Advertisement

Regulation of β-Adrenergic receptor responsiveness modulation of receptor gene expression

  • S. Danner
  • M. J. Lohse
Chapter
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (volume 136)

Keywords

Adrenergic Receptor Receptor mRNA Receptor Desensitization Glucocorticoid Response Element Receptor mRNA Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

βAR

β-adrenergic receptor

βARB

β-adrenergic receptor mRNA binding protein

ARE

AU-rich element

AUF1

AU-rich element RNA-binding/degradation factor 1

bp

base pair(s)

CRE

cAMP response element

Gs

stimulatory G-protein

Gβγ

G-protein βγ-subunits

GRE

glucocorticoid response element

GRK

G-protein-coupled receptor kinase

nt.

nuctleotide(s)

PKA

protein kinase A

PKC

protein kinase C, TRE, thyroid hormone response element

TSS

transcriptional start site

UTR

untranslated region

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, J.M., Abrass, I.B., and Palmiter, R.D. (1989) β2-adrenergic receptor regulation after transfection into a cell line deficient in the cAMP-dependent protein kinase. Mol. Pharmacol. 36, 248–255.PubMedGoogle Scholar
  2. Arriza, J.L., Dawson, T.M., Simerly, R.B., Martin, L.J., Caron, M.G., Snyder, S.H., and Lefkowitz, R.J. (1992) The G-protein-coupled receptor kinases βARK1 and βARK2 are widely distributed at synapses in rat brain. J. Neurosci. 12, 4045–4055.PubMedGoogle Scholar
  3. Attramadal, H., Arriza, J.L., Aoki, C., Dawson, T.M., Codina, J., Kwatra, M.M., Snyder, S.H., Caron, M.G., and Lefkowitz, R.J. (1992) β-arrestin2, a novel member of the arrestin/β-arrestin gene family. J. Biol. Chem. 267, 17882–17890.PubMedGoogle Scholar
  4. Baeyens, D.A., and Cornett, L.E. (1993) Transcriptional and posttranscriptional regulation of hepatic β2-adrenergic receptor gene expression during development. J. Cell. Physiol. 157, 70–76.CrossRefPubMedGoogle Scholar
  5. Baeyens, D.A., and Cornett, L.E. (1995) Association of hepatic β2-adrenergic receptor gene transcript destabilization during postnatal development in the Sprangue-Dawley rat with a Mr 85,000 protein that binds selectively to the β2-adrenergic receptor mRNA 3′-untranslated region. J. Cell. Physiol. 163, 305–311.CrossRefPubMedGoogle Scholar
  6. Baeyens, D.A., McGraw, D.W., Jacobi, S.E., and Cornett, L.E. (1998) Transcription of the β2-adrenergic receptor gene in rat liver is regulated during early postnatal development by an upstream repressor element. J. Cell. Physiol. 175, 333–340.CrossRefPubMedGoogle Scholar
  7. Bahouth, S.W. (1991) Thyroid hormones transcriptionally regulate the β1-adrenergic receptor gene in cultured ventricular myocytes. J. Biol. Chem. 266, 15863–15869.PubMedGoogle Scholar
  8. Bahouth, S.W., Cui, X., Beauchamp, M.J., and Park, E.A. (1997a) Thyroid hormone induces β1-adrenergic receptor gene transcription through a direct repeat separated by five nucleotides. J. Mol. Cell. Cardiol. 29, 3223–3237.CrossRefPubMedGoogle Scholar
  9. Bahouth, S.W., Cui, X., Beauchamp, M.J., Shimomura, H., George, S.T., and Park, E.A. (1997b) Promoter analysis of the rat β1-adrenergic receptor gene identifies sequences involved in basal expression. Mol. Pharmacol. 51, 620–629.PubMedGoogle Scholar
  10. Bengtsson, T., Redegren, K., Strosberg, A.D., Nedergaard, J., and Cannon, B. (1996) Down-regulation of β3 adrenoceptor gene expression in brown fat cells is transient and recovery is dependent upon a short-lived protein factor. J. Biol. Chem. 271, 33366–33375.CrossRefPubMedGoogle Scholar
  11. Benovic, J.L., Bouvier, M., Caron, M.G., and Lefkowitz, R.J. (1988) Regulation of adenylyl cyclase-coupled β-adrenergic receptors. Annu. Rev. Cell. Biol. 4, 405–428.CrossRefPubMedGoogle Scholar
  12. Benovic, J.L., Pike, L.J., Cerione, R.A., Staniszewski, C., Yoshimasa, T., Codina, J., Caron, M.G., and Lefkowitz, R.J. (1985) Phosphorylation of the mammalian β-adrenergic receptor by cyclic AMP-dependent protein kinase. J. Biol. Chem. 260, 7094–7101.PubMedGoogle Scholar
  13. Benovic, J.L., Caron, M.G., and Lefkowitz, R.J. (1984) The mammalian β2-adrenergic receptor: Purification and characterization. Biochemistry 23, 4519–4525.CrossRefPubMedGoogle Scholar
  14. Benovic, J.L., Strasser, R.H., Caron, M.G., and Lefkowitz, R.J. (1986) β-adrenergic receptor kinase: Identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor. Proc. Natl. Acad. Sci. USA 83, 2797–2801.PubMedGoogle Scholar
  15. Bird, A.P. (1986) CpG-rich islands and the function of DNA methylation. Nature 321, 209–213.CrossRefPubMedGoogle Scholar
  16. Blake, A.D., Mumford, R.A., Strout, H.V., Slater, E.G., and Strader, C.G. (1987) Synthetic segments of the mammalian β-adrenergic receptor are preferentially recognized by cAMP-dependent protein kinase and protein kinase C. Biochem. Biophys. Res. Commun. 147, 168–173.CrossRefPubMedGoogle Scholar
  17. Boekhoff, I., Inglese, J., Schleicher, S., Koch, W.J., Lefkowitz, R.J., and Breer, H. (1994) Olfactory desensitization requires membrane targeting of receptor kinase mediated by βγ-subunits of heterotrimeric G proteins. J. Biol. Chem. 269, 37–40.PubMedGoogle Scholar
  18. Bohjanen, P.R., Petryniak, B., June, C.H., Thompson, C.B., and Lindsten, T. (1991) An inducible cytoplasmatic factor (AU-B) binds selectively to AUUUA multimers in the 3' untranslated region of lymphokine mRNA. Mol. Cell. Biol. 11, 3288–3295.PubMedGoogle Scholar
  19. Bohjanen, P.R., Petryniak, B., June, C.H., Thompson, C.B., and Lindsten, T. (1992) AU RNA-binding factors differ in their binding specifities and affinities. J. Biol. Chem. 267, 6302–6309.PubMedGoogle Scholar
  20. Bouvier, M., Collins, S., O'Dowd, B.F., Campbell, P.T., de Blasi, A., Kobilka, B.K., MacGregor, C., Irons, G.P., Caron, M.G., and Lefkowitz, R.J. (1989) Two distinct pathways for cAMP-mediated down-regulation of the β2-adrenergic receptor. Phosphorylation of the receptor and regulation of its mRNA level. J. Biol. Chem. 264, 16786–16792.PubMedGoogle Scholar
  21. Bouvier, M., Leeb-Lundberg, L.M.F., Benovic, J.L., Caron, M.G., and Lefkowitz, R.J. (1987) Regulation of adrenergic receptor function by phosphorylation. II. Effects of agonist occupancy on phosphorylation of α1-and β2-adrenergic receptors by protein kinase C and the cyclic AMP-dependent protein kinase. J. Biol. Chem. 262, 3106–3113.PubMedGoogle Scholar
  22. Brewer, G. (1991) An A+U-rich element RNA-binding factor regulates c-myc mRNA stability in vitro. Mol. Cell. Biol. 11, 2460–2466.PubMedGoogle Scholar
  23. Bristow, M.R., Minobe, W.A., Raynolds, M.V., Port, D.J., Rasmussen, R., Ray, P.E., and Feldman, A.M. (1993) Reduced β1 receptor messenger abundance in the failing human heart. J. Clin. Invest. 92, 2737–2745.PubMedGoogle Scholar
  24. Brown, C.Y., Lagnado, C.A., and Goodall, G.J. (1996) A cytokine mRNA-destabilizing element that is structurally and functionally distinct from A+U-rich elements. Proc. Natl. Acad. Sci. USA 93, 13721–13725.CrossRefPubMedGoogle Scholar
  25. Buck, L., and Axel., R. (1991) A novel multigene family may encode odorant receptors: A molecular basis for odorant recognition. Cell 65, 175–187.CrossRefPubMedGoogle Scholar
  26. Burd, C.G., and Dreyfuss, G. (1994) Conserved structures and diversity of functions of RNA-binding proteins. Science 265, 615–620.PubMedGoogle Scholar
  27. Campbell, P.T., Hnatowich, M., O'Dowd, B.F., Caron, M.G., Lefkowitz, R.J., and Hausdorff, W.P. (1991) Mutations of the human β2-adrenergic receptor that impair coupling to Gs interfere with receptor down-regulation but not sequestration. Mol. Pharmacol. 39, 192–198.PubMedGoogle Scholar
  28. Caput, D., Beutler, B., Hartog, K., Thayer, R., Brown-Shimer, S., and Cerami, A. (1986) Identification of a common nucleotide sequence in the 3'-untranslated regions of mRNA molecules specifying inflammatory mediators. Proc. Natl. Acad. Sci. USA 83, 1670–1674.PubMedGoogle Scholar
  29. Chen, C.Y.A., Chen, T.M., and Shyu, A.B. (1994) Interplay of two functionally and structurally distinct domains of the c-fos AU-rich element specifies its mRNA-destabilizing function. Mol. Cell. Biol. 14, 416–426.PubMedGoogle Scholar
  30. Chen, C.Y.A., and Shyu, A.B. (1994) Selective degradation of early-response-gene mRNAs: Functional analyses of sequence features of the AU-rich elements. Mol. Cell. Biol. 14, 8471–8482.PubMedGoogle Scholar
  31. Chen, C.Y.A., and Shyu, A.B. (1995) AU-rich elements: Characterization and importance in mRNA degradation. Trends Biochem. Sci. 20, 465–470.CrossRefPubMedGoogle Scholar
  32. Chuang, T.T., LeVine, H., and De Blasi, A. (1995) Phosphorylation and activation of β-adrenergic receptor kinase by protein kinase C. J. Biol. Chem. 270, 18660–18665.CrossRefPubMedGoogle Scholar
  33. Clark, R.B., Friedman, J., Dixon, R.A.F., and Strader, C.D. (1989) Identification of a specific site required for rapid heterologous desensitization of the β-adrenergic receptor by cAMP-dependent protein kinase. Mol. Pharmacol. 36, 343–348.PubMedGoogle Scholar
  34. Cohen, J.A., Baggott, L.A., Romano, C., Arai, M., Southerling, T.E., Young, L.A., Kozak, C.A., Molinoff, P.B., and Greene, M.I. (1993) Characterization of a mouse β1-adrenergic receptor genomic clone. DNA Cell Biol. 12, 537–547.PubMedGoogle Scholar
  35. Collins, S., Altschmied, J., Herbsman, O., Caron, M.G., Mellon, P.L., and Lefkowitz, R.J. (1990) A cAMP response element in the β2-adrenergic reseptor gene confers transcriptional autoregulation by cAMP. J. Biol. Chem. 265, 19330–19335.PubMedGoogle Scholar
  36. Collins, S., Bouvier, M., Bolanowski, M.A., Caron, M.G., and Lefkowitz, R.J. (1989) cAMP stimulates transcription of the β2-adrenergic receptor gene in response to short-term agonist exposure. Proc. Natl. Acad. Sci. USA 86, 4853–4857.PubMedGoogle Scholar
  37. Collins, S., Caron, M.G., and Lefkowitz, R.J. (1988) β2-adrenergic receptors in hamster smooth muscle cells are transcriptionally regulated by glucocorticoids. J. Biol. Chem. 263, 9067–9070.PubMedGoogle Scholar
  38. Collins, S., Lohse, M.J., O'Dowd, B., Caron, M.G., and Lefkowitz, R.J. (1991) Structure and regulation of G-protein-coupled receptors: The β2-adrenergic receptor as a model. Vitam. Horm. 46, 1–39.PubMedGoogle Scholar
  39. Collins, S., Ostrowski, J., and Lefkowitz, R.J. (1993) Cloning and sequence analysis of the human β1-adrenergic receptor 5'-flanking region. Biochim. Biophys. Acta 1172, 171–174.PubMedGoogle Scholar
  40. Danner, S., and Lohse, M.J. (1997) Cell type-specific regulation of β2-adrenoceptor mRNA by agonists. Eur. J. Pharmacol. 331, 73–78.CrossRefPubMedGoogle Scholar
  41. Danner, S., Frank, M., and Lohse, M.J. (1998) Agonist-regulation of human β2-adrenergic receptor mRNA stability occurs via a specific AU-rich element. J. Biol. Chem. 273, 3223–3229.CrossRefPubMedGoogle Scholar
  42. Dawson, T.M., Arriza, J.L., Jaworsky, D.E., Borisy, F.F., Attramadal, H., Lefkowitz, R.J., and Ronnett, G.V. (1993) β-adrenergic receptor kinase-2 and β-arrestin-2 as mediators of odorant-induced desensitization. Science 259, 825–829.PubMedGoogle Scholar
  43. DeMaria, C.T., and Brewer, G. (1996) AUF1 binding affinity to A+U-rich elements correlates with rapid mRNA degradation. J. Biol. Chem. 271, 12179–12184.CrossRefPubMedGoogle Scholar
  44. DeMaria, C.T., Sun, Y., Long, L., Wagner, B.J., and Brewer, G. (1997) Structural determinants in AUF1 required for high affinity binding to A + U-rich elements. J. Biol. Chem. 272, 27635–27643.CrossRefPubMedGoogle Scholar
  45. Dixon, R.A.F., Kobilka, B.K., Strader, D.J., Benovic, J.L., Dohlman, H.G., Frielle, T., Bolanowski, M.A., Bennett, C.D., Rands, E., Diehl, R.E., Mumford, M.A., Slater, E.E., Sigal, I.S., Caron, M.G., Lefkowitz, R.J., and Strader, C.D. (1986) Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 321, 75–79.PubMedGoogle Scholar
  46. Dohlman, H.G., Thorner, J., Caron, M.G., and Lefkowitz, R.J. (1991) Model systems for the study of seven-transmembrane-segment receptors. Annu. Rev. Biochem. 60, 653–688.CrossRefPubMedGoogle Scholar
  47. Dynan, W.S., and Tjian, R. (1985) Control of eukaryotic messenger RNA synthesis by sequence-specific DNA-binding proteins. Nature 316, 774–778.CrossRefPubMedGoogle Scholar
  48. Ehrenman, K., Long, L., Wagner, B.J., and Brewer, G. (1994) Characterization of cDNAs encoding the murine A+U-rich RNA-binding protein AUF1. Gene 149, 315–319CrossRefPubMedGoogle Scholar
  49. Emorine, L.J., Marullo, S., Briend-Sutren, M.M., Patey, G., Tate, K., Delavier-Klutchko, C., and Strosberg, A.D. (1989) Molecular characterization of the human β3-adrenergic receptor. Science 245, 1118–1121.PubMedGoogle Scholar
  50. Emorine, L.J., Marullo, S., Delavier-Klutchko, C., Kaveri, S.V., Durieu-Trautmann, O., and Strosberg, A.D. (1987) Structure of the gene for human β2-adrenergic receptor: Expression and promoter characterization. Proc. Natl. Acad. Sci. USA 84, 6995–6999.PubMedGoogle Scholar
  51. Evanko, D.S., Ellis, C.E., Venkatachalam, V., and Frielle, T. (1998) Preliminary analysis of the transcriptional regulation of the human β1-adrenergic receptor gene. Biochem. Biophys. Res. Commun. 244, 395–402.CrossRefPubMedGoogle Scholar
  52. Evans, R.M. (1988) The steroid and thyroid hormone receptor superfamily. Science 240, 889–895.PubMedGoogle Scholar
  53. Ferguson, S.S.G., Downey, W.E., Colapietro, A.M., Barak, L.S., Menard, L., and Caron, M.G. (1996) Role of β-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271, 363–366.PubMedGoogle Scholar
  54. Ferguson, S.S.G., Menard, L., Barak, L.S., Koch, W.J., Colapietro, A.M., and Caron, M.G. (1995) Role of phosphorylation in agonist-promoted β2-adrenergic receptor sequestration. Rescue of a sequestration-defective mutant receptor by βARK1. J. Biol. Chem. 270, 24782–24789.CrossRefPubMedGoogle Scholar
  55. Feve, B., Baude, B., Krief, S., Strosberg, A.D., Pairault, J., and Emorine, L.J. (1992) Inhibition by dexamethasone of β3-adrenergic receptor responsiveness in 3T3-F442A adipocytes. Evidence for a transcriptional mechanism. J. Biol. Chem. 267, 15909–15915.PubMedGoogle Scholar
  56. Feve, B., Emorine, L.J., Briend-Sutren, M.M., Lasnier, F., Strosberg, A.D., and Pairault, J. (1990) Differential regulation of β1-and β2-adrenergic receptor protein and mRNA levels by glucocorticoids during 3T3-F442A adipose differentiation. J. Biol. Chem. 265, 16343–16349.PubMedGoogle Scholar
  57. Fishman, P.H., Nussbaum, E., and Duman, R.S. (1991) Characterization and regulation of β1-adrenergic receptors in a human neuroepithelioma cell line. J. Neurochem. 56, 596–602.PubMedGoogle Scholar
  58. Fredericks, Z.L., Pitcher, J.A., and Lefkowitz, R.J. (1996) Identification of the G protein-coupled receptor kinase phosphorylation sites in the human β2-adrenergic receptor. J. Biol. Chem. 271, 13796–13803.CrossRefPubMedGoogle Scholar
  59. Freedman, N.J., Liggett, S.B., Drachman, D.E., Pei, G., Caron, M.G., and Lefkowitz, R.J. (1995) Phosphorylation and desensitization of the human β1-adrenergic receptor. J. Biol. Chem. 270, 17953–17961.CrossRefPubMedGoogle Scholar
  60. Frielle, T., Collins, S., Daniel, K.W., Caron, M.G., Lefkowitz, R.J., and Kobilka, B.K. (1987) Cloning of the cDNA of the human β1-adrenergic receptor. Proc. Natl. Acad. Sci. USA 84, 7920–7924.PubMedGoogle Scholar
  61. Gabilondo, A.M., Hegler, J., Krasel, C., Boivin-Jahns, V., Hein, L., and Lohse, M.J. (1997) A dileucine motif in the C terminus of the β2-adrenergic receptor is involved in receptor internalization. Proc. Natl. Acad. Sci. USA 94, 12285–12290.CrossRefPubMedGoogle Scholar
  62. Gabilondo, A.M., Krasel, C., and Lohse, M.J. (1996) Mutations of Tyr326 in the β2-adrenoceptor disrupt multiple receptor functions. Eur. J. Pharmacol. 307, 243–250.CrossRefPubMedGoogle Scholar
  63. Goodman, O.B., Krupnik, J.G., Gurevich, V.V., Benovic, J.B., and Keen, J.H. (1997) Arrestin/clathrin interaction. Localization of the arrestin binding locus to the clathrin terminal domain. J. Biol. Chem. 23, 15017–15022.CrossRefGoogle Scholar
  64. Goodman, O.B., Krupnik, J.G., Santini, F., Gurevich, V.V., Renn, R.B., Gagnon, A.W., Keen, J.H., and Benovic, J.B. (1996) β-arrestin acts as a clathrin adapter in endocytosis of the β2-adrenergic receptor. Nature 383, 447–450.CrossRefPubMedGoogle Scholar
  65. Granneman, J.G., and Lahners, K.N. (1994) Analysis of human and rodent β3-adrenergic receptor messenger ribonucleic acids. Endocrinology 130, 109–114.CrossRefGoogle Scholar
  66. Granneman, J.G., Lahners, K.N., and Chaudhry, A. (1993) Characterization of the human β3-adrenergic receptor gene. Mol. Pharmacol. 44, 264–270.PubMedGoogle Scholar
  67. Granneman, J.G., Lahners, K.N., and Rao, D.D. (1992) Rodent and human β3-adrenergic receptor genes contain an intron within the protein-coding block. Mol. Pharmacol. 42, 964–970.PubMedGoogle Scholar
  68. Guest, S.J., Hadcock, J.R., Watkins, D.C., and Malbon, C.C. (1990) β1-and β2-adrenergic receptor expression in differentiating 3T3-L1 cells. J. Biol. Chem. 265, 5370–5375.PubMedGoogle Scholar
  69. Gurevich, V.V., Pals-Rylaarsdam, R., Benovic, J.L., Hosey, M.M., and Onorato, J.J. (1997) Agonist-receptor-arrestin, an alternative ternary complex with high agonist affinity. J. Biol. Chem. 272, 28849–28852.CrossRefPubMedGoogle Scholar
  70. Habener, J.F., Miller, C.P., and Vallejo, M. (1995) cAMP-dependent regulation of gene transcription by cAMP response element-binding protein and cAMP response element modulator. Vitam. Horm. 51, 1–57.PubMedGoogle Scholar
  71. Hadcock, J.R., and Malbon, C.C. (1988a) Down-regulation of β-adrenergic receptors: Agonist-induced reduction in receptor mRNA levels. Proc. Natl. Acad. Sci. USA 85, 5021–5025.PubMedGoogle Scholar
  72. Hadcock, J.R., and Malbon, C.C. (1988b) Regulation of β-adrenergic receptors by “permissive” hormones: Glucocorticoids increase steady-state levels of receptor mRNA. Proc. Natl. Acad. Sci. USA 85, 8415–8419.PubMedGoogle Scholar
  73. Hadcock, J.R., Ros, M., and Malbon, C.C. (1989a) Agonist regulation of β-adrenergic receptor mRNA. Analysis in S49 mouse lymphoma mutants. J. Biol. Chem. 245, 13956–13961.Google Scholar
  74. Hadcock, J.R., Wang, H.Y., and Malbon, C.C. (1989b) Agonist-induced destabilization of β-adrenergic receptor mRNA. Attenuation of glucocorticoid-induced upregulation of β-adrenergic receptors. J. Biol. Chem. 264, 19928–19933.PubMedGoogle Scholar
  75. Haga, K., and Haga, T. (1992) Activation by G protein βγ subunits of agonist-or light-dependent phosphorylation of muscarinic acetylcholine receptors and rhodopsin. J. Biol. Chem. 267, 2222–2227.PubMedGoogle Scholar
  76. Hargrave, P.A., and McDowell, J.H. (1992) Rhodopsin and phototransduction: A model system for G protein-linked receptors. FASEB J. 6, 2323–2331.PubMedGoogle Scholar
  77. Hausdorff, W.P., Bouvier, M., O'Dowd, B.F., Irons, G.P., Caron, M.G., and Lefkowitz, R.J. (1989) Phosphorylation sites on two domains of the β2-adrenergic receptor are involved in distinct pathways of receptor desensitization. J. Biol. Chem. 264, 12657–12665.PubMedGoogle Scholar
  78. Hausdorff, W.P., Caron, M.G., and Lefkowitz, R.J. (1990) Turning off the signal: Desensitization of β-adrenergic receptor function. FASEB J. 4, 2881–2889.PubMedGoogle Scholar
  79. Heilker, R., Manning-Krieg, U., Zuber, J.F., and Spiess, M. (1996) In vitro binding of clathrin adaptors to sorting signals correlates with endocytosis and basolateral sorting. EMBO J. 15, 2893–2899.PubMedGoogle Scholar
  80. Herrick, D.J., and Ross, J. (1994) The half-life of c-myc mRNA in growing and serum-stimulated cells: Influence of the coding and 3′ untranslated regions and role of ribosome translocation. Mol. Cell. Biol. 14, 2119–2128.PubMedGoogle Scholar
  81. Hosoda, K., Feussner, G.K., Rydelek-Fitzgerald, L., Fishman, P.H., and Duman, R.S. (1994) Agonist and cAMP-mediated regulation of β1-adrenergic receptor mRNA and gene transcription in rat C6 glioma cells. J. Neurochem. 63, 1635–1645.PubMedGoogle Scholar
  82. Hosoda, K., Fitzgerald, L.R., Vaidya, V.A., Feussner, G.K., Fishman, P.H., and Duman, R.S. (1995) Regulation of β2-adrenergic receptor mRNA and gene transcription in rat C6 glioma cells: Effects of agonist, forskolin, and protein synthesis inhibition. Mol. Pharmacol. 48, 206–211.PubMedGoogle Scholar
  83. Hough, C., and Chuang, D.M. (1990) Differential down-regulation of β1-and β2-adrenergic receptor mRNA in C6 glioma cells. Biochem. Biophys. Res. Commun. 170, 46–52.CrossRefPubMedGoogle Scholar
  84. Huang, L.Y., Tholanikunnel, B.G., Vakalopoulou, E., and Malbon, C.C. (1993) The Mr 35,000 β-adrenergic receptor mRNA-binding protein induced by agonists requires both an AUUUA-pentamer and U-rich domains for RNA recognition. J. Biol. Chem. 268, 25769–25775.PubMedGoogle Scholar
  85. Hughes, R.J., and Insel, P.A. (1986) Agonist-mediated regulation of alpha1-and beta2-adrenergic receptor metabolism in a muscle cell line, BC3H-1. Mol. Pharmacol. 29, 521–530.PubMedGoogle Scholar
  86. Izzo, N.J., Seidman, C.E., Collins, S., and Colucci, W.S. (1990) α1-adrenergic receptor mRNA level is regulated by norepinephrine in rabbit aortic smooth muscle cells. Proc. Natl. Acad. Sci. USA 87, 6268–6271.PubMedGoogle Scholar
  87. Jacobson, A., and Peltz, S.W. (1996) Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu. Rev. Biochem. 65, 693–739.CrossRefPubMedGoogle Scholar
  88. Jiang, L., and Kunos, G. (1995) Sequence of the 5′ regulatory domain of the gene encoding the rat β2-adrenergic receptor. Gene 163, 331–332.CrossRefPubMedGoogle Scholar
  89. Jiang, L., Gao, B., and Kunos, G. (1996) DNA elements and protein factors involved in the transcription of the β2-adrenergic receptor gene in rat liver. The negative regulatory role of C/EBPα. Biochemistry 35, 13136–13146.CrossRefPubMedGoogle Scholar
  90. Jockers, R., Da Silva, A., Strosberg, A.D., Bouvier, M., and Marullo, S. (1996) New molecular and structural determinants involved in β2-adrenergic receptor desensitization and sequestration. Delineation using chimeric β32-adrenergic reeptors. J. Biol. Chem. 271, 9355–9362.CrossRefPubMedGoogle Scholar
  91. Kabnick, K.S., and Housman, D.E. (1988) Determinants that contribute to cytoplasmatic stability of human c-fos and β-globin mRNAs are located at several sites in each mRNA. Mol. Cell. Biol. 8, 3244–3250.PubMedGoogle Scholar
  92. Karin, M., Liu, Z.G., and Zandi, E. (1997) AP-1 function and regulation. Curr. Opin. Cell Biol. 9, 240–246.CrossRefPubMedGoogle Scholar
  93. Khorana, H.G. (1992) Rhodopsin, photoreceptor of the rod cell. J. Biol. Chem. 26, 1–4.Google Scholar
  94. Kiely, J., Hadcock, R.J., Bahouth, S.W., and Malbon, C.C. (1994) Glucocorticoids down-regulate β1-adrenergic-receptor expression by suppressing transcription of the receptor gene. Biochem. J. 302, 397–403.PubMedGoogle Scholar
  95. Kobilka, B.K., Dixon, R.A.F., Frielle, T., Dohlman, H.G., Bolanowski, M.A., Sigal, I.S., Yang-Feng, T.L., Francke, U., Caron, M.G., and Lefkowitz, R.J. (1987a) cDNA for the human β2-adrenergic receptor: A protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc. Natl. Acad. Sci. USA 84, 46–50.PubMedGoogle Scholar
  96. Kobilka, B.K., Frielle, T., Dohlman, H.G., Bolanowski, M.A., Dixon, R.A.F., Keller, P., Caron, M.G. and Lefkowitz, R.J. (1987b) Delineation of the intronless nature of the genes for the human and hamster β2-adrenergic receptor and their putative promoter regions. J. Biol. Chem. 262, 7321–7327.PubMedGoogle Scholar
  97. Kobilka, B.K., MacGregor, C., Kiefer, D., Kobilka, T.S., Caron, M.G., and Lefkowitz, R.J. (1987c) Functional activity and regulation of human β2-adrenergic receptors expressed in Xenopus oocytes. J. Biol. Chem. 262, 15796–15802.PubMedGoogle Scholar
  98. Koch, W.J., Inglese, J., Stone, W.C., and Lefkowitz, R.J. (1993) The binding site for the βγ subunits of heterotrimeric G proteins on the β-adrenergic receptor kinase. J. Biol. Chem. 268, 8256–8260.PubMedGoogle Scholar
  99. Kozak, M. (1984) Compilation and analysis of sequences upstream from the transcriptional start site in eukaryotic mRNAs. Nucl. Acids Res. 12, 857–872.PubMedGoogle Scholar
  100. Kozak, M. (1991) Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266, 19867–19870.PubMedGoogle Scholar
  101. Krief, S., Lönnqvist, F., Raimbault, S., Baude, B., Van Spronsen, A., Arner, P., Strosberg, A.D., Ricquier, D., and Emorine, L.J. (1993) Tissue distribution of β3-adrenergic receptor mRNA in man. J. Clin. Invest. 91, 344–349.PubMedGoogle Scholar
  102. Krueger, K.M., Daaka, Y., Pitcher, J.A., and Lefkowitz, R.J. (1997) The role of sequestration in G protein-coupled receptor resensitization. Regulation of β2-adrenergic receptor dephosphorylation by vesicular acidification. J. Biol. Chem. 272, 5–8.CrossRefPubMedGoogle Scholar
  103. Lagnado, C.A., Brown, C.Y., and Goodall, G.J. (1994) AUUUA is not sufficient to promote poly(A) shortening and degradation of an mRNA: The functional sequence within AU-rich elements may be UUAUUUA(U/A)(U/A). Mol. Cell. Biol. 14. 7984–7995.PubMedGoogle Scholar
  104. Lancet, D. (1986) Vertebrate olfactory reception. Annu. Rev. Neurosci. 9, 329–355.CrossRefPubMedGoogle Scholar
  105. Lassegue, B., Alexander, R.W., Nickenig, G., Clark, M., Murphy, T.J., and Griendling, K.K. (1995) Angiotensin II down-regulates the vascular smooth muscle AT1 receptor by transcriptional and post-transcriptional mechanisms: Evidence for homologous and heterologous regulation. Mol. Pharmacol. 48, 601–609.PubMedGoogle Scholar
  106. Lazar-Wesley, E., Hadcock, R.J., Malbon, C.C., Kunos, G., and Ishac, E.J.N. (1991) Tissue-specific regulation of α1B, β1, and β2-adrenergic receptor mRNAs by thyroid state in the rat. Endocrinology 129, 1116–1118.PubMedGoogle Scholar
  107. Lee, N.H., Earle-Hughes, J., and Fraser, C. (1994) Agonist-mediated destabilization of m1 muscarinic acetylcholine receptor mRNA. Elements involved in mRNA stability are involved in the 3′-untranslated region. J. Biol. Chem. 269, 4291–4298.PubMedGoogle Scholar
  108. Lefkowitz, R.J. (1993) G protein-coupled receptor kinases. Cell 74, 409–412.CrossRefPubMedGoogle Scholar
  109. Letourneur, F., and Klausner, R.D. (1992) A novel di-leucine motif and a tyrosine-based motif independently mediate lysosomal targeting and endocytosis of CD3 chains. Cell 69, 1143–1157.CrossRefPubMedGoogle Scholar
  110. Liggett, S.B., Freedman, N.J., Schwinn, D.A., and Lefkowitz, R.J. (1993) Structural basis for receptor subtype-specific regulation revealed by a chimeric β32-adrenergic reeptor. Proc. Natl. Acad. Sci. USA 90, 3665–3669.PubMedGoogle Scholar
  111. Lin, F.T., Krueger, K.M., Kendall, H.E., Daaka, Y., Fredericks, Z.L., Pitcher, J.A., and Lefkowitz, R.J. (1997) Clathrin-mediated endocytosis of the β-adrenergic receptor is regulated by phosphorylation/dephosphorylation of β-arrestin1. J. Biol. Chem. 272, 31051–31057.CrossRefPubMedGoogle Scholar
  112. Lohse, M.J. (1993) Molecular mechanisms of membrane receptor desensitization. Biochim. Biophys. Acta 1179, 171–188.CrossRefPubMedGoogle Scholar
  113. Lohse, M.S., Andexinger, S., Pitcher, J., Trukawinski, S., Codina, J., Faure, J.P., Caron, M.G., and Lefkowitz, R.J. (1992) Receptor-specific desensitization with purified proteins. Kinase dependence and receptor specificity of β-arrestin and arrestin in the β2-adrenergic receptor and rhodopsin systems. J. Biol. Chem. 267, 8558–6564.PubMedGoogle Scholar
  114. Lohse, M.J., Benovic, J.L., Caron, M.G., and Lefkowitz, R.J. (1990a) Multiple pathways of rapid β2-adrenergic receptor desensitization. Delineation with specific inhibitors. J. Biol. Chem. 265, 3202–3209.PubMedGoogle Scholar
  115. Lohse, M.J., Benovic, J.L., Codina, J., Caron, M.G., and Lefkowitz, R.J. (1990b) β-arrestin: A protein that regulates β-adrenergic receptor function. Science 248, 1547–1550.PubMedGoogle Scholar
  116. Lohse, M.J., Krasel, C., Winstel, R., and Mayor, F. (1996) G-protein-coupled receptor kinases. Kidney Int. 49, 1047–1052.PubMedGoogle Scholar
  117. Machida, C.A., Brunzow, J.R., Searles, R.P., Van Thol, H., Tester, B., Neve, K.A., Teal, P., Nipper, V., and Civelli, O. (1990) Molecular cloning and expression of the rat β1 receptor gene. J. Biol. Chem. 265, 12960–12965.PubMedGoogle Scholar
  118. Mahan, L.C., Koachman, A.M., and Insel, P.A. (1985) Genetic analysis of beta-adrenergic receptor internalization and down-regulation. Proc. Natl. Acad. Sci. USA 82, 129–133.PubMedGoogle Scholar
  119. Mahan, L.C., McKernan, R.M., and Insel, P.A. (1987) Metabolism of alpha-and beta-adrenergic receptors in vitro and in vivo. Annu. Rev. Pharmacol. Toxicol. 27, 215–235.PubMedGoogle Scholar
  120. Mak, J.C.W., Nishikawa, M., Shirasaki, H., Miyayasu, K., and Barnes, P.J. (1995) Protective effects of a glucocorticoid on downregulation of pulmonary β2-adrenergic receptors in vivo. J. Clin. Invest. 96, 99–106.PubMedGoogle Scholar
  121. Malbon, C.C., and Hadcock, R.J. (1988) Evidence that glucocorticoid response elements in the 5′-noncoding region of the hamster β2-adrenergic receptor gene are obligate for glucocorticoid regulation of receptor mRNA levels. Biochem. Biophys. Res. Commun. 154, 676–681.CrossRefPubMedGoogle Scholar
  122. Malter, J.S. (1989) Identification of an AUUUA-specific messenger RNA binding protein. Science 246, 664–666.PubMedGoogle Scholar
  123. McGraw, D.W., Jacobi, S.E., Hiller, F.C., and Cornett, L.E. (1996) Structural and functional analysis of the 5′-flanking region of the rat β2-adrenergic receptor gene. Biochim. Biophys. Acta 1305, 135–138.PubMedGoogle Scholar
  124. Münch, G., Dees, C., Hekman, M., and Palm, D. (1991) Multisite contacts involved in coupling of the β-adrenergic receptor with the stimulatory guanine-nucleotide-binding regulatory protein. Eur. J. Biochem. 198, 357–364.CrossRefPubMedGoogle Scholar
  125. Myer, V.E., Fan, X.C., and Steitz, J.A. (1997) Identification of HuR as a protein implicated in AUUUA-mediated mRNA decay. EMBO J. 16, 2130–2139.CrossRefPubMedGoogle Scholar
  126. Nahmias, C., Blin, N., Elalouf, J.M., Mattei, M.G., Strosberg, A.D., and Emorine, L.J. (1991) Molecular characterization of the mouse β3-adrenergic receptor: Relationship with the atypical receptor of adipocytes. EMBO J. 10, 3721–3727.PubMedGoogle Scholar
  127. Nakada, M.T., Haskell, K.M., Ecker, D.J., Stadel, J.M., and Crooke, S.T. (1989) Genetic regulation of β2-adrenergic receptors in 3T3-L1 fibroblasts. Biochem. J. 260, 53–59.PubMedGoogle Scholar
  128. Nantel, F., Bonin, H., Emorine, L.J., Zilberfarb, V., Strosberg, A.D., Bouvier, M., and Marullo, S. (1993) The human β3-adrenergic receptor is resistant to short-term agonist-promoted desensitization. Mol. Pharmacol. 43, 548–555.PubMedGoogle Scholar
  129. Neer, E.J., and Clapham, D.E. (1988) Roles of G protein subunits in transmembrane signalling. Nature 333, 129–134.CrossRefPubMedGoogle Scholar
  130. Neve, K.A., and Molinoff, P.B (1986) Turnover of β1-and β2-adrenergic receptors after down-regulation or irreversible blockade. Mol. Pharmacol. 30, 104–111.PubMedGoogle Scholar
  131. O'Dowd, B.F., Hnatowich, M., Regan, J.W., Leader, W.M., Caron, M.G., and Lefkowitz, R.J. (1988) Site-directed mutagenesis of the cytoplasmatic domains of the human β2-adrenergic receptor: Localization of regions involved in G protein-receptor coupling. J. Biol. Chem. 263, 15985–15992.PubMedGoogle Scholar
  132. Okamoto, T., Murayama, Y., Hayashi, Y., Inagaki, M., Ogata, E, and Nishimoto, I. (1991) Identification of a GS activator region of the β2-adrenergic receptor that is autoregulated via protein kinaseA-dependent phosphorylation. Cell 67, 723–730.CrossRefPubMedGoogle Scholar
  133. Palczewski, K. (1994) Structure and functions of arrestins. Protein Sci. 3, 1355–1361.PubMedGoogle Scholar
  134. Palczewski, K. (1997) GTP-binding-protein-coupled receptor kinases. Eur. J. Biochem. 248, 261–269.CrossRefPubMedGoogle Scholar
  135. Parola, A.L., and Kobilka, B.K. (1994) The peptide product of a 5′ leader cistron in the β2-adrenergic receptor mRNA inhibits receptor synthesis. J. Biol. Chem. 269, 4497–4505.PubMedGoogle Scholar
  136. Pende, A., Tremmel, K.D., DeMaria, C.T., Blaxall, B.C., Minobe, W.A., Sherman, J.A., Bisognato, J.D., Bristow, M.R., Brewer, G., and Port, J.D. (1996) Regulation of the mRNA-binding protein AUF1 by activation of the β-adrenergic receptor signal transduction pathway. J. Biol. Chem. 271, 8493–8501.CrossRefPubMedGoogle Scholar
  137. Peng, S.S.Y., Chen, C.Y.A., and Shyu, A.B. (1996) Functional characterization of a non-AUUUA AU-rich element from the c-jun proto-oncogene mRNA: Evidence for a novel class of AU-rich elements. Mol. Cell. Biol. 16, 1490–1499.PubMedGoogle Scholar
  138. Perez, D.M., Piascik, M.T., Malik, N., Gaivin, R., and Graham, R.M. (1994) Cloning, expression, and tissue distribution of the rat homolog of the bovine α1C-adrenergic receptor provide evidence for ist classification as the α1A subtype. Mol. Pharmacol. 46, 823–831.PubMedGoogle Scholar
  139. Pippig, S., Andexinger, S., Kiefer, D., Puzicha, M., Caron, M.G., Lefkowitz, R.J., and Lohse, M.J. (1993) Overexpression of β-arrestin und β-adrenergic receptor kinase augment desensitization of β2-adrenergic receptors. J. Biol. Chem. 268, 3201–3208.PubMedGoogle Scholar
  140. Pippig, S., Andexinger, S., and Lohse, M.J. (1995) Sequestration and recycling of β2-adrenergic receptors permit receptor resensitization. Mol. Pharmacol. 47, 666–676.PubMedGoogle Scholar
  141. Pitcher, J.A., Fredericks, Z.L., Stone, W.C., Premont, R.T., Stoffel, R.H., Koch, W.J., and Lefkowitz, R.J. (1996) Phosphatidylinositol 4,5-bisphosphate (PIP2)-enhanced G protein-coupled receptor kinase (GRK) activity: Location, structure and regulation of the PIP2 binding site distinguishes the GRK subfamilies. J. Biol. Chem. 271, 24907–24913.CrossRefPubMedGoogle Scholar
  142. Pitcher, J.A., Inglese, J., Higgins, J.B., Arriza, J.L., Gasey, P.J., Kim, C., Benovic, J.L., Kwatra, M.M., Caron, M.G., and Lefkowitz, R.J. (1992a) Role of βγ subunits of G proteins in targeting the β-adrenergic receptor kinase to membrane bound receptors. Science 257, 1264–1267.PubMedGoogle Scholar
  143. Pitcher, J.A., Lohse, M.J., Codina, J., Caron, M.G., and Lefkowitz, R.J. (1992b) Desensitization of the isolated β2-adrenergic receptor by β-adrenergic receptor kinase, cAMP-dependent protein kinase, and protein kinase C occurs via distinct molecular mechanisms. Biochemistry 31, 3193–3197.CrossRefPubMedGoogle Scholar
  144. Pitcher, J.A., Payne, E.S., Csortos, C., DePaoli-Roach, A.A., and Lefkowitz, R.J. (1995) The G-protein-coupled receptor phosphatase: A protein phosphatase type 2A with a distinct subcellular distribution and substrate specificity. Proc. Natl. Acad. Sci. USA 92, 8343–8347.PubMedGoogle Scholar
  145. Port, J.D., Huang, L.Y., and Malbon, C.C. (1992) β-adrenergic agonists that down-regulate receptor mRNA up-regulate a Mr 35,000 protein(s) that selectively binds to β-adrenergic receptor mRNAs. J. Biol. Chem. 267, 24103–24108.PubMedGoogle Scholar
  146. Rajagopalan, L.E., and Malter, J.S. (1994) Modulation of granulocyte-macrophage colony-stimulating factor mRNA-stability in vitro by the adenosin-uridine binding factor. J. Biol. Chem. 269, 23882–23888.PubMedGoogle Scholar
  147. Ramarao, C.S., Denker, J.M., Perez, D.M., Gaivin, R.J., Riek, R.P., and Graham, R.M. (1992) Genomic organization and expression of the human α1B-adrenergic receptor. J. Biol. Chem. 267, 21936–21945.PubMedGoogle Scholar
  148. Roesler, W.J., Vandenbark, G.R., and Hanson, R.W. (1988) Cyclic AMP and the induction of eukaryotic gene transcription. J. Biol. Chem. 263, 9063–9066.PubMedGoogle Scholar
  149. Rohlff, C., Ahmad, S., Borellini, F., Lei, J., and Glazer, R.I. (1997) Modulation of transcription factor Sp1 by cAMP-dependent protein kinase. J. Biol. Chem. 272, 21137–21141.CrossRefPubMedGoogle Scholar
  150. Ross, J. (1995) mRNA stability in mammalian cells. Microbiol. Rev. 59, 423–450.PubMedGoogle Scholar
  151. Roth, N.S., Campbell, P.T., Caron, M.G., Lefkowitz, R.J., and Lohse, M.J. (1991) Comparative rates of desensitization of β-adrenergic receptors by the β-adrenergic receptor kinase and the cyclic AMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 88, 6201–6204.PubMedGoogle Scholar
  152. Rousseau, G., Nantel, F., and Bouvier, M. (1996) Distinct receptor domains determine subtype-specific coupling and desensitization phenotypes for human β1-and β2-adrenergic receptors. Mol. Pharmacol. 49, 752–760.PubMedGoogle Scholar
  153. Rydelek-Fitzgerald, L., Li, Z., Machida, C.A., Fishman, P.H., and Duman, R.S. (1996) Adrenergic regulation of ICER (inducible cAMP early repressor) and β1-adrenergic receptor gene expression in C6 glioma cells. J. Neurochem. 67, 490–497.PubMedGoogle Scholar
  154. Sachs, A.B. (1993) Messenger RNA degradation in eukaryotes. Cell 74, 413–421.CrossRefPubMedGoogle Scholar
  155. Schiavi, S.C., Wellington, C.L., Shyu, A.B., Chen, C.Y.A., Greenberg, M.E., and Belasco, J.G. (1994) Multiple elements in the c-fos protein-coding region facilitate mRNA deadenylation and decay by a mechanism coupled to translation. J. Biol. Chem. 269, 3441–3448.PubMedGoogle Scholar
  156. Schleicher, S., Boekhoff, I., Arriza, J., Lefkowitz, R.J., and Breer, H. (1993) A β-adrenergic receptor kinase-like enzyme is involved in olfactory signal termination. Proc. Natl. Acad. Sci. USA 90, 1420–1424.PubMedGoogle Scholar
  157. Searles, R.P., Midson, C.N., Nipper, V.J., and Machida, C.A. (1995) Transcription of the rat β1-adrenergic receptor gene. Characterization of the transcript and identification of important sequences. J. Biol. Cem. 270, 157–162.Google Scholar
  158. Searles, R.P., Nipper, V.J., and Machida, C.A. (1994) The rhesus macaque β1-adrenergic receptor gene: Structure of the gene and comparison of the flanking sequences with the rat β1-adrenergic receptor gene. DNA Sequence 4, 231–241.PubMedGoogle Scholar
  159. Seibold, A., January, B.G., Friedman, J., Hipkin, W., and Clark, R.B. (1998) Desensitization of β2-adrenergic receptors with mutations of the proposed G protein-coupled receptor kinase phosphorylation sites. J. Biol. Chem. 273, 7637–7642.CrossRefPubMedGoogle Scholar
  160. Shaw, G., and Kamen, R. (1986) A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46, 659–667.CrossRefPubMedGoogle Scholar
  161. Shear, M., Insel, P.A., Melmon, K.M., and Coffino, P. (1976) Agonist-specific refractoriness induced by isoproterenol. Studies with mutant cells. J. Biol. Chem. 251, 7572–7576.PubMedGoogle Scholar
  162. Shyu, A.B., Belasco, J.G., and Greenberg, M.E. (1991) Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes. Dev. 5, 221–231.PubMedGoogle Scholar
  163. Sibley, D.R., Strasser, R.H., Benovis, J.L., Daniel, K., and Lefkowitz, R.J. (1986) Phosphorylation/dephosphorylation of the β-adrenergic receptor regulates its functional coupling to adenylyl cyclase and subcellular distribution. Proc. Natl. Acad. Sci. USA 83, 9408–9412.PubMedGoogle Scholar
  164. Smale, S.T., and Baltimore, D. (1989) The “initiator” as a transcription control element. Cell 57, 103–113.CrossRefPubMedGoogle Scholar
  165. Snavely, M.D., Ziegler, M.G., and Insel, P.A. (1985) A new approach to determine rates of receptor appearance and disappearance in vivo. Application to agonist-mediated down-regulation of rat renal cortical β1-and β2-adrenergic receptors. Mol. Pharmacol. 27, 19–26.PubMedGoogle Scholar
  166. Sterne-Marr, R., and Benovic, J.L. (1995) Regulation of G protein-coupled receptors by receptor kinases and arrestins. Vitam. Horm. 51, 193–234.PubMedGoogle Scholar
  167. Stoffel, R.H., Pitcher, J.A., and Lefkowitz, R.J. (1997) Targeting G protein-coupled receptor kinases to their receptor substrates. J. Membrane Biol. 157, 1–8.CrossRefGoogle Scholar
  168. Strader, C.D., Sigal, I.S., Blake, A.D., Cheung, A.H., Register, R.B., Rands, E., Zemcik, B.A., Candelore, M.R., and Dixon, R.A.F. (1987) The carboxyl terminus of the hamster β-adrenergic receptor expressed in mouse L-cells is not required for receptor sequestration. Cell 49, 855–863.CrossRefPubMedGoogle Scholar
  169. Su, Y.F., Harden, T.K., and Perkins, J.P. (1980) Catecholamine-specific desensitization of adenylate cyclase. J. Biol. Chem. 255, 7410–7419.PubMedGoogle Scholar
  170. Suzuki, T., Nguyen, C.T., Nantel, F., Bonin, H., Valiquette, M., Frielle, T., and Bouvier, M. (1992) Distinct regulation of β1-and β2-adrenergic receptors in chinese hamster fibroblasts. Mol. Pharmacol. 41, 542–548.PubMedGoogle Scholar
  171. Thekkumkara, T.J., Thomas, W.G., Motel, T.J., and Baker, K.M. (1998) Functional role for the angiotensin II receptor (AT 1A) 3′-untranslated region in determining cellular responses to agonist: Evidence for recognition by RNA binding proteins. Biochem. J. 329, 255–264.PubMedGoogle Scholar
  172. Tholanikunnel, B.G., Granneman, J.G., and Malbon, C.C. (1995) The Mr 35,000 β-adrenergic receptor mRNA-binding protein binds transcripts of G-protein-linked receptors which undergo agonist-induced destabilization. J. Biol. Chem. 270, 12787–12793.CrossRefPubMedGoogle Scholar
  173. Tholanikunnel, B.G., and Malbon, C.C. (1997) A 20-nucleotide (A + U)-rich element of β2-adrenergic receptor (β2AR) mRNA mediates binding to β2AR-binding protein and is obligate for agonist-induced destabilization of receptor mRNA. J. Biol. Chem. 272, 11471–11478.CrossRefPubMedGoogle Scholar
  174. Thomas, R.F., Holt, B.D., Schwinn, D.A., and Liggett, S.B. (1992) Long-term agonist exposure induces upregulation of β3-adrenergic receptor expression via multiple cAMP response elements. Proc. Natl. Acad. Sci. USA 89, 4490–4494.PubMedGoogle Scholar
  175. Touhara, K., Koch, W.J., Hawes, B.E., and Lefkowitz, R.J. (1995) Mutational analysis of the pleckstrin homology domain of the β-adrenergic receptor kinase. Differential effects on Gβγ and phosphatidylinositol 4,5-bisphosphate binding. J. Biol. Chem. 270, 17000–17005.CrossRefPubMedGoogle Scholar
  176. Ungerer, M., Böhm, M., Elce, J.S., Erdmann, E., and Lohse, M.J. (1993) Altered expression of β-adrenergic receptor kinase and β1-adrenergic receptors in the failing human heart. Circulation 87, 454–463.PubMedGoogle Scholar
  177. Vakalopoulou, E., Schaack, J, and Shenk, T. (1991) A 32-kilodalton protein binds to AU-rich domains in the 3′ untranslated regions of rapidly degraded mRNAs. Mol. Cell. Biol. 11, 3355–3364.PubMedGoogle Scholar
  178. van Spronsen, A., Nahmias, C., Krief, S., Briend-Sutren, M.M., Strosberg, A.D., and Emorine, L.J. (1993) The promoter and intron/exon structure of the human and mouse β3-adrenergic-receptor genes. Eur. J. Biochem. 213, 1117–1124.CrossRefPubMedGoogle Scholar
  179. von Zastrow, M., and Kobilka, B.K. (1992) Ligand-regulated internalization and recycling of human β2-adrenergic receptors between the plasma membrane and endosomes containing transferrin receptors. J. Biol. Chem. 267, 3530–3538.PubMedGoogle Scholar
  180. von Zastrow, M., and Kobilka, B.K. (1994) Antagonist-dependent and-independent steps in the mechanism of adrenergic receptor internalization. J. Biol. Chem. 269, 18448–18452.PubMedGoogle Scholar
  181. von Zastrow, M., Link, R., Daunt, D., Barsh, G., and Kobilka, B.K. (1993) Subtype-specific differences in the intracellular sorting of G protein-coupled receptors. J. Biol. Chem. 268, 763–766.PubMedGoogle Scholar
  182. Wagner, B.J., DeMaria, C.T., Sun, Y., Wilson, G.M., and Brewer, G. (1998) Structure and genomic organization of the human AUF1 gene: Alternative pre-mRNA splicing generates four protein isoforms. Genomics 48, 195–202.CrossRefPubMedGoogle Scholar
  183. Wang, J., and Ross, E.M. (1995) The carboxyl-terminal anchorage domain of the turkey β1-adrenergic receptor is encoded by an alternative spliced exon. J. Biol. Chem. 270, 6488–6495.CrossRefPubMedGoogle Scholar
  184. Wang, X., Nickenig, G., and Murphy, T.J. (1997) The vascular smooth muscle type I angiotensin II receptor mRNA is destabilized by cyclic AMP-elevating agents. Mol. Pharmacol. 52, 781–787.PubMedGoogle Scholar
  185. Wellington, C.L., Greenberg, M.E., and Belasco, J.G. (1993) The destabilizing elements in the coding region of c-fos mRNA are recognized as RNA. Mol. Cell. Biol. 13, 5034–5042.PubMedGoogle Scholar
  186. Winstel, R., Freund, S., Krasel, C., Hoppe, E., and Lohse, M.J. (1996) Protein kinase cross-talk: Membrane targeting of the β-adrenergic receptor kinase by protein kinase C. Proc. Natl. Acad. Sci. USA 93, 2105–2109.CrossRefPubMedGoogle Scholar
  187. Xu, N., Chen, C.Y.A., and Shyu, A.B. (1997) Modulation of the fate of cytoplasmatic mRNA by AU-rich elements: Key sequence features controlling mRNA deadenylation and decay. Mol. Cell. Biol. 17, 4611–4621.PubMedGoogle Scholar
  188. Yu, S.S., Lefkowitz, R.J., and Hausdorff, W.P. (1993) β-adrenergic receptor sequestration: A potential mechanism of receptor resensitization. J. Biol. Chem. 268, 268, 337–341.PubMedGoogle Scholar
  189. Zawel, L., and Reinberg, D. (1993) Initiation of transcription by RNA polymerase II: A multi-step process. Progr. Nucl. Acid Res. Mol. Biol. 44, 67–108.Google Scholar
  190. Zhang, J., Barak, L.S., Winkler, K.E., Caron, M.G., and Ferguson, S.S.G. (1997) A central role for β-arrestins and clathrin-coated vesicle-mediated endocytosis in β2-adrenergic receptor resensitization. Differential regulation of receptor resensitization in two distinct cell types. J. Biol. Chem. 272, 27005–27014.CrossRefPubMedGoogle Scholar
  191. Zhang, J., Ferguson, S.S.G., Barak, L.S., Menard, L., and Caron, M.G. (1996) Dynamin and β-arrestin reveal distinct mechanisms for G protein-coupled receptor internalization. J. Biol. Chem. 271, 18302–18305.CrossRefPubMedGoogle Scholar
  192. Zhang, W., Wagner, B.J., Ehrenman, K., Schaefer, A.W., DeMaria, C.T., Crater, D., DeHaven, K., Long, L. and Brewer, G. (1993) Purification, characterization, and cDNA cloning of an AU-rich element RNA-binding protein, AUF1. Mol. Cell. Biol. 13, 7652–7665.PubMedGoogle Scholar
  193. Zubiaga, A.M., Belasco, J.G., and Greenberg, M.E. (1995) The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol. Cell. Biol. 15, 2219–2230.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • S. Danner
    • 1
  • M. J. Lohse
    • 1
  1. 1.Institute of PharmacologyUniversity of WürzburgWürzburgGermany

Personalised recommendations