. Plenum Press, New York, pp 363–378

    Google Scholar 

  • Takano K (1976b) Local tetanism, a tool for understanding the stretch reflex. Prog Brain Res 44:491–502

    Google Scholar 

  • Takano K, Henatsch HD (1973) Tension-extension diagram of the tetanus-intoxicated muscle of the cat. Naunyn Schmiedebergs Arch Pharmacol 276:421–436

    Google Scholar 

  • Takano K, Kano M (1968) Reflex activity of the muscle in tetanus intoxication. J Physiol Soc Japan 30:122–123

    Google Scholar 

  • Takano K, Kano M (1973) Gamma-bias of the muscle poisoned with tetanus toxin. Naunyn Schmiedebergs Arch Pharmacol 276:413–420

    Google Scholar 

  • Tarlov IM (1974) Rigidity and primary motoneuron damage in tetanus. Exp Neurol 44:246–254

    Google Scholar 

  • Tarlov IM, Ling H, Yamada H (1973) Neuronal pathology in experimental local tetanus. Neurology 23:580–591

    Google Scholar 

  • Terhaar P, Tiebert B, Kirchner F, Takano K (1977) Monosynaptic reflex during local tetanus. Pfluegers Arch (Suppl) 368:140

    Google Scholar 

  • Tizzoni G, Cattani G (1890) Untersuchungen über das Tetanusgift. Arch Exp Pathol Pharmakol 27:432–450

    Google Scholar 

  • Tonge DA, Gradidge TJ, Marchbanks RM (1975) Effects of botulinium and tetanus toxins on cholin acetyltransferase activity in skeletal muscle in the mouse. J Neurochem 25:329–331

    Google Scholar 

  • Tsybulak GN, Smeshnoi DI (1966) Morphological changes in the nervous system in tetanus. Bull Exp Biol Med 61:375–378

    Google Scholar 

  • Turpin A, Raynaud M (1959) La toxine tétanique. 97:718–732

    Google Scholar 

  • Vincent H (1908) Sur le mode de déstruction de la toxine tétanique dans l'estomac. CR Soc Biol (Paris) 64:729–731

    Google Scholar 

  • Wassermann A, Takaki I (1898) Über tetanusantitoxische Eigenschaften des normalen Centralnervensystems. Klin Wochenschr 35:5–6

    Google Scholar 

  • Webster RA (1967) The effect of tetanus toxin on motor nerve activity in the rabbit. Int J Neuropharmacol 6:207–215

    Google Scholar 

  • Wellhöner HH (1981) Immunology of tetanus: basic and clinical aspects. In: Veronesi R (ed) Tetanus — important new concepts. Exceprta Medica, Amsterdam, pp 40–108

    Google Scholar 

  • Wellhöner HH, Hensel B, Seib UD (1973a) Local tetanus in cats: neuropharmacokinetics of 125I-tetanus toxin. Naunyn Schmiedebergs Arch Pharmacol 276:375–386

    Google Scholar 

  • Wellhöner HH, Seib UC, Hensel B (1973b) Local tetanus in cats: the influence of neuromuscular activity on spinal distribution of 125I labelled tetanus toxin. Naunyn Schmiedebergs Arch Pharmacol 276:387–394

    Google Scholar 

  • Wellhöner HH, Erdmann G, Wiegand H (1975) Intraaxonal and extraaxonal ascent of tetanus toxin. In: Fondation Mérieux (ed) Proceedings of the fourth international conference on tetanus, Dakar/Senegal. Lyon, pp 159–161

    Google Scholar 

  • Wellhöner HH, Erdmann G, Hanauske A (1979) Inactivation of tetanus toxin inside the spinal cord by intrathecally injected antitetanus F(ab′)2 fragments. Naunyn Schmiedebergs Arch Pharmacol 308 (Suppl), 182

    Google Scholar 

  • Wendon LMB (1980) Action of tetanus toxin at the rat neuromuscular junction. J Physiol (Lond) 300:23

    Google Scholar 

  • Wernig A, Stöver H, Tonge D (1977) The labelling of motor end-plates in skeletal muscle of mice with 125I tetanus toxin. Naunyn Schmiedebergs Arch Pharmacol 298:37–42

    Google Scholar 

  • Wiegand H, Wellhöner HH (1979) Electrical excitability of motoneurones in early local tetanus. Naunyn Schmiedebergs Arch Pharmacol 308:71–76

    Google Scholar 

  • Wiegand H, Hilbig G, Wellhöner HH (1977) Early local tetanus: does tetanus toxin change the stimulus evoked discharge in afferents from injected muscle? Naunyn Schmiedebergs Arch Pharmacol 298:189–191

    Google Scholar 

  • Wiegandt H (1973) Gangliosides of extraneural organs. Hoppe-Seylers Z Physiol Chem 354:1049–1056

    Google Scholar 

  • Wilson VJ, Diecke FPI, Talbot WH (1960) Action of tetanus toxin on conditioning of spinal motoneurons. J Neurophysiol 23:659–666

    Google Scholar 

  • Winsnes, Christianser G (1979) Quantification of tetanus antitoxin in human sera. II. Comparison of counter-immunelectrophoresis and passive haemagglutination with toxin neutralization in mice. Acta Path Microbiol Scand (B) 87:197–200

    Google Scholar 

  • Wolters KL, Fischöder E (1954) Über die Bindung von Tetanustoxin an Hirnsubstanz ohne und nach Vorbehandlung mit Tetanustoxoid. Z Hyg 139:541–544

    Google Scholar 

  • Wright EA (1953) Effect of injection of toxin into the central nervous system of rabbits. J Immunol 71:41–44

    Google Scholar 

  • Wright EA (1954) Fixation of tetanus toxin to brain stem of guinea-pigs. J Pathol 68:131–135

    Google Scholar 

  • Wright EA, Morgan RS, Wright PG (1950) Tetanus intoxication of the brain stem in rabbits. J Pathol 62:569–583

    Google Scholar 

  • Wright EA, Morgan RS, Wright PG (1951) The movement of toxin in the nervous system in experimental tetanus in rabbits. Br J Exp Path 32:169–182

    Google Scholar 

  • Wright GP (1955) The neurotoxins of clostridium botulinum and clostridium tetani. Pharmacol Rev 7:413–465

    Google Scholar 

  • Yates JC, Yates RD (1966) An electron microscopic study of the effects of tetanus toxin on motoneurons of the rat spinal cord. J Ultrastruct Res 16:382–394

    Google Scholar 

  • Yount WJ, Dorner MM, Kunkel HG, Kabat EA (1968) Studies on human antibodies. IV. Selective variation in subgroup composition and genetic markers. J Exp Med 127:633–644

    Google Scholar 

  • Zaccheo D, Grossi CE (1962) Osservazioni immunoistologiche sulla propagazione della tossina tetanica per via nervosa. Ann Slavo 4:601–608

    Google Scholar 

  • Zacks SI, Sheff MF (1965) Studies on tetanus toxin of fluorescent-labelled tetanus toxin and antitoxin in mice. Acta Neuropathol 4:267–277

    Google Scholar 

  • Zacks SI, Sheff MF (1966) Studies on tetanus. V. In vivo localization of purified tetanus neurotoxin in mice with fluorescein-labelled tetanus antitoxin. J Neuropathol Exp Neurol 25:422–430

    Google Scholar 

  • Zacks SI, Sheff MF (1968) Tetanus toxin: fine structure localization of binding sites in striated muscle. Science 159:643–644

    Google Scholar 

  • Zacks SI, Sheff MF (1970) Tetanism: Pathobiological aspects of the action of tetanal toxin in the nervous system and skeletal muscle. In: Ehrenpreis S, Solnitzky OC (eds) Neurosciences research, vol 3. Academic Press, New York London, pp 209–287

    Google Scholar 

  • Zacks SI, Sheff MF (1971) Biochemical and physiological aspects of tetanus intoxication. In: Simpson LL (ed) Neuropoisons — their pathophysiological actions, vol I. Plenum Press, New York London, pp 225–262

    Google Scholar 

  • Zimmerman JM, Piffaretti JCl (1977) Interaction of tetanus toxin and toxoid with cultured neuroblastoma cells. Analysis by immunofluorescence. Naunyn Schmiedebergs Arch Pharmacol 296:271–277

    Google Scholar 

  • Zimmermann JM, Piffaretti JCl, Regamey RH (1977) Interaction of tetanus toxin and toxoid with cultured neuroblastoma cells — I-125-toxin and toxoid binding studies. Experientia 33:1683

    Google Scholar 

  • Zor'kin AA, Kazak PA, Kryzhanovsky GN (1972) The content of corticosterone in the blood plasma, glucocorticoid supply of tissue and the activity of respiratory enzymes in the experimental tetanus intoxication. Bull Exp Biol Med 74:1490–1494 (engl transl)

    Google Scholar 

  • Zurawski VR Jr, Haber E, Black PH (1978) Production of antibody to tetanus toxoid by continuous human lymphoblastoid cell lines. Science 199:1439–1441

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag

About this chapter

Cite this chapter

Wellhöner, HH. (1982). Tetanus neurotoxin. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 93. Reviews of Physiology, Biochemistry and Pharmacology, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0032668

Download citation

  • DOI: https://doi.org/10.1007/BFb0032668

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11297-6

  • Online ISBN: 978-3-540-39064-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics