H output feedback control with state constraints

  • Alexandre Trofino
  • Eugênio B. Castelan
  • Arão Fischman
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 227)


State Constraint Output Feedback Uncertain System Output Feedback Control Output Feedback Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Bitsoris, On the positive invariance of polyhedral sets for discrete-time systems. Systems and Control Letters, 11, pp.243–248, 1988.CrossRefGoogle Scholar
  2. 2.
    F. Blanchini, Feedback Control for Linear Time-Invariant Systems with State and Control Bounds in the Presence of Disturbances. IEEE Transactions on Automatic Control, Vol.35, No.11, pp.1231–1234, 1991.CrossRefGoogle Scholar
  3. 3.
    S. Boyd and C. Barrat, Linear Controller Design: Limits of Performance. Prentice Hall, 1991.Google Scholar
  4. 4.
    S. Boyd, El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, SIAM, 1994.Google Scholar
  5. 5.
    E.B. Castelan and J.C. Hennet, „Eigenstructure Assignment for State Constrained Continuous Time Systems”, Automatica, vol. 28, No 3, pp. 605–611, 1992.CrossRefGoogle Scholar
  6. 6.
    E. De Santis, On Positively Invariant Sets for Discrete-Time Linear Systems with Disturbance: An Application of Maximal Disturbance Sets. IEEE Transactions on Automatic Control, Vol.39, No.1, pp245–249, 1994.CrossRefGoogle Scholar
  7. 7.
    C.E.T. Dórea and B.E.A. Milani, „Design of L-Q Regulators for State Constrained Continuous-Time Systems”, IEEE Trans. Automatic Control, vol. 40, No 3, pp. 544–548, 1995.CrossRefGoogle Scholar
  8. 8.
    J. Doyle, A. Packard and K. Zhou (1991). Review of LFTs, LMIs an μ, Proceedings of the 30th IEEE Conference on Decision and Control, Brighton, December 1991.Google Scholar
  9. 9.
    J.C. Hennet, Une extension du Lemme de Farkas et son application au problème de régulation linéaire sous contraintes. C.R. Académie des Sciences, t.308, Série I, pp.415–419, 1989.Google Scholar
  10. 10.
    B.E.A. Milani, E.B. Castelan and S. Tarbouriech, Linear Regulator Design for Bounded Uncertain Discrete-time Systems with Additive Disturbances. Proceedings of the 13th World Congress of IFAC (Vol. G), San Francisco, June/July 1996.Google Scholar
  11. 11.
    R.A. Paz and E. Yaz, Robust Stabilization and Disturbance Attenuation for Discrete-Time Systems with Structured Nonlinearities. Proceedings of the 32th IEEE Conference on Decision and Control, San Antonio, December 1993.Google Scholar
  12. 12.
    P.L.D. Peres, J.C. Geromel and S.R. Souza, H 2 Output Feedback Control for Discrete-Time Systems. Proceedings of the 1994 American Control Conference, Baltimore, June/July 1994.Google Scholar
  13. 13.
    M.G. Safonov, K.C. Goh and J.H. Ly, Control system synthesis via bilinear matrix inequalities. Proceedings of the American Control Conference, Baltimore, June 1994.Google Scholar
  14. 14.
    M. Sznaier, A set induced norm approach to the robust control of constrained systems. SIAM J. Control and Optimization, Vol. 31, No. 3, pp.733–746, 1993.CrossRefGoogle Scholar
  15. 15.
    M. Sznaier and Z. Benzaid, Robust control of systems under mixed time/frequency domain constraints via convex optimization. Proceeding of the 31st IEEE Conference on Decision and Control, Tucson, December 1992.Google Scholar
  16. 16.
    A. Trofino Neto, E.B. Castelan and A. Fischman, H Control with States Constraints. Proceedings of th 34th IEEE Conference on Decision and Control, New Orleans, December 1995.Google Scholar
  17. 17.
    M. Vassilaki, J.C. Hennet and G. Bitsoris, Feedback control of discrete-time systems with state and control constraints. Int. Journal of Control, Vol. 47, 1988, pp.1727–1735.Google Scholar

Copyright information

© Springer-Verlag London Limited 1997

Authors and Affiliations

  • Alexandre Trofino
    • 1
  • Eugênio B. Castelan
    • 1
  • Arão Fischman
    • 2
  1. 1.Laboratório de Controle e Microinformática (LCMI/EEL/UFSC)Universidade Federal de Santa CatarinaFlorianópolis (S.C.)Brazil
  2. 2.Laboratoire d'Automatique de Grenoble (URA CNRS 228)ENSIEGSt.-Martin-d'HèresFrance

Personalised recommendations