Learning query rules for optimizing databases with update rules

  • D. Laurent
  • Ch. Vrain
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1154)


In this paper, we are interested in coupling deductive database approaches and inductive logic programming. We focus on a particular approach to updating Datalogneg databases based on two kinds of rules, namely update rules and query rules. In this approach, every fact to be inserted or to be deleted is stored in the database, in order to handle updates over extensional or intensional predicates in a sound and deterministic way.

However, two important problems occur: first, the overhead incurred by the storage of inserted and deleted facts may be important, and, second, the intensional database (i.e., the query rules) may enable to derive contradictions with respect to the extensional database (i.e., the facts stored in the database together with the update rules).

In order to cope with these difficulties, we study storage optimization, and then, we propose to use Machine Learning techniques in order to compute new query rules, so that the semantics of the resulting database contains the semantics of the original one and satisfies our optimization criterion.


Logic Program Learning Phase Dependency Graph Predicate Symbol Inductive Logic Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul S., Hull R., Vianu V.: Foundations of Databases. Addison Wesley (1995).Google Scholar
  2. 2.
    Alferes J.J., Pereira L.M.: On Logic of program semantics with two kinds of negation. Joint Intl. Conf. and Symp. of Logic Programming (1992).Google Scholar
  3. 3.
    Ceri S., Gottlob G., Tanca L.: Logic Programming and Databases. Surveys in Computer Science, Springer-Verlag (1990).Google Scholar
  4. 4.
    Fitting, M.: A Kripke-Kleene semantics for logic programs. Journal of Logic Programming. 2(4) (1985) 295–312.Google Scholar
  5. 5.
    Gelfond M., Lifschitz, V.: Logic Programming with Classical Negation. Seventh Intl. Conf. of Logic Programming (1990).Google Scholar
  6. 6.
    Gelfond M., Lifschitz, V.: Representing Actions in Extended Logic Programming. Joint Intl. Conf. and Symp. of Logic Programming (1992).Google Scholar
  7. 7.
    Halfeld Ferrari Alves M., Laurent D., Spyratos N.: Update Rules in Datalog Programs. Intl. Conf. on Logic Programming and Non-Monotonic Reasoning, LPNMR, LNAI 928 Springer-Verlag (1995) 71–84.Google Scholar
  8. 8.
    Kowalski R.A., Sadri, F.: Logic Programs with Exceptions. Seventh Intl. Conf. of Logic Programming (1990).Google Scholar
  9. 9.
    Laurent D., Phan Luong V., Spyratos N.: Updating Intensional Predicates in Deductive Databases. 9th IEEE Intl. Conf. on Data Engineering, ICDE (1993) 14–21.Google Scholar
  10. 10.
    Lloyd J.W.: Foundations of Logic Programming. Springer-Verlag (1987).Google Scholar
  11. 11.
    Marek V.W., Truszcyński M.: Revision Programming, Database Updates and Integrity. Intl. Conf. on Database Theory, ICDT'95, LNCS 893 Springer-Verlag (1995).Google Scholar
  12. 12.
    Martin L., Vrain C.: icn: a single predicate learner. Technical Report 95-3 LIFO, Université d'Orléans (1995).Google Scholar
  13. 13.
    Martin L., Vrain C.: Mult_ICN: an empirical multiple predicate learner. Fifth Intl. Workshop on Inductive Logic Programming, L. De Raedt (Ed.), Leuven (1995) 129–144.Google Scholar
  14. 14.
    Martin L., Vrain C.: A Three-Valued Framework for the Induction of General Logic Programs. Advances in Inductive Logic Programming. L. de Raedt (Ed.), IOS Press (1996) 219–235.Google Scholar
  15. 15.
    Muggleton S., Feng C.: Efficient Induction of Logic Programs. Inductive Logic programming A.P.I.C. Series 38, S. Muggleton (Ed.), Academic Press (1992) 281–298.Google Scholar
  16. 16.
    Quinlan J.R.: Learning Logical Definitions from Relations. Machine Learning Journal 5 Kluwer Academic Publishers (1990) 239–266.Google Scholar
  17. 17.
    de Raedt L.: Interactive theory revision, an inductive logic programming approach. Academic Press Limited (1992).Google Scholar
  18. 18.
    Reiter R.: A Logic for Default Reasoning. Artificial Intelligence 13 (1980).Google Scholar
  19. 19.
    Shapiro E.Y.: Algorithmic Program Debugging. ACM Distinguished Dissertation, MIT Press (1982).Google Scholar
  20. 20.
    Ullman J.D.: Principles of Databases and Knowledge Base Systems. Vol. I-II Computer Science Press (1989).Google Scholar
  21. 21.
    Van, Gelder A., Ross, K.A., Schlipf, J.S.: The well founded Semantics for General Logic Program. Journal of the ACM 38(3) (1991) 620–650.Google Scholar
  22. 22.
    Vrain C., Laurent D.: Apprentissage de règles et Bases de données déductives (French). Technical Report 95-5, LIFO, Université d'Orléans (1995).Google Scholar
  23. 23.
    Vrain C., Laurent D.: Learning Query Rules for Optimizing Databases with Update Rules. Technical Report 95-19, LIFO, Université d'Orléans (1995).Google Scholar
  24. 24.
    Vrain C., Martin L.: Inductive learning of normal clauses. Machine Learning: ECML-94, LNAI, 784 F. Bergadano, L. De Raedt (Eds.), Springer Verlag (1994) 435–438.Google Scholar
  25. 25.
    Widom J., Ceri S.: Active Database Systems. Morgan Kaufmann (1996).Google Scholar
  26. 26.
    Wrobel S.: Concept Formation and Knowledge Revision. Kluwer Academic Publishers (1994).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • D. Laurent
    • 1
  • Ch. Vrain
    • 1
  1. 1.LIFOUniversité d'OrléansOrléans Cedex 2France

Personalised recommendations