Advertisement

Dynamic output feedback compensation for systems with input saturation

  • Feng Tyan
  • Dennis S. Bernstein
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 227)

Keywords

Riccati Equation Uncertain System Nonlinear Controller Linear Controller Controller Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. K. Lindner, T. P. Celano, E. N. Ide, “Vibration Suppression Using a Proofmass Actuator Operating in Stroke/Force Saturation,” J. Vibr. Acoustics, Vol. 113, pp. 423–433, 1991.Google Scholar
  2. 2.
    P. C. Shrivastava and R. F. Stengel, “Stability Boundaries for Aircraft with Unstable Lateral-Directional Dynamics and Control Saturation,” J. Guidance Contr. Dyn., Vol. 12, pp. 62–70, 1989.Google Scholar
  3. 3.
    J. L. LeMay, “Recoverable and Reachable Zones for Control Systems with Linear Plants and Bounded Controller Outputs,” IEEE Trans. Autom. Contr., Vol. AC-9, pp. 346–354, 1964.CrossRefGoogle Scholar
  4. 4.
    A. T. Fuller, “In-the-Large Stability of Relay and Saturating Control Systems with Linear Controllers,” Int. J. Contr., Vol. 10, pp. 457–480, 1969.Google Scholar
  5. 5.
    J. F. Frankena and R. Sivan, “A Non-linear Optimal Control Law for Linear Systems,” Int. J. Contr., Vol. 30, pp. 159–178, 1979.Google Scholar
  6. 6.
    E. P. Ryan, Optimal Relay and Saturating Control System Synthesis, Peregrinus, 1982.Google Scholar
  7. 7.
    I. Horowitz, “A Synthesis Theory for a Class of Saturating Systems,” Int. J. Contr., Vol. 38, pp. 169–187, 1983.Google Scholar
  8. 8.
    E. D. Sontag, “An Algebraic Approach to Bounded Controllability of Linear Systems,” Int. J. Contr., Vol. 39, pp. 181–188, 1984.Google Scholar
  9. 9.
    P. J. Campo and M. Morari, “Robust Control of Processes Subject to Saturation Nonlinearities,” Comp. Chem. Eng., Vol. 14, pp. 343–358, 1990.CrossRefGoogle Scholar
  10. 10.
    Z. Lin and A. Saberi, “Semi-global Exponential Stabilization of Linear Systems Subject to ‘Input Saturation’ via Linear Feedbacks,” Sys. Contr. Lett., Vol. 21, pp. 225–239, 1993.CrossRefGoogle Scholar
  11. 11.
    A. R. Teel, “Semi-global Stabilizability of Linear Null Controllable Systems with Input Nonlinearities,” Proc. Amer. Contr. Conf., pp. 947–951, Baltimore, MD, June 1994.Google Scholar
  12. 12.
    A. R. Teel, “Semi-global Stabilizability of Linear Null Controllable Systems with Input Nonlinearities,” IEEE Trans. on Autom. Contr., Vol. 40, No. 1, pp. 96–100, 1995.CrossRefGoogle Scholar
  13. 13.
    A. Saberi, Z. Lin, and A. R. Teel, “Control of Linear Systems with Saturating Actuators,” IEEE Trans. on Autom. Contr., Vol. 41, No. 3, pp. 368–378, 1996.CrossRefGoogle Scholar
  14. 14.
    M. V. Kothare, P. J. Campo, M. Morari, and C. N. Nett, “A Unified Framework for the Study of Anti-Windup Designs,” Automatica, Vol. 30, pp. 1869–1883, 1994.CrossRefMathSciNetGoogle Scholar
  15. 15.
    F. Tyan and D. S. Bernstein, “Antiwindup Compensator Synthesis for Systems with Saturating Actuators,” Int. J. Robust Nonlinear Contr., Vol. 5, pp. 521–538, 1995.Google Scholar
  16. 16.
    R. L. Kosut, “Design of Linear Systems with Saturating Linear Control and Bounded States,” IEEE Trans. Autom. Contr., Vol. AC-28, pp. 121–124, 1983.CrossRefGoogle Scholar
  17. 17.
    D. S. Bernstein and W. M. Haddad, “LQG Control With an H Performance Bound: A Riccati Equation Approach,” IEEE Trans. Autom. Contr., Vol. 34, pp. 293–305, 1989.CrossRefGoogle Scholar
  18. 18.
    B. D. O. Anderson, “A System Theory Criterion for Positive Real Matrices,” SIAM J. Contr. Optim., Vol. 5, pp. 171–182, 1967.CrossRefGoogle Scholar
  19. 19.
    S. W. Greeley and D. C. Hyland, “Reduced-Order Compensation: Linear-Quadratic Reduction Versus Optimal Projection,” J. Guidance Contr. Dyn., Vol. 11, pp. 328–335, 1988.Google Scholar
  20. 20.
    D. Zigic, L. T. Watson, E. G. Collins, Jr., and D. S. Bernstein, “Homotopy Methods for Solving the Optimal Projection Equations for the H2 Reduced Order Model Problem,” Int. J. Contr., Vol. 56, pp. 173–191, 1992.Google Scholar
  21. 21.
    Y. Ge, L. T. Watson, E. G. Collins, and D. S. Bernstein, “Probability-One Homotopy Algorithms for Full and Reduced Order H2/H Controller Synthesis,” Proc. IEEE Conf. Dec. Contr., pp. 2672–2677, Orlando, FL, December 1994.Google Scholar

Copyright information

© Springer-Verlag London Limited 1997

Authors and Affiliations

  • Feng Tyan
    • 1
  • Dennis S. Bernstein
    • 2
  1. 1.Department of Aerospace EngineeringTamKang University, TamsuiTaipei HsienTaiwan
  2. 2.Department of Aerospace EngineeringThe University of Michigan Ann Arbor

Personalised recommendations