Nonlinear controllers for the constrained stabilization of uncertain dynamic systems

  • Franco Blanchini
  • Stefano Miani
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 227)


Lyapunov Function Uncertain System Gauge Function Variable Structure Control Uncertain Dynamic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Benzaouia and C. Burgat, “The regulator problem for a class of linear systems with constrained control”, Syst. and Contr. Letters, Vol.10, p. 357–363, 1988.CrossRefGoogle Scholar
  2. 2.
    J. Bernussou, P.L.D. Peres, and J. Geromel, “On a convex parameter space method for linear control design of uncertain systems”, SIAM J. on Contr. and Opt., 29, 381–402, 1991.CrossRefGoogle Scholar
  3. 3.
    D.P. Bertsekas, I.B. Rhodes, “On the minmax reachability of target set and target tubes”, Automatica, Vol. 7, pp.233–247, 1971.CrossRefGoogle Scholar
  4. 4.
    F. Blanchini, “Constrained control for uncertain linear systems”, Int. Journ. of Opt. Th. and Appl., Vol. 71, no. 3. p. 465–484, 1991.CrossRefGoogle Scholar
  5. 5.
    F. Blanchini, “Ultimate boundedness control for discrete-time uncertain system via set-induced Lyapunov functions”, IEEE Trans. on Autom. Contr., Vol. 39, no. 2, 428–433.Google Scholar
  6. 6.
    F. Blanchini, “Nonquadratic Lyapunov functions for robust control”, Automatica, Vol. 31, no. 3, p. 451–461, 1995.CrossRefGoogle Scholar
  7. 7.
    F. Blanchini, S. Miani, “Constrained stabilization of continuous-time linear systems”, Systems and Control Letters, Vol. 28, pp. 95–102, 1996.CrossRefGoogle Scholar
  8. 8.
    F. Blanchini, S. Miani, “A new class of universal Lyapunov function for the control of uncertain systems”, proc. of the CDC96, Kobe, Japan, 1996, to appear.Google Scholar
  9. 9.
    F. Blanchini, S. Miani, “On the transient estimate for linear systems with time-varying uncertain parameters”, IEEE Trans. On Circ. and Syst.-I, Vol. 43, no. 7, July 1996.Google Scholar
  10. 10.
    F. Blanchini, S. Miani, “Piecewise-linear functions in robust control”, lecture notes in Control and Information Science, Springer-Verlag, New York, 1996.Google Scholar
  11. 11.
    F. Blanchini, F. Mesquine, S. Miani, “Constrained stabilization with assigned initial condition set”, Int. Journal of Contr., Vol. 62, no. 3, p. 601–617, 1995.Google Scholar
  12. 12.
    R.K. Brayton, C.H. Tong, “Constructive stability and asymptotic stability of dynamical systems”, IEEE Trans. on Circ. and Syst., Vol. CAS-27, no.11, pp. 1121–1130, 1980.CrossRefGoogle Scholar
  13. 13.
    E.B. Castelan, J.C. Hennet, “Eigenstructure assignment for state constrained linear continuous-time systems”, Automatica, Vol. 28, no. 3, pp. 605–611.Google Scholar
  14. 14.
    B. Grumbaum, “Convex polytopes”, John Wiley & Sons, New York, 1967.Google Scholar
  15. 15.
    P.O. Gutman, M. Cwikel, “Admissible sets and feedback control for discrete-time linear systems with bounded control and states”, IEEE Trans. on Autom. Contr., Vol. AC-31, No. 4, pp. 373–376, 1986.CrossRefGoogle Scholar
  16. 16.
    P.O. Gutman and P. Hagander, “A new design of constrained controllers for linear systems”, IEEE Trans. on Autom. Contr., AC-30, 22–33, 1985.CrossRefGoogle Scholar
  17. 17.
    A.T. Fuller, In-the-large stability of relay and saturating control systems with linear controllers, Int. J. Control, 10(1969) 457–480.Google Scholar
  18. 18.
    S.S. Keerthi, E.G. Gilbert, “Computation of minimum-time feedback control laws for discrete-time systems with state-control constraints”, IEEE Trans. on Autom. Contr., Vol AC-32, no. 5, pp. 432–435, 1987.CrossRefGoogle Scholar
  19. 19.
    J.B. Lasserre, “Reachable, controllable sets and stabilizing control of constrained systems”, Automatica, Vol. 29, No. 2, pp. 531–536, 1993.CrossRefGoogle Scholar
  20. 20.
    H.J. Sussman, E.D. Sontag, and Y. Yang, “A general result on the stabilization of linear systems using bounded controls”, IEEE Trans. On Autom. Contr, Vol. AC-39, no.12, pp. 2411–2425, 1994.CrossRefGoogle Scholar
  21. 21.
    M. Sznaier, “A set-induced norm approach to the robust control of constrained linear systems”, SIAM Journal on Control and Optimization, Vol.31, No.3, 733–746, 1993.CrossRefGoogle Scholar
  22. 22.
    K. Tan, E. Gilbert, “Linear systems with state and control constraints: the theory and the applications of the maximal output admissible sets”, IEEE Trans. on Autom. Contr., Vol. AC-36, n.9, pp. 1008–1020, 1991.CrossRefGoogle Scholar
  23. 23.
    S. Tarbouriech and C. Burgat, “Positively invariant sets for constrained continuous-time systems with cone properties”, IEEE Trans. on Autom. Contr., Vol. 39, no. 2, pp.401–405, 1994.CrossRefGoogle Scholar
  24. 24.
    I. Utkin, “Sliding modes and their applications in variable structure systems”, Moscow, Mir Publisher, 1974.Google Scholar
  25. 25.
    M. Vassilaki, Bitsoris, “Constrained regulation of linear continuous-time dynamical systems”, Systems & Control Letters, Vol. 13, 247–252, 1989.Google Scholar

Copyright information

© Springer-Verlag London Limited 1997

Authors and Affiliations

  • Franco Blanchini
    • 1
  • Stefano Miani
    • 2
  1. 1.Dipartimento di Matematica e InformaticaUniversità degli Studi di UdineUdineItaly
  2. 2.Dipartimento di Elettronica e InformaticaUniversità degli Studi di PadovaPadovaItaly

Personalised recommendations