Advertisement

L2-disturbance attenuation for linear systems with bounded controls: An ARE-based approach

  • R. Suárez
  • J. Alvarez-Ramírez
  • M. Sznaier
  • C. Ibarra-Valdez
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 227)

Keywords

Riccati Equation Algebraic Riccati Equation Disturbance Attenuation Exogenous Disturbance Differential Riccati Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Alvarez-Ramírez, R. Suárez and J. Alvarez, Semi-global stabilization of multi-input linear systems with saturated linear state feedback, Syst. & Contr. Lett., 23 (1994) 247–254.Google Scholar
  2. 2.
    P. Bolzern, P. Colaneri and G. de Nicolao, Finite escape-times and convergence properties of the H -differential Riccati equation. 13th Triennial World Congress IFAC San Francisco CA, USA (1996) 161–166.Google Scholar
  3. 3.
    C. Burgat, S. Tarbouriech and M. Klai, Continuous-time saturated state feedback regulators: theory and design, Int. J. Syst, Sci., 25(1994) 315–336.Google Scholar
  4. 4.
    Y. Chitour, W. Liu and E. Sontag, On the continuity and incremental-gain properties of certain saturated linear feedback loops, Int. J. Robust Nonl. Contr., 5(1995) 413–440.Google Scholar
  5. 5.
    J. Doyle, Analysis of Feedback Systems with Structured Uncertainties, IEE Proceedings, Part D, 129(1982) 242–250.Google Scholar
  6. 6.
    J.C. Doyle, K. Glover, P.P. Khargonekar and B. Francis, State-space solutions to the standard H 2 and H control problems, IEEE Trans. Automat. Contr., 34(1989) 831–849.CrossRefGoogle Scholar
  7. 7.
    A.T. Fuller, In-the-large stability of relay and saturating control systems with linear controllers, Int. J. Control, 10(1969) 457–480.Google Scholar
  8. 8.
    V.M. Gavrilyako, V.I. Korobov and G.M. Sklyar, Designing a bounded control of dynamic systems in entire space with the aid of a controllability function, Automation and Remote Contr., 11(1986) 1484–1490.Google Scholar
  9. 9.
    J.W. Helton and W. Zhan, Piecewise Riccati equations and the Bounded Real Lemma, Proc. 32th. IEEE Conference on Decision and Contr., (1993) 196–201.Google Scholar
  10. 10.
    M. Hirsh & S. Smale, Differential equations, dynamical systems and linear algebra. Academic Press (1974).Google Scholar
  11. 11.
    A. Isidori, Control Systems (in Italian), Roma: SIDEREA (1993).Google Scholar
  12. 12.
    V.A. Komarov, Design of constrained controls for nonautonomous linear systems, Automation and Remote Contr., 10(1985) 1280–1286.Google Scholar
  13. 13.
    V.I. Korobov, A general approach to the solution of the bounded control synthesis problem in a controllability problem, Math. USSR Sbornik, 37(1985) 535–539.CrossRefGoogle Scholar
  14. 14.
    S. Lefschetz, Stability of Nonlinear Control Systems. New York: Academic Press, (1965).Google Scholar
  15. 15.
    Z. Lin and A. Saberi, Semi-global exponential stabilization of linear systems subject to „input saturation” via linear feedbacks, Syst. & Contr. Letters, 21(1993) 225–239.Google Scholar
  16. 16.
    Z. Lin, A. Saberi and A.R. Teel, Simultaneous L p-stabilization and internal stabilization of linear systems subject to input saturation: State feedback case, Syst. & Contr. Letters, 25 (1995) 219–226.Google Scholar
  17. 17.
    I.R. Petersen, Disturbance attenuation and H optimization: A design method based on the algebraic Riccati equation, IEEE Trans. Automat. Contr., 32(1987) 427–429.CrossRefGoogle Scholar
  18. 18.
    M.A. Poubelle, R.R. Bitmead and M.R. Gevers, Fake algebraic Riccati techniques and stability, IEEE Trans. Autom. Contr., 33, 4, (1988) 379–381.CrossRefGoogle Scholar
  19. 19.
    B.G. Romanchuk, On the computations of the induced L 2 norm of single input linear systems with saturation, Proc. 33th. IEEE Conference on Decision and Contr., (1994) 1427–1432.Google Scholar
  20. 20.
    H. Rotstein and A. Sideris, H Optimization with Time-Domain Constraints, IEEE Trans. Autom. Contr., 39, 4, (1994) 762–779.CrossRefGoogle Scholar
  21. 21.
    E.M. Stein, G. Weiss, Fourier Analysis in Euclidean Space, Princeton Univ. Press, Princeton NJ (1971).Google Scholar
  22. 22.
    S. Skogestad, M. Morari and J. Doyle, Robust Control of Ill-Conditioned Plants: High-Purity Distillation, IEEE Trans. Autom. Contr., 33, 12, (1988) 1092–1105.Google Scholar
  23. 23.
    A. Sideris and H. Rotstein, Single Input-Single Output H Control with Time Domain Constraints, Automatica, 29, 4, (1993) 969–984.CrossRefGoogle Scholar
  24. 24.
    E.D. Sontag and H.J. Sussmann, Nonlinear output feedback design for linear systems with saturating controls, Proc. 29th. IEEE Conference on Decision and Contr., (1990) 3414–3416.Google Scholar
  25. 25.
    R. Suárez, J. Alvarez, and J. Alvarez, Regions of Attraction of Closed Loop Linear Systems with Saturated Linear Feedback Journal of Math. Syst., Est., Contr., (To appear).Google Scholar
  26. 26.
    R. Suárez, J. Solis-Daun, and J. Alvarez, Stabilization of linear control systems by means of bounded continuous nonlinear feedback control, Syst. & Contr. Letters, 23 (1994) 403–410.Google Scholar
  27. 27.
    R. Suárez, J. Alvarez-Ramírez and J. Solis-Daun, Linear systems with bounded inputs: Global stabilization with eigenvalue placement, Int. J. Robust Nonl. Contr., (to appear).Google Scholar
  28. 28.
    H.J. Sussmann, E. Sontag and Y. Yang, A general result on stabilization of linear systems using bounded control, IEEE Trans. Autom. Contr., 39 (1994) 2411–2424.CrossRefGoogle Scholar
  29. 29.
    M. Sznaier, “Mixed l 1/H Controllers for SISO Discrete-Time Systems,” Syst. & Contr. Letters, 23 (1994) 487–492.Google Scholar
  30. 30.
    M. Sznaier, “A Mixed l /H Optimization Approach to Robust Controller Design,” SIAM Journal Opt. Contr., to appear (1995).Google Scholar
  31. 31.
    M. Sznaier and F. Blanchini, “Robust Control of Constrained Systems via Convex Optimization,” International Journal of Robust and Nonlinear Control, to appear (1995).Google Scholar
  32. 32.
    A.R. Teel, Global stabilization and restricted tracking for multiple integrators with bounded controls, Syst. & Contr. Letters, 18(1992) 165–171.Google Scholar
  33. 33.
    A.R. Teel, Semiglobal stabilizability of linear null controllable systems with input nonlinearities, IEEE Trans. Autom. Contr., 40, 1, (1995) 96–100.CrossRefGoogle Scholar
  34. 34.
    M. Vidyasagar, Optimal Rejection of Persistent Bounded Disturbances, IEEE Trans. Autom. Contr., 31, 6, (1986) 527–535.CrossRefGoogle Scholar
  35. 35.
    G. Zames, Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms and Approximate Inverses, IEEE Trans. Autom. Contr. 26, 4, (1981) 301–320.CrossRefGoogle Scholar
  36. 36.
    K. Zhou, J. Doyle and K. Glover, Robust and Optimal Control, Prentice-Hall 1996.Google Scholar

Copyright information

© Springer-Verlag London Limited 1997

Authors and Affiliations

  • R. Suárez
    • 1
  • J. Alvarez-Ramírez
    • 1
  • M. Sznaier
    • 2
  • C. Ibarra-Valdez
    • 1
  1. 1.División de Ciencias Básicas e IngenieríaUniversidad Autónoma Metropolitana-IztapalapaMéxico D.FMéxico
  2. 2.Department of Electrical EngineeringThe Pennsylvania State UniversityUniversity Park

Personalised recommendations