Skip to main content

Regulation of β-Adrenergic receptor responsiveness modulation of receptor gene expression

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 136

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 136))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

βAR:

β-adrenergic receptor

βARB:

β-adrenergic receptor mRNA binding protein

ARE:

AU-rich element

AUF1:

AU-rich element RNA-binding/degradation factor 1

bp:

base pair(s)

CRE:

cAMP response element

Gs :

stimulatory G-protein

Gβγ:

G-protein βγ-subunits

GRE:

glucocorticoid response element

GRK:

G-protein-coupled receptor kinase

nt.:

nuctleotide(s)

PKA:

protein kinase A

PKC:

protein kinase C, TRE, thyroid hormone response element

TSS:

transcriptional start site

UTR:

untranslated region

References

  • Allen, J.M., Abrass, I.B., and Palmiter, R.D. (1989) β2-adrenergic receptor regulation after transfection into a cell line deficient in the cAMP-dependent protein kinase. Mol. Pharmacol. 36, 248–255.

    PubMed  Google Scholar 

  • Arriza, J.L., Dawson, T.M., Simerly, R.B., Martin, L.J., Caron, M.G., Snyder, S.H., and Lefkowitz, R.J. (1992) The G-protein-coupled receptor kinases βARK1 and βARK2 are widely distributed at synapses in rat brain. J. Neurosci. 12, 4045–4055.

    PubMed  Google Scholar 

  • Attramadal, H., Arriza, J.L., Aoki, C., Dawson, T.M., Codina, J., Kwatra, M.M., Snyder, S.H., Caron, M.G., and Lefkowitz, R.J. (1992) β-arrestin2, a novel member of the arrestin/β-arrestin gene family. J. Biol. Chem. 267, 17882–17890.

    PubMed  Google Scholar 

  • Baeyens, D.A., and Cornett, L.E. (1993) Transcriptional and posttranscriptional regulation of hepatic β2-adrenergic receptor gene expression during development. J. Cell. Physiol. 157, 70–76.

    Article  PubMed  Google Scholar 

  • Baeyens, D.A., and Cornett, L.E. (1995) Association of hepatic β2-adrenergic receptor gene transcript destabilization during postnatal development in the Sprangue-Dawley rat with a Mr 85,000 protein that binds selectively to the β2-adrenergic receptor mRNA 3′-untranslated region. J. Cell. Physiol. 163, 305–311.

    Article  PubMed  Google Scholar 

  • Baeyens, D.A., McGraw, D.W., Jacobi, S.E., and Cornett, L.E. (1998) Transcription of the β2-adrenergic receptor gene in rat liver is regulated during early postnatal development by an upstream repressor element. J. Cell. Physiol. 175, 333–340.

    Article  PubMed  Google Scholar 

  • Bahouth, S.W. (1991) Thyroid hormones transcriptionally regulate the β1-adrenergic receptor gene in cultured ventricular myocytes. J. Biol. Chem. 266, 15863–15869.

    PubMed  Google Scholar 

  • Bahouth, S.W., Cui, X., Beauchamp, M.J., and Park, E.A. (1997a) Thyroid hormone induces β1-adrenergic receptor gene transcription through a direct repeat separated by five nucleotides. J. Mol. Cell. Cardiol. 29, 3223–3237.

    Article  PubMed  Google Scholar 

  • Bahouth, S.W., Cui, X., Beauchamp, M.J., Shimomura, H., George, S.T., and Park, E.A. (1997b) Promoter analysis of the rat β1-adrenergic receptor gene identifies sequences involved in basal expression. Mol. Pharmacol. 51, 620–629.

    PubMed  Google Scholar 

  • Bengtsson, T., Redegren, K., Strosberg, A.D., Nedergaard, J., and Cannon, B. (1996) Down-regulation of β3 adrenoceptor gene expression in brown fat cells is transient and recovery is dependent upon a short-lived protein factor. J. Biol. Chem. 271, 33366–33375.

    Article  PubMed  Google Scholar 

  • Benovic, J.L., Bouvier, M., Caron, M.G., and Lefkowitz, R.J. (1988) Regulation of adenylyl cyclase-coupled β-adrenergic receptors. Annu. Rev. Cell. Biol. 4, 405–428.

    Article  PubMed  Google Scholar 

  • Benovic, J.L., Pike, L.J., Cerione, R.A., Staniszewski, C., Yoshimasa, T., Codina, J., Caron, M.G., and Lefkowitz, R.J. (1985) Phosphorylation of the mammalian β-adrenergic receptor by cyclic AMP-dependent protein kinase. J. Biol. Chem. 260, 7094–7101.

    PubMed  Google Scholar 

  • Benovic, J.L., Caron, M.G., and Lefkowitz, R.J. (1984) The mammalian β2-adrenergic receptor: Purification and characterization. Biochemistry 23, 4519–4525.

    Article  PubMed  Google Scholar 

  • Benovic, J.L., Strasser, R.H., Caron, M.G., and Lefkowitz, R.J. (1986) β-adrenergic receptor kinase: Identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor. Proc. Natl. Acad. Sci. USA 83, 2797–2801.

    PubMed  Google Scholar 

  • Bird, A.P. (1986) CpG-rich islands and the function of DNA methylation. Nature 321, 209–213.

    Article  PubMed  Google Scholar 

  • Blake, A.D., Mumford, R.A., Strout, H.V., Slater, E.G., and Strader, C.G. (1987) Synthetic segments of the mammalian β-adrenergic receptor are preferentially recognized by cAMP-dependent protein kinase and protein kinase C. Biochem. Biophys. Res. Commun. 147, 168–173.

    Article  PubMed  Google Scholar 

  • Boekhoff, I., Inglese, J., Schleicher, S., Koch, W.J., Lefkowitz, R.J., and Breer, H. (1994) Olfactory desensitization requires membrane targeting of receptor kinase mediated by βγ-subunits of heterotrimeric G proteins. J. Biol. Chem. 269, 37–40.

    PubMed  Google Scholar 

  • Bohjanen, P.R., Petryniak, B., June, C.H., Thompson, C.B., and Lindsten, T. (1991) An inducible cytoplasmatic factor (AU-B) binds selectively to AUUUA multimers in the 3' untranslated region of lymphokine mRNA. Mol. Cell. Biol. 11, 3288–3295.

    PubMed  Google Scholar 

  • Bohjanen, P.R., Petryniak, B., June, C.H., Thompson, C.B., and Lindsten, T. (1992) AU RNA-binding factors differ in their binding specifities and affinities. J. Biol. Chem. 267, 6302–6309.

    PubMed  Google Scholar 

  • Bouvier, M., Collins, S., O'Dowd, B.F., Campbell, P.T., de Blasi, A., Kobilka, B.K., MacGregor, C., Irons, G.P., Caron, M.G., and Lefkowitz, R.J. (1989) Two distinct pathways for cAMP-mediated down-regulation of the β2-adrenergic receptor. Phosphorylation of the receptor and regulation of its mRNA level. J. Biol. Chem. 264, 16786–16792.

    PubMed  Google Scholar 

  • Bouvier, M., Leeb-Lundberg, L.M.F., Benovic, J.L., Caron, M.G., and Lefkowitz, R.J. (1987) Regulation of adrenergic receptor function by phosphorylation. II. Effects of agonist occupancy on phosphorylation of α1-and β2-adrenergic receptors by protein kinase C and the cyclic AMP-dependent protein kinase. J. Biol. Chem. 262, 3106–3113.

    PubMed  Google Scholar 

  • Brewer, G. (1991) An A+U-rich element RNA-binding factor regulates c-myc mRNA stability in vitro. Mol. Cell. Biol. 11, 2460–2466.

    PubMed  Google Scholar 

  • Bristow, M.R., Minobe, W.A., Raynolds, M.V., Port, D.J., Rasmussen, R., Ray, P.E., and Feldman, A.M. (1993) Reduced β1 receptor messenger abundance in the failing human heart. J. Clin. Invest. 92, 2737–2745.

    PubMed  Google Scholar 

  • Brown, C.Y., Lagnado, C.A., and Goodall, G.J. (1996) A cytokine mRNA-destabilizing element that is structurally and functionally distinct from A+U-rich elements. Proc. Natl. Acad. Sci. USA 93, 13721–13725.

    Article  PubMed  Google Scholar 

  • Buck, L., and Axel., R. (1991) A novel multigene family may encode odorant receptors: A molecular basis for odorant recognition. Cell 65, 175–187.

    Article  PubMed  Google Scholar 

  • Burd, C.G., and Dreyfuss, G. (1994) Conserved structures and diversity of functions of RNA-binding proteins. Science 265, 615–620.

    PubMed  Google Scholar 

  • Campbell, P.T., Hnatowich, M., O'Dowd, B.F., Caron, M.G., Lefkowitz, R.J., and Hausdorff, W.P. (1991) Mutations of the human β2-adrenergic receptor that impair coupling to Gs interfere with receptor down-regulation but not sequestration. Mol. Pharmacol. 39, 192–198.

    PubMed  Google Scholar 

  • Caput, D., Beutler, B., Hartog, K., Thayer, R., Brown-Shimer, S., and Cerami, A. (1986) Identification of a common nucleotide sequence in the 3'-untranslated regions of mRNA molecules specifying inflammatory mediators. Proc. Natl. Acad. Sci. USA 83, 1670–1674.

    PubMed  Google Scholar 

  • Chen, C.Y.A., Chen, T.M., and Shyu, A.B. (1994) Interplay of two functionally and structurally distinct domains of the c-fos AU-rich element specifies its mRNA-destabilizing function. Mol. Cell. Biol. 14, 416–426.

    PubMed  Google Scholar 

  • Chen, C.Y.A., and Shyu, A.B. (1994) Selective degradation of early-response-gene mRNAs: Functional analyses of sequence features of the AU-rich elements. Mol. Cell. Biol. 14, 8471–8482.

    PubMed  Google Scholar 

  • Chen, C.Y.A., and Shyu, A.B. (1995) AU-rich elements: Characterization and importance in mRNA degradation. Trends Biochem. Sci. 20, 465–470.

    Article  PubMed  Google Scholar 

  • Chuang, T.T., LeVine, H., and De Blasi, A. (1995) Phosphorylation and activation of β-adrenergic receptor kinase by protein kinase C. J. Biol. Chem. 270, 18660–18665.

    Article  PubMed  Google Scholar 

  • Clark, R.B., Friedman, J., Dixon, R.A.F., and Strader, C.D. (1989) Identification of a specific site required for rapid heterologous desensitization of the β-adrenergic receptor by cAMP-dependent protein kinase. Mol. Pharmacol. 36, 343–348.

    PubMed  Google Scholar 

  • Cohen, J.A., Baggott, L.A., Romano, C., Arai, M., Southerling, T.E., Young, L.A., Kozak, C.A., Molinoff, P.B., and Greene, M.I. (1993) Characterization of a mouse β1-adrenergic receptor genomic clone. DNA Cell Biol. 12, 537–547.

    PubMed  Google Scholar 

  • Collins, S., Altschmied, J., Herbsman, O., Caron, M.G., Mellon, P.L., and Lefkowitz, R.J. (1990) A cAMP response element in the β2-adrenergic reseptor gene confers transcriptional autoregulation by cAMP. J. Biol. Chem. 265, 19330–19335.

    PubMed  Google Scholar 

  • Collins, S., Bouvier, M., Bolanowski, M.A., Caron, M.G., and Lefkowitz, R.J. (1989) cAMP stimulates transcription of the β2-adrenergic receptor gene in response to short-term agonist exposure. Proc. Natl. Acad. Sci. USA 86, 4853–4857.

    PubMed  Google Scholar 

  • Collins, S., Caron, M.G., and Lefkowitz, R.J. (1988) β2-adrenergic receptors in hamster smooth muscle cells are transcriptionally regulated by glucocorticoids. J. Biol. Chem. 263, 9067–9070.

    PubMed  Google Scholar 

  • Collins, S., Lohse, M.J., O'Dowd, B., Caron, M.G., and Lefkowitz, R.J. (1991) Structure and regulation of G-protein-coupled receptors: The β2-adrenergic receptor as a model. Vitam. Horm. 46, 1–39.

    PubMed  Google Scholar 

  • Collins, S., Ostrowski, J., and Lefkowitz, R.J. (1993) Cloning and sequence analysis of the human β1-adrenergic receptor 5'-flanking region. Biochim. Biophys. Acta 1172, 171–174.

    PubMed  Google Scholar 

  • Danner, S., and Lohse, M.J. (1997) Cell type-specific regulation of β2-adrenoceptor mRNA by agonists. Eur. J. Pharmacol. 331, 73–78.

    Article  PubMed  Google Scholar 

  • Danner, S., Frank, M., and Lohse, M.J. (1998) Agonist-regulation of human β2-adrenergic receptor mRNA stability occurs via a specific AU-rich element. J. Biol. Chem. 273, 3223–3229.

    Article  PubMed  Google Scholar 

  • Dawson, T.M., Arriza, J.L., Jaworsky, D.E., Borisy, F.F., Attramadal, H., Lefkowitz, R.J., and Ronnett, G.V. (1993) β-adrenergic receptor kinase-2 and β-arrestin-2 as mediators of odorant-induced desensitization. Science 259, 825–829.

    PubMed  Google Scholar 

  • DeMaria, C.T., and Brewer, G. (1996) AUF1 binding affinity to A+U-rich elements correlates with rapid mRNA degradation. J. Biol. Chem. 271, 12179–12184.

    Article  PubMed  Google Scholar 

  • DeMaria, C.T., Sun, Y., Long, L., Wagner, B.J., and Brewer, G. (1997) Structural determinants in AUF1 required for high affinity binding to A + U-rich elements. J. Biol. Chem. 272, 27635–27643.

    Article  PubMed  Google Scholar 

  • Dixon, R.A.F., Kobilka, B.K., Strader, D.J., Benovic, J.L., Dohlman, H.G., Frielle, T., Bolanowski, M.A., Bennett, C.D., Rands, E., Diehl, R.E., Mumford, M.A., Slater, E.E., Sigal, I.S., Caron, M.G., Lefkowitz, R.J., and Strader, C.D. (1986) Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 321, 75–79.

    PubMed  Google Scholar 

  • Dohlman, H.G., Thorner, J., Caron, M.G., and Lefkowitz, R.J. (1991) Model systems for the study of seven-transmembrane-segment receptors. Annu. Rev. Biochem. 60, 653–688.

    Article  PubMed  Google Scholar 

  • Dynan, W.S., and Tjian, R. (1985) Control of eukaryotic messenger RNA synthesis by sequence-specific DNA-binding proteins. Nature 316, 774–778.

    Article  PubMed  Google Scholar 

  • Ehrenman, K., Long, L., Wagner, B.J., and Brewer, G. (1994) Characterization of cDNAs encoding the murine A+U-rich RNA-binding protein AUF1. Gene 149, 315–319

    Article  PubMed  Google Scholar 

  • Emorine, L.J., Marullo, S., Briend-Sutren, M.M., Patey, G., Tate, K., Delavier-Klutchko, C., and Strosberg, A.D. (1989) Molecular characterization of the human β3-adrenergic receptor. Science 245, 1118–1121.

    PubMed  Google Scholar 

  • Emorine, L.J., Marullo, S., Delavier-Klutchko, C., Kaveri, S.V., Durieu-Trautmann, O., and Strosberg, A.D. (1987) Structure of the gene for human β2-adrenergic receptor: Expression and promoter characterization. Proc. Natl. Acad. Sci. USA 84, 6995–6999.

    PubMed  Google Scholar 

  • Evanko, D.S., Ellis, C.E., Venkatachalam, V., and Frielle, T. (1998) Preliminary analysis of the transcriptional regulation of the human β1-adrenergic receptor gene. Biochem. Biophys. Res. Commun. 244, 395–402.

    Article  PubMed  Google Scholar 

  • Evans, R.M. (1988) The steroid and thyroid hormone receptor superfamily. Science 240, 889–895.

    PubMed  Google Scholar 

  • Ferguson, S.S.G., Downey, W.E., Colapietro, A.M., Barak, L.S., Menard, L., and Caron, M.G. (1996) Role of β-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271, 363–366.

    PubMed  Google Scholar 

  • Ferguson, S.S.G., Menard, L., Barak, L.S., Koch, W.J., Colapietro, A.M., and Caron, M.G. (1995) Role of phosphorylation in agonist-promoted β2-adrenergic receptor sequestration. Rescue of a sequestration-defective mutant receptor by βARK1. J. Biol. Chem. 270, 24782–24789.

    Article  PubMed  Google Scholar 

  • Feve, B., Baude, B., Krief, S., Strosberg, A.D., Pairault, J., and Emorine, L.J. (1992) Inhibition by dexamethasone of β3-adrenergic receptor responsiveness in 3T3-F442A adipocytes. Evidence for a transcriptional mechanism. J. Biol. Chem. 267, 15909–15915.

    PubMed  Google Scholar 

  • Feve, B., Emorine, L.J., Briend-Sutren, M.M., Lasnier, F., Strosberg, A.D., and Pairault, J. (1990) Differential regulation of β1-and β2-adrenergic receptor protein and mRNA levels by glucocorticoids during 3T3-F442A adipose differentiation. J. Biol. Chem. 265, 16343–16349.

    PubMed  Google Scholar 

  • Fishman, P.H., Nussbaum, E., and Duman, R.S. (1991) Characterization and regulation of β1-adrenergic receptors in a human neuroepithelioma cell line. J. Neurochem. 56, 596–602.

    PubMed  Google Scholar 

  • Fredericks, Z.L., Pitcher, J.A., and Lefkowitz, R.J. (1996) Identification of the G protein-coupled receptor kinase phosphorylation sites in the human β2-adrenergic receptor. J. Biol. Chem. 271, 13796–13803.

    Article  PubMed  Google Scholar 

  • Freedman, N.J., Liggett, S.B., Drachman, D.E., Pei, G., Caron, M.G., and Lefkowitz, R.J. (1995) Phosphorylation and desensitization of the human β1-adrenergic receptor. J. Biol. Chem. 270, 17953–17961.

    Article  PubMed  Google Scholar 

  • Frielle, T., Collins, S., Daniel, K.W., Caron, M.G., Lefkowitz, R.J., and Kobilka, B.K. (1987) Cloning of the cDNA of the human β1-adrenergic receptor. Proc. Natl. Acad. Sci. USA 84, 7920–7924.

    PubMed  Google Scholar 

  • Gabilondo, A.M., Hegler, J., Krasel, C., Boivin-Jahns, V., Hein, L., and Lohse, M.J. (1997) A dileucine motif in the C terminus of the β2-adrenergic receptor is involved in receptor internalization. Proc. Natl. Acad. Sci. USA 94, 12285–12290.

    Article  PubMed  Google Scholar 

  • Gabilondo, A.M., Krasel, C., and Lohse, M.J. (1996) Mutations of Tyr326 in the β2-adrenoceptor disrupt multiple receptor functions. Eur. J. Pharmacol. 307, 243–250.

    Article  PubMed  Google Scholar 

  • Goodman, O.B., Krupnik, J.G., Gurevich, V.V., Benovic, J.B., and Keen, J.H. (1997) Arrestin/clathrin interaction. Localization of the arrestin binding locus to the clathrin terminal domain. J. Biol. Chem. 23, 15017–15022.

    Article  Google Scholar 

  • Goodman, O.B., Krupnik, J.G., Santini, F., Gurevich, V.V., Renn, R.B., Gagnon, A.W., Keen, J.H., and Benovic, J.B. (1996) β-arrestin acts as a clathrin adapter in endocytosis of the β2-adrenergic receptor. Nature 383, 447–450.

    Article  PubMed  Google Scholar 

  • Granneman, J.G., and Lahners, K.N. (1994) Analysis of human and rodent β3-adrenergic receptor messenger ribonucleic acids. Endocrinology 130, 109–114.

    Article  Google Scholar 

  • Granneman, J.G., Lahners, K.N., and Chaudhry, A. (1993) Characterization of the human β3-adrenergic receptor gene. Mol. Pharmacol. 44, 264–270.

    PubMed  Google Scholar 

  • Granneman, J.G., Lahners, K.N., and Rao, D.D. (1992) Rodent and human β3-adrenergic receptor genes contain an intron within the protein-coding block. Mol. Pharmacol. 42, 964–970.

    PubMed  Google Scholar 

  • Guest, S.J., Hadcock, J.R., Watkins, D.C., and Malbon, C.C. (1990) β1-and β2-adrenergic receptor expression in differentiating 3T3-L1 cells. J. Biol. Chem. 265, 5370–5375.

    PubMed  Google Scholar 

  • Gurevich, V.V., Pals-Rylaarsdam, R., Benovic, J.L., Hosey, M.M., and Onorato, J.J. (1997) Agonist-receptor-arrestin, an alternative ternary complex with high agonist affinity. J. Biol. Chem. 272, 28849–28852.

    Article  PubMed  Google Scholar 

  • Habener, J.F., Miller, C.P., and Vallejo, M. (1995) cAMP-dependent regulation of gene transcription by cAMP response element-binding protein and cAMP response element modulator. Vitam. Horm. 51, 1–57.

    PubMed  Google Scholar 

  • Hadcock, J.R., and Malbon, C.C. (1988a) Down-regulation of β-adrenergic receptors: Agonist-induced reduction in receptor mRNA levels. Proc. Natl. Acad. Sci. USA 85, 5021–5025.

    PubMed  Google Scholar 

  • Hadcock, J.R., and Malbon, C.C. (1988b) Regulation of β-adrenergic receptors by “permissive” hormones: Glucocorticoids increase steady-state levels of receptor mRNA. Proc. Natl. Acad. Sci. USA 85, 8415–8419.

    PubMed  Google Scholar 

  • Hadcock, J.R., Ros, M., and Malbon, C.C. (1989a) Agonist regulation of β-adrenergic receptor mRNA. Analysis in S49 mouse lymphoma mutants. J. Biol. Chem. 245, 13956–13961.

    Google Scholar 

  • Hadcock, J.R., Wang, H.Y., and Malbon, C.C. (1989b) Agonist-induced destabilization of β-adrenergic receptor mRNA. Attenuation of glucocorticoid-induced upregulation of β-adrenergic receptors. J. Biol. Chem. 264, 19928–19933.

    PubMed  Google Scholar 

  • Haga, K., and Haga, T. (1992) Activation by G protein βγ subunits of agonist-or light-dependent phosphorylation of muscarinic acetylcholine receptors and rhodopsin. J. Biol. Chem. 267, 2222–2227.

    PubMed  Google Scholar 

  • Hargrave, P.A., and McDowell, J.H. (1992) Rhodopsin and phototransduction: A model system for G protein-linked receptors. FASEB J. 6, 2323–2331.

    PubMed  Google Scholar 

  • Hausdorff, W.P., Bouvier, M., O'Dowd, B.F., Irons, G.P., Caron, M.G., and Lefkowitz, R.J. (1989) Phosphorylation sites on two domains of the β2-adrenergic receptor are involved in distinct pathways of receptor desensitization. J. Biol. Chem. 264, 12657–12665.

    PubMed  Google Scholar 

  • Hausdorff, W.P., Caron, M.G., and Lefkowitz, R.J. (1990) Turning off the signal: Desensitization of β-adrenergic receptor function. FASEB J. 4, 2881–2889.

    PubMed  Google Scholar 

  • Heilker, R., Manning-Krieg, U., Zuber, J.F., and Spiess, M. (1996) In vitro binding of clathrin adaptors to sorting signals correlates with endocytosis and basolateral sorting. EMBO J. 15, 2893–2899.

    PubMed  Google Scholar 

  • Herrick, D.J., and Ross, J. (1994) The half-life of c-myc mRNA in growing and serum-stimulated cells: Influence of the coding and 3′ untranslated regions and role of ribosome translocation. Mol. Cell. Biol. 14, 2119–2128.

    PubMed  Google Scholar 

  • Hosoda, K., Feussner, G.K., Rydelek-Fitzgerald, L., Fishman, P.H., and Duman, R.S. (1994) Agonist and cAMP-mediated regulation of β1-adrenergic receptor mRNA and gene transcription in rat C6 glioma cells. J. Neurochem. 63, 1635–1645.

    PubMed  Google Scholar 

  • Hosoda, K., Fitzgerald, L.R., Vaidya, V.A., Feussner, G.K., Fishman, P.H., and Duman, R.S. (1995) Regulation of β2-adrenergic receptor mRNA and gene transcription in rat C6 glioma cells: Effects of agonist, forskolin, and protein synthesis inhibition. Mol. Pharmacol. 48, 206–211.

    PubMed  Google Scholar 

  • Hough, C., and Chuang, D.M. (1990) Differential down-regulation of β1-and β2-adrenergic receptor mRNA in C6 glioma cells. Biochem. Biophys. Res. Commun. 170, 46–52.

    Article  PubMed  Google Scholar 

  • Huang, L.Y., Tholanikunnel, B.G., Vakalopoulou, E., and Malbon, C.C. (1993) The Mr 35,000 β-adrenergic receptor mRNA-binding protein induced by agonists requires both an AUUUA-pentamer and U-rich domains for RNA recognition. J. Biol. Chem. 268, 25769–25775.

    PubMed  Google Scholar 

  • Hughes, R.J., and Insel, P.A. (1986) Agonist-mediated regulation of alpha1-and beta2-adrenergic receptor metabolism in a muscle cell line, BC3H-1. Mol. Pharmacol. 29, 521–530.

    PubMed  Google Scholar 

  • Izzo, N.J., Seidman, C.E., Collins, S., and Colucci, W.S. (1990) α1-adrenergic receptor mRNA level is regulated by norepinephrine in rabbit aortic smooth muscle cells. Proc. Natl. Acad. Sci. USA 87, 6268–6271.

    PubMed  Google Scholar 

  • Jacobson, A., and Peltz, S.W. (1996) Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu. Rev. Biochem. 65, 693–739.

    Article  PubMed  Google Scholar 

  • Jiang, L., and Kunos, G. (1995) Sequence of the 5′ regulatory domain of the gene encoding the rat β2-adrenergic receptor. Gene 163, 331–332.

    Article  PubMed  Google Scholar 

  • Jiang, L., Gao, B., and Kunos, G. (1996) DNA elements and protein factors involved in the transcription of the β2-adrenergic receptor gene in rat liver. The negative regulatory role of C/EBPα. Biochemistry 35, 13136–13146.

    Article  PubMed  Google Scholar 

  • Jockers, R., Da Silva, A., Strosberg, A.D., Bouvier, M., and Marullo, S. (1996) New molecular and structural determinants involved in β2-adrenergic receptor desensitization and sequestration. Delineation using chimeric β32-adrenergic reeptors. J. Biol. Chem. 271, 9355–9362.

    Article  PubMed  Google Scholar 

  • Kabnick, K.S., and Housman, D.E. (1988) Determinants that contribute to cytoplasmatic stability of human c-fos and β-globin mRNAs are located at several sites in each mRNA. Mol. Cell. Biol. 8, 3244–3250.

    PubMed  Google Scholar 

  • Karin, M., Liu, Z.G., and Zandi, E. (1997) AP-1 function and regulation. Curr. Opin. Cell Biol. 9, 240–246.

    Article  PubMed  Google Scholar 

  • Khorana, H.G. (1992) Rhodopsin, photoreceptor of the rod cell. J. Biol. Chem. 26, 1–4.

    Google Scholar 

  • Kiely, J., Hadcock, R.J., Bahouth, S.W., and Malbon, C.C. (1994) Glucocorticoids down-regulate β1-adrenergic-receptor expression by suppressing transcription of the receptor gene. Biochem. J. 302, 397–403.

    PubMed  Google Scholar 

  • Kobilka, B.K., Dixon, R.A.F., Frielle, T., Dohlman, H.G., Bolanowski, M.A., Sigal, I.S., Yang-Feng, T.L., Francke, U., Caron, M.G., and Lefkowitz, R.J. (1987a) cDNA for the human β2-adrenergic receptor: A protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc. Natl. Acad. Sci. USA 84, 46–50.

    PubMed  Google Scholar 

  • Kobilka, B.K., Frielle, T., Dohlman, H.G., Bolanowski, M.A., Dixon, R.A.F., Keller, P., Caron, M.G. and Lefkowitz, R.J. (1987b) Delineation of the intronless nature of the genes for the human and hamster β2-adrenergic receptor and their putative promoter regions. J. Biol. Chem. 262, 7321–7327.

    PubMed  Google Scholar 

  • Kobilka, B.K., MacGregor, C., Kiefer, D., Kobilka, T.S., Caron, M.G., and Lefkowitz, R.J. (1987c) Functional activity and regulation of human β2-adrenergic receptors expressed in Xenopus oocytes. J. Biol. Chem. 262, 15796–15802.

    PubMed  Google Scholar 

  • Koch, W.J., Inglese, J., Stone, W.C., and Lefkowitz, R.J. (1993) The binding site for the βγ subunits of heterotrimeric G proteins on the β-adrenergic receptor kinase. J. Biol. Chem. 268, 8256–8260.

    PubMed  Google Scholar 

  • Kozak, M. (1984) Compilation and analysis of sequences upstream from the transcriptional start site in eukaryotic mRNAs. Nucl. Acids Res. 12, 857–872.

    PubMed  Google Scholar 

  • Kozak, M. (1991) Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266, 19867–19870.

    PubMed  Google Scholar 

  • Krief, S., Lönnqvist, F., Raimbault, S., Baude, B., Van Spronsen, A., Arner, P., Strosberg, A.D., Ricquier, D., and Emorine, L.J. (1993) Tissue distribution of β3-adrenergic receptor mRNA in man. J. Clin. Invest. 91, 344–349.

    PubMed  Google Scholar 

  • Krueger, K.M., Daaka, Y., Pitcher, J.A., and Lefkowitz, R.J. (1997) The role of sequestration in G protein-coupled receptor resensitization. Regulation of β2-adrenergic receptor dephosphorylation by vesicular acidification. J. Biol. Chem. 272, 5–8.

    Article  PubMed  Google Scholar 

  • Lagnado, C.A., Brown, C.Y., and Goodall, G.J. (1994) AUUUA is not sufficient to promote poly(A) shortening and degradation of an mRNA: The functional sequence within AU-rich elements may be UUAUUUA(U/A)(U/A). Mol. Cell. Biol. 14. 7984–7995.

    PubMed  Google Scholar 

  • Lancet, D. (1986) Vertebrate olfactory reception. Annu. Rev. Neurosci. 9, 329–355.

    Article  PubMed  Google Scholar 

  • Lassegue, B., Alexander, R.W., Nickenig, G., Clark, M., Murphy, T.J., and Griendling, K.K. (1995) Angiotensin II down-regulates the vascular smooth muscle AT1 receptor by transcriptional and post-transcriptional mechanisms: Evidence for homologous and heterologous regulation. Mol. Pharmacol. 48, 601–609.

    PubMed  Google Scholar 

  • Lazar-Wesley, E., Hadcock, R.J., Malbon, C.C., Kunos, G., and Ishac, E.J.N. (1991) Tissue-specific regulation of α1B, β1, and β2-adrenergic receptor mRNAs by thyroid state in the rat. Endocrinology 129, 1116–1118.

    PubMed  Google Scholar 

  • Lee, N.H., Earle-Hughes, J., and Fraser, C. (1994) Agonist-mediated destabilization of m1 muscarinic acetylcholine receptor mRNA. Elements involved in mRNA stability are involved in the 3′-untranslated region. J. Biol. Chem. 269, 4291–4298.

    PubMed  Google Scholar 

  • Lefkowitz, R.J. (1993) G protein-coupled receptor kinases. Cell 74, 409–412.

    Article  PubMed  Google Scholar 

  • Letourneur, F., and Klausner, R.D. (1992) A novel di-leucine motif and a tyrosine-based motif independently mediate lysosomal targeting and endocytosis of CD3 chains. Cell 69, 1143–1157.

    Article  PubMed  Google Scholar 

  • Liggett, S.B., Freedman, N.J., Schwinn, D.A., and Lefkowitz, R.J. (1993) Structural basis for receptor subtype-specific regulation revealed by a chimeric β32-adrenergic reeptor. Proc. Natl. Acad. Sci. USA 90, 3665–3669.

    PubMed  Google Scholar 

  • Lin, F.T., Krueger, K.M., Kendall, H.E., Daaka, Y., Fredericks, Z.L., Pitcher, J.A., and Lefkowitz, R.J. (1997) Clathrin-mediated endocytosis of the β-adrenergic receptor is regulated by phosphorylation/dephosphorylation of β-arrestin1. J. Biol. Chem. 272, 31051–31057.

    Article  PubMed  Google Scholar 

  • Lohse, M.J. (1993) Molecular mechanisms of membrane receptor desensitization. Biochim. Biophys. Acta 1179, 171–188.

    Article  PubMed  Google Scholar 

  • Lohse, M.S., Andexinger, S., Pitcher, J., Trukawinski, S., Codina, J., Faure, J.P., Caron, M.G., and Lefkowitz, R.J. (1992) Receptor-specific desensitization with purified proteins. Kinase dependence and receptor specificity of β-arrestin and arrestin in the β2-adrenergic receptor and rhodopsin systems. J. Biol. Chem. 267, 8558–6564.

    PubMed  Google Scholar 

  • Lohse, M.J., Benovic, J.L., Caron, M.G., and Lefkowitz, R.J. (1990a) Multiple pathways of rapid β2-adrenergic receptor desensitization. Delineation with specific inhibitors. J. Biol. Chem. 265, 3202–3209.

    PubMed  Google Scholar 

  • Lohse, M.J., Benovic, J.L., Codina, J., Caron, M.G., and Lefkowitz, R.J. (1990b) β-arrestin: A protein that regulates β-adrenergic receptor function. Science 248, 1547–1550.

    PubMed  Google Scholar 

  • Lohse, M.J., Krasel, C., Winstel, R., and Mayor, F. (1996) G-protein-coupled receptor kinases. Kidney Int. 49, 1047–1052.

    PubMed  Google Scholar 

  • Machida, C.A., Brunzow, J.R., Searles, R.P., Van Thol, H., Tester, B., Neve, K.A., Teal, P., Nipper, V., and Civelli, O. (1990) Molecular cloning and expression of the rat β1 receptor gene. J. Biol. Chem. 265, 12960–12965.

    PubMed  Google Scholar 

  • Mahan, L.C., Koachman, A.M., and Insel, P.A. (1985) Genetic analysis of beta-adrenergic receptor internalization and down-regulation. Proc. Natl. Acad. Sci. USA 82, 129–133.

    PubMed  Google Scholar 

  • Mahan, L.C., McKernan, R.M., and Insel, P.A. (1987) Metabolism of alpha-and beta-adrenergic receptors in vitro and in vivo. Annu. Rev. Pharmacol. Toxicol. 27, 215–235.

    PubMed  Google Scholar 

  • Mak, J.C.W., Nishikawa, M., Shirasaki, H., Miyayasu, K., and Barnes, P.J. (1995) Protective effects of a glucocorticoid on downregulation of pulmonary β2-adrenergic receptors in vivo. J. Clin. Invest. 96, 99–106.

    PubMed  Google Scholar 

  • Malbon, C.C., and Hadcock, R.J. (1988) Evidence that glucocorticoid response elements in the 5′-noncoding region of the hamster β2-adrenergic receptor gene are obligate for glucocorticoid regulation of receptor mRNA levels. Biochem. Biophys. Res. Commun. 154, 676–681.

    Article  PubMed  Google Scholar 

  • Malter, J.S. (1989) Identification of an AUUUA-specific messenger RNA binding protein. Science 246, 664–666.

    PubMed  Google Scholar 

  • McGraw, D.W., Jacobi, S.E., Hiller, F.C., and Cornett, L.E. (1996) Structural and functional analysis of the 5′-flanking region of the rat β2-adrenergic receptor gene. Biochim. Biophys. Acta 1305, 135–138.

    PubMed  Google Scholar 

  • Münch, G., Dees, C., Hekman, M., and Palm, D. (1991) Multisite contacts involved in coupling of the β-adrenergic receptor with the stimulatory guanine-nucleotide-binding regulatory protein. Eur. J. Biochem. 198, 357–364.

    Article  PubMed  Google Scholar 

  • Myer, V.E., Fan, X.C., and Steitz, J.A. (1997) Identification of HuR as a protein implicated in AUUUA-mediated mRNA decay. EMBO J. 16, 2130–2139.

    Article  PubMed  Google Scholar 

  • Nahmias, C., Blin, N., Elalouf, J.M., Mattei, M.G., Strosberg, A.D., and Emorine, L.J. (1991) Molecular characterization of the mouse β3-adrenergic receptor: Relationship with the atypical receptor of adipocytes. EMBO J. 10, 3721–3727.

    PubMed  Google Scholar 

  • Nakada, M.T., Haskell, K.M., Ecker, D.J., Stadel, J.M., and Crooke, S.T. (1989) Genetic regulation of β2-adrenergic receptors in 3T3-L1 fibroblasts. Biochem. J. 260, 53–59.

    PubMed  Google Scholar 

  • Nantel, F., Bonin, H., Emorine, L.J., Zilberfarb, V., Strosberg, A.D., Bouvier, M., and Marullo, S. (1993) The human β3-adrenergic receptor is resistant to short-term agonist-promoted desensitization. Mol. Pharmacol. 43, 548–555.

    PubMed  Google Scholar 

  • Neer, E.J., and Clapham, D.E. (1988) Roles of G protein subunits in transmembrane signalling. Nature 333, 129–134.

    Article  PubMed  Google Scholar 

  • Neve, K.A., and Molinoff, P.B (1986) Turnover of β1-and β2-adrenergic receptors after down-regulation or irreversible blockade. Mol. Pharmacol. 30, 104–111.

    PubMed  Google Scholar 

  • O'Dowd, B.F., Hnatowich, M., Regan, J.W., Leader, W.M., Caron, M.G., and Lefkowitz, R.J. (1988) Site-directed mutagenesis of the cytoplasmatic domains of the human β2-adrenergic receptor: Localization of regions involved in G protein-receptor coupling. J. Biol. Chem. 263, 15985–15992.

    PubMed  Google Scholar 

  • Okamoto, T., Murayama, Y., Hayashi, Y., Inagaki, M., Ogata, E, and Nishimoto, I. (1991) Identification of a GS activator region of the β2-adrenergic receptor that is autoregulated via protein kinaseA-dependent phosphorylation. Cell 67, 723–730.

    Article  PubMed  Google Scholar 

  • Palczewski, K. (1994) Structure and functions of arrestins. Protein Sci. 3, 1355–1361.

    PubMed  Google Scholar 

  • Palczewski, K. (1997) GTP-binding-protein-coupled receptor kinases. Eur. J. Biochem. 248, 261–269.

    Article  PubMed  Google Scholar 

  • Parola, A.L., and Kobilka, B.K. (1994) The peptide product of a 5′ leader cistron in the β2-adrenergic receptor mRNA inhibits receptor synthesis. J. Biol. Chem. 269, 4497–4505.

    PubMed  Google Scholar 

  • Pende, A., Tremmel, K.D., DeMaria, C.T., Blaxall, B.C., Minobe, W.A., Sherman, J.A., Bisognato, J.D., Bristow, M.R., Brewer, G., and Port, J.D. (1996) Regulation of the mRNA-binding protein AUF1 by activation of the β-adrenergic receptor signal transduction pathway. J. Biol. Chem. 271, 8493–8501.

    Article  PubMed  Google Scholar 

  • Peng, S.S.Y., Chen, C.Y.A., and Shyu, A.B. (1996) Functional characterization of a non-AUUUA AU-rich element from the c-jun proto-oncogene mRNA: Evidence for a novel class of AU-rich elements. Mol. Cell. Biol. 16, 1490–1499.

    PubMed  Google Scholar 

  • Perez, D.M., Piascik, M.T., Malik, N., Gaivin, R., and Graham, R.M. (1994) Cloning, expression, and tissue distribution of the rat homolog of the bovine α1C-adrenergic receptor provide evidence for ist classification as the α1A subtype. Mol. Pharmacol. 46, 823–831.

    PubMed  Google Scholar 

  • Pippig, S., Andexinger, S., Kiefer, D., Puzicha, M., Caron, M.G., Lefkowitz, R.J., and Lohse, M.J. (1993) Overexpression of β-arrestin und β-adrenergic receptor kinase augment desensitization of β2-adrenergic receptors. J. Biol. Chem. 268, 3201–3208.

    PubMed  Google Scholar 

  • Pippig, S., Andexinger, S., and Lohse, M.J. (1995) Sequestration and recycling of β2-adrenergic receptors permit receptor resensitization. Mol. Pharmacol. 47, 666–676.

    PubMed  Google Scholar 

  • Pitcher, J.A., Fredericks, Z.L., Stone, W.C., Premont, R.T., Stoffel, R.H., Koch, W.J., and Lefkowitz, R.J. (1996) Phosphatidylinositol 4,5-bisphosphate (PIP2)-enhanced G protein-coupled receptor kinase (GRK) activity: Location, structure and regulation of the PIP2 binding site distinguishes the GRK subfamilies. J. Biol. Chem. 271, 24907–24913.

    Article  PubMed  Google Scholar 

  • Pitcher, J.A., Inglese, J., Higgins, J.B., Arriza, J.L., Gasey, P.J., Kim, C., Benovic, J.L., Kwatra, M.M., Caron, M.G., and Lefkowitz, R.J. (1992a) Role of βγ subunits of G proteins in targeting the β-adrenergic receptor kinase to membrane bound receptors. Science 257, 1264–1267.

    PubMed  Google Scholar 

  • Pitcher, J.A., Lohse, M.J., Codina, J., Caron, M.G., and Lefkowitz, R.J. (1992b) Desensitization of the isolated β2-adrenergic receptor by β-adrenergic receptor kinase, cAMP-dependent protein kinase, and protein kinase C occurs via distinct molecular mechanisms. Biochemistry 31, 3193–3197.

    Article  PubMed  Google Scholar 

  • Pitcher, J.A., Payne, E.S., Csortos, C., DePaoli-Roach, A.A., and Lefkowitz, R.J. (1995) The G-protein-coupled receptor phosphatase: A protein phosphatase type 2A with a distinct subcellular distribution and substrate specificity. Proc. Natl. Acad. Sci. USA 92, 8343–8347.

    PubMed  Google Scholar 

  • Port, J.D., Huang, L.Y., and Malbon, C.C. (1992) β-adrenergic agonists that down-regulate receptor mRNA up-regulate a Mr 35,000 protein(s) that selectively binds to β-adrenergic receptor mRNAs. J. Biol. Chem. 267, 24103–24108.

    PubMed  Google Scholar 

  • Rajagopalan, L.E., and Malter, J.S. (1994) Modulation of granulocyte-macrophage colony-stimulating factor mRNA-stability in vitro by the adenosin-uridine binding factor. J. Biol. Chem. 269, 23882–23888.

    PubMed  Google Scholar 

  • Ramarao, C.S., Denker, J.M., Perez, D.M., Gaivin, R.J., Riek, R.P., and Graham, R.M. (1992) Genomic organization and expression of the human α1B-adrenergic receptor. J. Biol. Chem. 267, 21936–21945.

    PubMed  Google Scholar 

  • Roesler, W.J., Vandenbark, G.R., and Hanson, R.W. (1988) Cyclic AMP and the induction of eukaryotic gene transcription. J. Biol. Chem. 263, 9063–9066.

    PubMed  Google Scholar 

  • Rohlff, C., Ahmad, S., Borellini, F., Lei, J., and Glazer, R.I. (1997) Modulation of transcription factor Sp1 by cAMP-dependent protein kinase. J. Biol. Chem. 272, 21137–21141.

    Article  PubMed  Google Scholar 

  • Ross, J. (1995) mRNA stability in mammalian cells. Microbiol. Rev. 59, 423–450.

    PubMed  Google Scholar 

  • Roth, N.S., Campbell, P.T., Caron, M.G., Lefkowitz, R.J., and Lohse, M.J. (1991) Comparative rates of desensitization of β-adrenergic receptors by the β-adrenergic receptor kinase and the cyclic AMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 88, 6201–6204.

    PubMed  Google Scholar 

  • Rousseau, G., Nantel, F., and Bouvier, M. (1996) Distinct receptor domains determine subtype-specific coupling and desensitization phenotypes for human β1-and β2-adrenergic receptors. Mol. Pharmacol. 49, 752–760.

    PubMed  Google Scholar 

  • Rydelek-Fitzgerald, L., Li, Z., Machida, C.A., Fishman, P.H., and Duman, R.S. (1996) Adrenergic regulation of ICER (inducible cAMP early repressor) and β1-adrenergic receptor gene expression in C6 glioma cells. J. Neurochem. 67, 490–497.

    PubMed  Google Scholar 

  • Sachs, A.B. (1993) Messenger RNA degradation in eukaryotes. Cell 74, 413–421.

    Article  PubMed  Google Scholar 

  • Schiavi, S.C., Wellington, C.L., Shyu, A.B., Chen, C.Y.A., Greenberg, M.E., and Belasco, J.G. (1994) Multiple elements in the c-fos protein-coding region facilitate mRNA deadenylation and decay by a mechanism coupled to translation. J. Biol. Chem. 269, 3441–3448.

    PubMed  Google Scholar 

  • Schleicher, S., Boekhoff, I., Arriza, J., Lefkowitz, R.J., and Breer, H. (1993) A β-adrenergic receptor kinase-like enzyme is involved in olfactory signal termination. Proc. Natl. Acad. Sci. USA 90, 1420–1424.

    PubMed  Google Scholar 

  • Searles, R.P., Midson, C.N., Nipper, V.J., and Machida, C.A. (1995) Transcription of the rat β1-adrenergic receptor gene. Characterization of the transcript and identification of important sequences. J. Biol. Cem. 270, 157–162.

    Google Scholar 

  • Searles, R.P., Nipper, V.J., and Machida, C.A. (1994) The rhesus macaque β1-adrenergic receptor gene: Structure of the gene and comparison of the flanking sequences with the rat β1-adrenergic receptor gene. DNA Sequence 4, 231–241.

    PubMed  Google Scholar 

  • Seibold, A., January, B.G., Friedman, J., Hipkin, W., and Clark, R.B. (1998) Desensitization of β2-adrenergic receptors with mutations of the proposed G protein-coupled receptor kinase phosphorylation sites. J. Biol. Chem. 273, 7637–7642.

    Article  PubMed  Google Scholar 

  • Shaw, G., and Kamen, R. (1986) A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46, 659–667.

    Article  PubMed  Google Scholar 

  • Shear, M., Insel, P.A., Melmon, K.M., and Coffino, P. (1976) Agonist-specific refractoriness induced by isoproterenol. Studies with mutant cells. J. Biol. Chem. 251, 7572–7576.

    PubMed  Google Scholar 

  • Shyu, A.B., Belasco, J.G., and Greenberg, M.E. (1991) Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes. Dev. 5, 221–231.

    PubMed  Google Scholar 

  • Sibley, D.R., Strasser, R.H., Benovis, J.L., Daniel, K., and Lefkowitz, R.J. (1986) Phosphorylation/dephosphorylation of the β-adrenergic receptor regulates its functional coupling to adenylyl cyclase and subcellular distribution. Proc. Natl. Acad. Sci. USA 83, 9408–9412.

    PubMed  Google Scholar 

  • Smale, S.T., and Baltimore, D. (1989) The “initiator” as a transcription control element. Cell 57, 103–113.

    Article  PubMed  Google Scholar 

  • Snavely, M.D., Ziegler, M.G., and Insel, P.A. (1985) A new approach to determine rates of receptor appearance and disappearance in vivo. Application to agonist-mediated down-regulation of rat renal cortical β1-and β2-adrenergic receptors. Mol. Pharmacol. 27, 19–26.

    PubMed  Google Scholar 

  • Sterne-Marr, R., and Benovic, J.L. (1995) Regulation of G protein-coupled receptors by receptor kinases and arrestins. Vitam. Horm. 51, 193–234.

    PubMed  Google Scholar 

  • Stoffel, R.H., Pitcher, J.A., and Lefkowitz, R.J. (1997) Targeting G protein-coupled receptor kinases to their receptor substrates. J. Membrane Biol. 157, 1–8.

    Article  Google Scholar 

  • Strader, C.D., Sigal, I.S., Blake, A.D., Cheung, A.H., Register, R.B., Rands, E., Zemcik, B.A., Candelore, M.R., and Dixon, R.A.F. (1987) The carboxyl terminus of the hamster β-adrenergic receptor expressed in mouse L-cells is not required for receptor sequestration. Cell 49, 855–863.

    Article  PubMed  Google Scholar 

  • Su, Y.F., Harden, T.K., and Perkins, J.P. (1980) Catecholamine-specific desensitization of adenylate cyclase. J. Biol. Chem. 255, 7410–7419.

    PubMed  Google Scholar 

  • Suzuki, T., Nguyen, C.T., Nantel, F., Bonin, H., Valiquette, M., Frielle, T., and Bouvier, M. (1992) Distinct regulation of β1-and β2-adrenergic receptors in chinese hamster fibroblasts. Mol. Pharmacol. 41, 542–548.

    PubMed  Google Scholar 

  • Thekkumkara, T.J., Thomas, W.G., Motel, T.J., and Baker, K.M. (1998) Functional role for the angiotensin II receptor (AT 1A) 3′-untranslated region in determining cellular responses to agonist: Evidence for recognition by RNA binding proteins. Biochem. J. 329, 255–264.

    PubMed  Google Scholar 

  • Tholanikunnel, B.G., Granneman, J.G., and Malbon, C.C. (1995) The Mr 35,000 β-adrenergic receptor mRNA-binding protein binds transcripts of G-protein-linked receptors which undergo agonist-induced destabilization. J. Biol. Chem. 270, 12787–12793.

    Article  PubMed  Google Scholar 

  • Tholanikunnel, B.G., and Malbon, C.C. (1997) A 20-nucleotide (A + U)-rich element of β2-adrenergic receptor (β2AR) mRNA mediates binding to β2AR-binding protein and is obligate for agonist-induced destabilization of receptor mRNA. J. Biol. Chem. 272, 11471–11478.

    Article  PubMed  Google Scholar 

  • Thomas, R.F., Holt, B.D., Schwinn, D.A., and Liggett, S.B. (1992) Long-term agonist exposure induces upregulation of β3-adrenergic receptor expression via multiple cAMP response elements. Proc. Natl. Acad. Sci. USA 89, 4490–4494.

    PubMed  Google Scholar 

  • Touhara, K., Koch, W.J., Hawes, B.E., and Lefkowitz, R.J. (1995) Mutational analysis of the pleckstrin homology domain of the β-adrenergic receptor kinase. Differential effects on Gβγ and phosphatidylinositol 4,5-bisphosphate binding. J. Biol. Chem. 270, 17000–17005.

    Article  PubMed  Google Scholar 

  • Ungerer, M., Böhm, M., Elce, J.S., Erdmann, E., and Lohse, M.J. (1993) Altered expression of β-adrenergic receptor kinase and β1-adrenergic receptors in the failing human heart. Circulation 87, 454–463.

    PubMed  Google Scholar 

  • Vakalopoulou, E., Schaack, J, and Shenk, T. (1991) A 32-kilodalton protein binds to AU-rich domains in the 3′ untranslated regions of rapidly degraded mRNAs. Mol. Cell. Biol. 11, 3355–3364.

    PubMed  Google Scholar 

  • van Spronsen, A., Nahmias, C., Krief, S., Briend-Sutren, M.M., Strosberg, A.D., and Emorine, L.J. (1993) The promoter and intron/exon structure of the human and mouse β3-adrenergic-receptor genes. Eur. J. Biochem. 213, 1117–1124.

    Article  PubMed  Google Scholar 

  • von Zastrow, M., and Kobilka, B.K. (1992) Ligand-regulated internalization and recycling of human β2-adrenergic receptors between the plasma membrane and endosomes containing transferrin receptors. J. Biol. Chem. 267, 3530–3538.

    PubMed  Google Scholar 

  • von Zastrow, M., and Kobilka, B.K. (1994) Antagonist-dependent and-independent steps in the mechanism of adrenergic receptor internalization. J. Biol. Chem. 269, 18448–18452.

    PubMed  Google Scholar 

  • von Zastrow, M., Link, R., Daunt, D., Barsh, G., and Kobilka, B.K. (1993) Subtype-specific differences in the intracellular sorting of G protein-coupled receptors. J. Biol. Chem. 268, 763–766.

    PubMed  Google Scholar 

  • Wagner, B.J., DeMaria, C.T., Sun, Y., Wilson, G.M., and Brewer, G. (1998) Structure and genomic organization of the human AUF1 gene: Alternative pre-mRNA splicing generates four protein isoforms. Genomics 48, 195–202.

    Article  PubMed  Google Scholar 

  • Wang, J., and Ross, E.M. (1995) The carboxyl-terminal anchorage domain of the turkey β1-adrenergic receptor is encoded by an alternative spliced exon. J. Biol. Chem. 270, 6488–6495.

    Article  PubMed  Google Scholar 

  • Wang, X., Nickenig, G., and Murphy, T.J. (1997) The vascular smooth muscle type I angiotensin II receptor mRNA is destabilized by cyclic AMP-elevating agents. Mol. Pharmacol. 52, 781–787.

    PubMed  Google Scholar 

  • Wellington, C.L., Greenberg, M.E., and Belasco, J.G. (1993) The destabilizing elements in the coding region of c-fos mRNA are recognized as RNA. Mol. Cell. Biol. 13, 5034–5042.

    PubMed  Google Scholar 

  • Winstel, R., Freund, S., Krasel, C., Hoppe, E., and Lohse, M.J. (1996) Protein kinase cross-talk: Membrane targeting of the β-adrenergic receptor kinase by protein kinase C. Proc. Natl. Acad. Sci. USA 93, 2105–2109.

    Article  PubMed  Google Scholar 

  • Xu, N., Chen, C.Y.A., and Shyu, A.B. (1997) Modulation of the fate of cytoplasmatic mRNA by AU-rich elements: Key sequence features controlling mRNA deadenylation and decay. Mol. Cell. Biol. 17, 4611–4621.

    PubMed  Google Scholar 

  • Yu, S.S., Lefkowitz, R.J., and Hausdorff, W.P. (1993) β-adrenergic receptor sequestration: A potential mechanism of receptor resensitization. J. Biol. Chem. 268, 268, 337–341.

    PubMed  Google Scholar 

  • Zawel, L., and Reinberg, D. (1993) Initiation of transcription by RNA polymerase II: A multi-step process. Progr. Nucl. Acid Res. Mol. Biol. 44, 67–108.

    Google Scholar 

  • Zhang, J., Barak, L.S., Winkler, K.E., Caron, M.G., and Ferguson, S.S.G. (1997) A central role for β-arrestins and clathrin-coated vesicle-mediated endocytosis in β2-adrenergic receptor resensitization. Differential regulation of receptor resensitization in two distinct cell types. J. Biol. Chem. 272, 27005–27014.

    Article  PubMed  Google Scholar 

  • Zhang, J., Ferguson, S.S.G., Barak, L.S., Menard, L., and Caron, M.G. (1996) Dynamin and β-arrestin reveal distinct mechanisms for G protein-coupled receptor internalization. J. Biol. Chem. 271, 18302–18305.

    Article  PubMed  Google Scholar 

  • Zhang, W., Wagner, B.J., Ehrenman, K., Schaefer, A.W., DeMaria, C.T., Crater, D., DeHaven, K., Long, L. and Brewer, G. (1993) Purification, characterization, and cDNA cloning of an AU-rich element RNA-binding protein, AUF1. Mol. Cell. Biol. 13, 7652–7665.

    PubMed  Google Scholar 

  • Zubiaga, A.M., Belasco, J.G., and Greenberg, M.E. (1995) The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol. Cell. Biol. 15, 2219–2230.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this chapter

Cite this chapter

Danner, S., Lohse, M.J. (1999). Regulation of β-Adrenergic receptor responsiveness modulation of receptor gene expression. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 136. Reviews of Physiology, Biochemistry and Pharmacology, vol 136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0032325

Download citation

  • DOI: https://doi.org/10.1007/BFb0032325

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65151-2

  • Online ISBN: 978-3-540-49542-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics