Skip to main content

Mechanisms of gas exchange in bird lungs

  • Chapter
  • First Online:

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 86))

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdalla MA, King AS (1975) The functional anatomy of the pulmonary circulation of the domestic fowl. Respir Physiol 23:267–290

    Google Scholar 

  • Abdalla MA, King AS (1976) Pulmonary arteriovenous anastomoses in the avian lung: do they exist? Respir Physiol 27:187–191

    Google Scholar 

  • Akester AR (1960) The comparative anatomy of the respiratory pathways in the domestic fowl, pigeon, and domestic duck. J Anat 94:488

    Google Scholar 

  • Akester AR (1971) The blood vascular system. In: Bell DJ, Freeman BM (eds) Physiology and biochemistry of the domestic fowl, vol 2, Academic Press, London, New York

    Google Scholar 

  • Allen RL (1971) The properties and biosynthesis of the hemoglobins. In: Bell DJ, Freeman BM (eds) Physiology and biochemistry of the domestic fowl, vol 2, Academic Press, London, New York

    Google Scholar 

  • Andersen HT (1959a) Depression of metabolism in the duck during experimental diving. Acta Physiol Scand 46:234–239

    Google Scholar 

  • Andersen HT (1959b) A note on the composition of alveolar air in the diving duck. Acta Physiol Scand 46:240–243

    Google Scholar 

  • Andersen HT (1966) Physiological adaptations in diving vertebrates. Physiol Rev 46:212–243

    Google Scholar 

  • Andersen HT, Hustvedt BE, Løvø A (1965) Acid-base changes in diving ducks. Acta Physiol Scand 63:128–132

    Google Scholar 

  • Andersen HT, Løvø A (1967) Indirect estimation of partial pressure of oxygen in arterial blood of diving ducks. Respir Physiol 2:163–167

    Google Scholar 

  • Antonini E, Brunori M (1971) Hemoglobin and myoglobin in their reaction with ligands. North-Holland, Amsterdam, London

    Google Scholar 

  • Bartels H, Hiller G, Reinhardt W (1966) Oxygen affinity of chicken blood before and after hatching. Respir Physiol 1:345–356

    Google Scholar 

  • Bartlett G (1970) Pattern of phosphate compounds in red blood cells of man and animals. In: Brewer GJ (ed) Red cell metabolism and function. Plenum, New York, London, pp 245–256

    Google Scholar 

  • Bartlett GR, Borgese TA (1976) Phosphate compounds in red cells of the chicken and duck embryo and hatchling. Comp Biochem Physiol [A] 55:207–210

    Google Scholar 

  • Bauer C (1974) On the respiratory function of haemolgobin. Rev Physiol Biochem Pharmacol 70:1–31

    Google Scholar 

  • Baumann FH, Baumann R (1977) A comparative study of the respiratory properties of bird blood. Respir Physiol 31:333–343

    Google Scholar 

  • Berger M (1974a) Oxygen consumption and power of hovering hummingbirds at varying barometric and oxygen pressures. Naturwissenschaften 9:407

    Google Scholar 

  • Berger M (1974b) Energiewechsel von Kolibris beim Schwirrflug unter Höhenbedingungen. J Ornithol 115:273–288

    Google Scholar 

  • Berger M, Hart JS (1968) Ein Beitrag zum Zusammenhang zwischen Stimme und Atmung bei Vögeln. J Ornithol 109:421–424

    Google Scholar 

  • Berger M, Hart JS (1972) Die Atmung beim Kolibri Amazilia fimbriata während des Schwirrfluges bei verschiedenen Umgebungstemperaturen. J Comp Physiol 81:363–380

    Google Scholar 

  • Berger M, Hart JS (1974) Physiology and energetics of flight. In: Farner DS, King JR (eds) Avian biology, Vol II. Academic Press, New York, pp 415–477

    Google Scholar 

  • Bernstein MH (1976) Ventilation and respiratory evaporation in the flying crow, Corvus ossifragus. Respir Physiol 26:371–382

    Google Scholar 

  • Bernstein MH, Schmidt-Nielsen K (1974) Ventilation and oxygen extraction in the crow. Respir Physiol 21:393–401

    Google Scholar 

  • Bethe A (1925) Atmung: Allgemeines und Vergleichendes. In: Bethe A, Bergmann G v, Embden G, Ellinger A (eds) Handbuch der normalen und pathologischen Physiologie, Vol 2, Springer, Berlin, pp 1–36

    Google Scholar 

  • Biggs PM, King AS (1957) A new experimental approach to the problem of the air pathway within the avian lung. J Physiol 138:282–299

    Google Scholar 

  • Borgese TA, Bertles JF (1965) Hemoglobin heterogeneity: Embryonic hemologbin in the duckling and its disappearance in the adult. Science 148:509–511

    Google Scholar 

  • Borgese T, Lampert LM (1975) Duck red cell 2,3 diphosphoglycerate: its presence in the embryo and its disappearance in the adult. Biochem Biophys Res Comm 65:822–827

    Google Scholar 

  • Bouverot P (1978) Control of breathing in birds as compared with mammals. Physiol Rev 58:604–655

    Google Scholar 

  • Bouverot P, Dejours P (1971) Pathway of respired gas in the air sacs-lung apparatus of fowl and ducks. Respir Physiol 13:330–342

    Google Scholar 

  • Bouverot P, Hildwein G, LeGoff D (1974) Evaporative water loss, respiratory pattern, gas exchange, and acid-base balance during thermal panting in Pekin ducks under moderate heat exposure. Respir Physiol 21:255–269

    Google Scholar 

  • Bouverot P, Hildwein G, Oulhen P (1976) Ventilatory and circulatory O2 convection at 4000 m in pigeon at neutral or cold temperature. Respir Physiol 28:371–385

    Google Scholar 

  • Brackenbury JH (1971) Airflow dynamics in the avian lung as determined by direct and indirect methods. Respir Physiol 13:319–329

    Google Scholar 

  • Brackenbury JH (1972a) Lung-air sac anatomy and respiratory pressures in the bird. J Exp Biol 57:543–550

    Google Scholar 

  • Brackenbury JH (1972b) Physical determinants of air flow pattern within the avian lung. Respir Physiol 15:384–397

    Google Scholar 

  • Brackenbury JH (1979) Corrections to the Hazelhoff model of airflow in the avian lung. Respir Physiol 36:143–154

    Google Scholar 

  • Brandes G (1924) Beobachtungen und Reflexionen über die Atmung der Vögel. Pfluegers Arch 203:492–511

    Google Scholar 

  • Bretz WL, Schmidt-Nielsen K (1970) Patterns of air flow in the duck lung. Fed Proc 29:662

    Google Scholar 

  • Bretz WL, Schmidt-Nielsen K (1971) Bird respiration: Flow patterns in the duck lung. J Exp Biol 54:103–118

    Google Scholar 

  • Bretz WL, Schmidt-Nielsen K (1972) The movement of gas in the respiratory system of the duck. J Exp Biol 56:57–65

    Google Scholar 

  • Burger RE, Lorenz FW (1960) Artificial respiration in birds by unidirectional airflow. Poult Sci 39:236–237

    Google Scholar 

  • Burger RE, Meyer M, Graf W, Scheid P (1979) Gas exchange in the parabronchial lung of birds: experiments in unidirectionally ventialted ducks. Respir Physiol 36:19–37

    Google Scholar 

  • Burton RR, Smith AH (1968) Blood and air volumes in the avian lung. Poult Sci 47:85–91

    Google Scholar 

  • Butler PJ (1970) The effect of progressive hypoxia on the respiratory and cardiovascular systems of the pigeon and duck. J Physiol (Lond) 201:527–538

    Google Scholar 

  • Butler PJ, West NH, Jones DR (1977) Respiratory and cardiovascular response of the pigeon to sustained level flight in a wind tunnel. J Exp Biol 71:7–26

    Google Scholar 

  • Calder WA (1970) Respiration during song in the canary (Serinus canaria). Comp Biochem Physiol 32:251–258

    Google Scholar 

  • Calder WA, King JR (1974) Thermal and caloric relations of birds. In: Farner DS, King JR (eds) Avian biology. Vol IV. Academic Press, New York, pp 259–413

    Google Scholar 

  • Calder WA, Schmidt-Nielsen K (1966) Evaporative cooling and respiratory alkalosis in the pigeon. Proc. Natl. Acad. Sci USA 55:750–756

    Google Scholar 

  • Calder WA, Schmidt-Nielsen K (1968) Panting and blood carbon dioxide in birds. Am J Physiol 215:477–482

    Google Scholar 

  • Campana A (1875) Recherches d'anatomie, de physiologie et d'organogénie pour la détermination des lois de la genèse et de l'évolution des espèces animales. I. mémoire: Physiologie de la respiration chez les oiseaux, anatomie de l'appareil pneumatiquepulmonaire, des faux diaphragmes des séreuses et de l'intestin chez le poulet. Masson, Paris

    Google Scholar 

  • Clausen G, Sanson R, Storesund A (1971) The HbO2 dissociation curve of the fulmar and the herring gull. Respir Physiol 12:66–70

    Google Scholar 

  • Cohn JE, Shannon R (1968) Respiration in unanesthetized geese. Respir Physiol 5:259–268

    Google Scholar 

  • Coitier V (1573, cit. after Campana, 1875) Anatomia avium. In: Externarum et internarum praecipalium humani corporis partium tabulae atque anatomicae exercitationes. Nuremberg

    Google Scholar 

  • Colacino JM, Hector DH, Schmidt-Nielsen K (1977) Respiratory responses of ducks to simulated altitude. Respir Physiol 29:265–281

    Google Scholar 

  • Comroe JH (1965) Physiology of respiration. Year Book Medical Publishers, Chicago

    Google Scholar 

  • Crank WD, Gallagher RR (1978) Theory of gas exchange in the avian parabronchus. Respir Physiol 35:9–25

    Google Scholar 

  • Crawford EC Jr, Kampe G (1971) Resonant panting in pigeons. Comp Biochem Physiol [A] 40:549–552

    Google Scholar 

  • Danzer LH, Cohn JE (1967) The dissociation curve of the goose blood. Respir Physiol 3:302–306

    Google Scholar 

  • Davies DG, Dutton RE (1975) Gas-blood PCO 2 gradients during avian gas exchange. J Appl Physiol 39:405–410

    Google Scholar 

  • Dawson WR (1975) Avian physiology. Ann Rev Physiol 37:441–465

    Google Scholar 

  • Dejours P (1975) Principles of comparative respiratory physiology. North Holland, Amsterdam, Oxford

    Google Scholar 

  • Dotterweich H (1930a) Die Bahnhofstaube und die Frage nach dem Weg der Atemluft. Zool Anz 90:259–262

    Google Scholar 

  • Dotterweich H (1930b) Versuch über den Weg der Atemluft in der Vogellunge. Z Vergl Physiol 11:271–284

    Google Scholar 

  • Dotterweich H (1933) Ein weiterer Beitrag zur Atmungsphysiologie der Vögel. Z Vergl Physiol 18:803–809

    Google Scholar 

  • Dotterweich H (1936) Die Atmung der Vögel. Z Vergl Physiol 23:744–770

    Google Scholar 

  • Duhm J (1976) Dual effect of 2,3-Diphosphoglycerate on the Bohr effects of human blood. Pfluegers Arch 363:55–60

    Google Scholar 

  • Duncker HR (1971) The lung air sac system of birds. Ergeb Anat Entwicklungsgesch 45, Heft 6

    Google Scholar 

  • Duncker HR (1972) Structure of avian lungs. Respir Physiol 14:44–63

    Google Scholar 

  • Duncker HR (1974) Structure of the avian respiratory tract. Respir Physiol 22:1–19

    Google Scholar 

  • Escobedo MA, Samaniego FC, Gonzalez DV, Bernstein MH (1978) Respiration in pigeons at simulated high altitudes. Fed Proc 37:472

    Google Scholar 

  • Fedde MR (1976) Respiration. In: Sturkie PD (ed) Avian physiology. Springer, Berlin, Heidelberg, New York, pp 122–145

    Google Scholar 

  • Fedde MR, Burger RE, Kitchell RL (1964) Anatomic and electromyographic studies of the costopulmonary muscles in the cock. Poult Sci 43:1177–1184

    Google Scholar 

  • Freeman BM, Vince MA (1974) Development of the avian embryo. Chapman and Hall, London

    Google Scholar 

  • Gaunt AS, Hector D, Gaunt S (1973a) Pressure events, mini-breaths and avian vocalization. Am Zool 13:1346–1347

    Google Scholar 

  • Gaunt AS, Stein RC, Gaunt SLL (1973b) Pressure and air flow during distress calls of the starling, Sturnus vulgaris (aves; passeriformes). J Exp Zool 183:241–262

    Google Scholar 

  • Gehr P, Bachofen M, Weibel ER (1978) The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir Physiol 32:121–140

    Google Scholar 

  • Graham JDP (1939) The air stream in the lung of the fowl. J Physiol 97:133–137

    Google Scholar 

  • Haab P, Duc G, Stucki R, Piiper J (1964) Les échanges gazeux en hypoxie et la capacité de diffusion pour l'oxygène chez le chien narcotisé. Helv Physiol Acta 22:203–227

    Google Scholar 

  • Hansen H (1950) Wärmeübertragung im Gegenstrom, Gleichstrom und Kreuzstrom. Springer, Berlin, Göttingen, Heidelberg

    Google Scholar 

  • Harveus G (1651, cit. after Duncker, 1971) Exercitationes de generatione animalium. London

    Google Scholar 

  • Hashimoto K, Wilt FH (1966) The heterogeneity of chicken hemoglobin. Proc Natl Acad Sci USA 56:1477–1483

    Google Scholar 

  • Hazelhoff EH (1943) Bouw en functie van de vogellong. Versl gewone Vergad afd Natuurk Kon Ned Akad Wet 52:391–400. English translation (1951) Structure and function of the lungs of birds. Poult Sci 30:3–10

    Google Scholar 

  • Hirsowitz LA, Fell K, Torrance JD (1977) Oxygen affinity of avian blood. Respir Physiol 31:51–62

    Google Scholar 

  • Holle JP, Heisler N, Scheid P (1978) Blood flow distribution in the duck lung and its control by respiratory gases. Am J Physiol 234:R146–R154

    Google Scholar 

  • Holle JP, Meyer M, Scheid P (1977) Oxygen affinity of duck blood determined by in vivo and in vitro technique. Respir Physiol 29:355–361

    Google Scholar 

  • Hudson DM, Bernstein MH (1978) Respiratory ventilation during steady state flight in the white-necked raven, Corvus cryptoleucus. Fed Proc 37:472

    Google Scholar 

  • Huisman THJ, Schillhorn van Veen JM (1964) Studies on animal hemoglobins. III. The possible role of intracellular inorganic phosphate on the oxygen equilibrium of the hemoglobin in the developing chicken. Biochim Biophys Acta 88:367–374

    Google Scholar 

  • Isaacks RE, Harkness DR, Sampsell RN, Adler JL, Kim CY, Goldman PH (1976a) Studies on avian erythrocyte metabolism. IV. Relationship between the major phosphorylated metabolic intermediates and oxygen affinity of whole blood in adults and embryos in several galliforms. Comp Biochem Physiol [A] 55:29–33

    Google Scholar 

  • Isaacks RE, Harkness DR, Adler JL, Goldman PH (1976b) Studies on avian erythrocyte metabolism. Effect of organic phosphate on oxygen affinity of embryonic and adult-type hemoglobins of the chick embryo. Arch Biochem Biophys 173:114–120

    Google Scholar 

  • Jackson DC, Schmidt-Nielsen K (1964) Countercurrent heat exchange in the respiratory passages. Proc Natl Acad Sci USA 51:1192–1197

    Google Scholar 

  • James AE, Hutchins G, Bush M, Natarajan TK, Burns B (1976) How birds breathe: correlation of radiographic with anatomical and pathological studies. J Am Vet Radiol Soc 17:77–86

    Google Scholar 

  • Jammes Y, Bouverot P (1975) Direct PCO 2 measurements in the dorsobronchial gas of awake Peking ducks: evidence for a physiological role of the neopulmo in respiratory gas exchanges. Comp Biochem Physiol [A] 52:635–637

    Google Scholar 

  • Johnson LF, Tate ME (1969) Structure of “phytic acid”. Can J Chem 47:63–73

    Google Scholar 

  • Jones DR (1976) The control of breathing in birds with particular reference to the initiation and maintenance of diving apnea. Fed Proc 35:1975–1982

    Google Scholar 

  • Jones DR, Holeton GF (1972a) Cardiovascular and respiratory responses of ducks to progressive hypocapnic hypoxia. J Exp Biol 56:657–666

    Google Scholar 

  • Jones DR, Holeton GF (1972b) Cardiac output of ducks during diving. Comp Biochem Physiol [A] 41:639–645

    Google Scholar 

  • Jones DR, Johansen K (1972) The blood vascular system of birds. In: Farner DS, King JR (eds) Avian biology. Vol II, Academic Press, New York, London, pp 157–285

    Google Scholar 

  • Jones JD (1972) Comparative Physiology of Respiration. Arnold, London

    Google Scholar 

  • Kawashiro T, Scheid P (1975) Arterial blood gases in undisturbed resting birds: measurements in chicken and duck. Respir Physiol 23:337–342

    Google Scholar 

  • Kiley JP, Kuhlmann WD, Fedde MR (1978) Ventilation and blood gas tensions in exercising ducks. Physiologist 21:64

    Google Scholar 

  • King AS (1966) Structural and functional aspects of the avian lungs and air sacs. Int Rev Gen Exp Zool 2:171–267

    Google Scholar 

  • King AS (1975) Aves, respiratory system. In: Getty R (ed) The anatomy of the domestic animals, 5th edn. Saunders, Philadelphia

    Google Scholar 

  • King AS (1979) Systema respiratorium. In: Baumel JJ, King AS, Lucas AM, Breazile J, Evans H (eds) Nomina Anatomica Avium. Academic Press, London

    Google Scholar 

  • King AS, Cowie AF (1969) The functional anatomy of the bronchial muscle of the bird. J Anat 105:323–336

    Google Scholar 

  • King AS, Molony V (1971) The anatomy of respiration. In: Bell DK, Freeman BM (eds) Physiology and biochemistry of the domestic fowl. Academic Press, London

    Google Scholar 

  • King AS, Payne DC (1958) The volume of the lungs and air sacs in Gallus Domesticus. J Anat 92:656

    Google Scholar 

  • King AS, Payne DC (1960) Does the air circulate in the avian lung? Anat Rec 136:223

    Google Scholar 

  • King AS, Payne DC (1962) The maximum capacities of the lungs and air sacs of Gallus domesticus. J Anat 96:495–503

    Google Scholar 

  • King JR, Farner DS (1964) Terrestrial animals in humid heat: birds. In: Dill DB, Adolph EF, Wilber CG (eds) Handbook of physiology, Sect. 4: Adaptation to the environment. Amer Physiol Soc, Washington DC, pp 603–624

    Google Scholar 

  • Kooyman GL, Schroeder JP, Greene DG, Smith VA (1973) Gas exchange in penguins during simulated dives of 30 and 68 m. Am J Physiol 225:1467–1471

    Google Scholar 

  • Lasiewski RC (1972) Respiratory function in birds. In: Farner DS, King JR (eds) Avian biology, Vol II, Academic Press, New York, pp 287–342

    Google Scholar 

  • Lasiewski RC, Calder WA (1971) A preliminary allometric analysis of respiratory variables in resting birds. Respir Physiol 11:152–166

    Google Scholar 

  • Lasiewski RC, Dawson WR (1967) A re-examination of the relation between standard metabolic rate and body weight in birds. Condor 69:13–23

    Google Scholar 

  • Lefebvre EA (1964) The use of D2O18 for measuring energy metabolism in Columbia livia at rest and in flight. Auk 81:403–416

    Google Scholar 

  • Lenfant C, Kooyman GL, Elsner R, Drabek CM (1969) Respiratory function of blood of the Adelie penguin Pygoscelis adeliae. Am J Physiol 216:1598–1600

    Google Scholar 

  • Linsley JG, Burger RE (1964) Respiratory and cardiovascular responses in the hyperthermic domestic cock. Poult Sci 43-291–305

    Google Scholar 

  • Lomholt JP (1975) Oxygen affinity of bird embryo blood. J Comp Physiol 99:339–343

    Google Scholar 

  • Lord RD, Bellrose FC, Cochran WW (1962) Radiotelemetry of the respiration of a flying duck. Science 137:39–40

    Google Scholar 

  • Lutz PL, Schmidt-Nielsen K (1977) Effect of simulated altitude on blood gas transport in the pigeon. Respir Physiol 30:383–388

    Google Scholar 

  • Lutz PL, Longmuir IS, Tuttle JV, Schmidt-Nielsen K (1973) Dissociation curve of bird blood and effect of red cell oxygen consumption. Respir Physiol 17:269–275

    Google Scholar 

  • Lutz PL, Longmuir IS, Schmidt-Nielsen K (1974) Oxygen affinity of bird blood. Respir Physiol 20:325–330

    Google Scholar 

  • Macklem PT, Bouverot P, Scheid P (to be published) Measurement of the distensibility of the parabronchi in the duck lung. Respir Physiol

    Google Scholar 

  • Magnussen H, Willmer H, Scheid P (1976) Gas exchange in air sacs: contribution to respiratory gas exchange in ducks. Respir Physiol 26:129–146

    Google Scholar 

  • Makowski J (1938) Beitrag zur Klärung des Atmungsmechanismus der Vögel. Pfluegers Arch 240:407–418

    Google Scholar 

  • Marder J, Arad Z (1975) The acid base balance of Abdim's stork (Spenorhynchus abdimii) during thermal panting. Comp Biochem Physiol A 51:887–889

    Google Scholar 

  • Marder J, Arad Z, Gafni M (1974) The effect of high ambient temperature on acid-base balance of panting Bedouin fowl (Galls domesticus). Physiol Zool 47:180–189

    Google Scholar 

  • Menuam B, Richards SA (1975) Observations on the sites of respiratory evaporation in the fowl during thermal panting. Respir Physiol 25:39–52

    Google Scholar 

  • Meyer M, Worth H, Scheid P (1976) Gas-blood CO2 equilibration in parabronchial lungs of birds. J Appl Physiol 41:302–309

    Google Scholar 

  • Meyer M, Holle JP, Scheid P (1978) Bohr effect induced by CO2 and fixed acid at various levels of O2 saturation in duck blood. Pfluegers Arch 376:237–240

    Google Scholar 

  • Milsom WK, Johansen K, Millard RW (1973) Blood respiratory properties in some antarctic birds. Condor 75:472–474

    Google Scholar 

  • Misson BH, Freeman BM (1972) Organic phosphates and oxygen affinity of chick blood before and after hatching. Respir Physiol 14:343–352

    Google Scholar 

  • Molony V, Graf W, Scheid P (1976) Effects of CO2 on pulmonary air flow resistance in the duck. Respir Physiol 26:333–349

    Google Scholar 

  • Murrish DE (1973) Respiratory heat and water exchange in penguins. Respir Physiol 19:262–270

    Google Scholar 

  • Ochiai T, Gotoh T, Shikama K (1972) Effects of intracellular organic phosphates on the oxygen equilibrium curve of chicken hemoglobin. Arch Biochem Biophys 149:316–322

    Google Scholar 

  • Oshima M, Taylor TG, Williams A (1974) Variations in the concentration of phytic acid in the blood of the domestic fowl. Biochm J 92:42–46

    Google Scholar 

  • Parry K, Yates MS (1978) Observations on the avian pulmonary and bronchial circulation using labelled microspheres. J Anat 127:199

    Google Scholar 

  • Parry K, Yates MS (to be published) Observations on the avian pulmonary and bronchial circulation using labelled microspheres. Respir Physiol

    Google Scholar 

  • Pattle RE (1965) Surface lining of lung alveoli. Physiol Rev 45:48–79

    Google Scholar 

  • Pattle RE (1978) Lung surfactant and lung lining in birds. In: Piiper J (ed) Respiratory function in birds, adult and embryonic. Springer, Berlin, Heidelberg, New York, pp 23–32

    Google Scholar 

  • Pennycuick CJ (1972) Animal flight. Arnold, London

    Google Scholar 

  • Pennycuick CJ (1975) Mechanics of flight. In: Farner DS, King JR (eds) Avian biology, Vol. V, Academic Press, New York, London, pp 1–75

    Google Scholar 

  • Petschow D, Würdinger I, Baumann R, Duhm J, Braunitzer G, Bauer C (1977) Causes of high blood O2 affinity of animals living at high altitude. J Appl Physiol 42:139–143

    Google Scholar 

  • Piiper J (ed) (1972) Comparative physiology of respiration in vertebrates. Respir Physiol 14:1–236

    Google Scholar 

  • Piiper J (ed) (1978a) Respiratory function in birds, adult and embryonic. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Piiper J (1978b) Origin of carbon dioxide in caudal air sacs of birds. In: Piiper J (ed) Respiratory function in birds, adult and embryonic. Springer, Berlin, Heidelberg, New York, pp 148–153

    Google Scholar 

  • Piiper J, Scheid P (1973) Gas exchange in avian lungs: models and experimental evidence. In: Bolis L, Schmidt-Nielsen K, Maddrell SHP (eds) Comparative physiology. North Holland, Amsterdam, pp 161–185

    Google Scholar 

  • Piiper J, Scheid P (1975) Gas transport efficacy of gills, lungs and skin: theory and experimental data. Respir Physiol 23:209–221

    Google Scholar 

  • Piiper J, Scheid P (1977) Comparative physiology of respiration: Functional analysis of gas exchange organs in vertebrates. In: Widdicombe JG (ed) International review of physiology, series II, respiratory physiology. University Park Press, Baltimore, pp 219–253

    Google Scholar 

  • Piiper J, Scheid P (1978) Series ventilation and stratified inhomogeneity in avian vs. mammalian lungs. Physiologist 21:92

    Google Scholar 

  • Piiper J, Scheid P (to be published) Blood-gas equilibration in lungs. In: West JB (ed) Pulmonary gas exchange. Academic Press, New York

    Google Scholar 

  • Piiper J, Huch A, Kötter D, Herbst R (1969) Pulmonary diffusing capacity at basal and increased O2 uptake levels in anesthetized dogs. Respir Physiol 6:219–232

    Google Scholar 

  • Piiper J, Drees F, Scheid P (1970) Gas exchange in the domestic fowl during spontaneous breathing and artificial ventilation. Respir Physiol 9:234–245

    Google Scholar 

  • Piiper J, Dejours P, Haab P, Rahn H (1971) Concepts and basic quantities in gas exchange physiology. Respir Physiol 13:292–304

    Google Scholar 

  • Policard A, Collet A, Martin JC (1962) La surface d'échange air-sang dans le poumon des oiseaux. Etude au microscope électronique. Z Zell Mikrosk Anat 57:37–46

    Google Scholar 

  • Portier P (1928) Sur le rôle physiologique des sacs aériens des oiseaux. Compt Rend Soc Biol 99:1327–1329

    Google Scholar 

  • Powell FL, Scheid P, Gratz RK, Geiser J (1978) Efficacy of aerodynamic valving in avian lungs during inspriation. Fed Proc 37:472

    Google Scholar 

  • Ramirez JM, Bernstein MH (1976) Compound ventilation during thermal panting in pigeons: a possible mechanism for minimizing hypocapnic alkalosis. Fed Proc 35:2562–2565

    Google Scholar 

  • Romanoff A (1967) Biochemistry of the avian embryo. Wiley, New York, London, Sydney

    Google Scholar 

  • Romanoff AL, Romanoff AJ (1949) The avian egg. Wiley, New York

    Google Scholar 

  • Rowell LB (1974) Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev 54:75–159

    Google Scholar 

  • Scharnke H (1938) Experimentelle Beiträge zur Kenntnis der Vogelatmung. Z Vergl Physiol 25:548–583

    Google Scholar 

  • Scheid P (ed) (1974) Receptors and control of respiration in birds. Respir Physiol 22:1–216

    Google Scholar 

  • Scheid P (1978a) Analysis of gas exchange between air capillaries and blood capillaries in avian lungs. Respir Physiol 32:27–49

    Google Scholar 

  • Scheid P (1978b) Estimation of effective parabronchial gas volume during intermittent ventilatory flow: theory and application in the duck. Respir Physiol 32:1–14

    Google Scholar 

  • Scheid P, Kawashiro T (1975) Metabolic changes in avian blood and their effects on determination of blood gases and pH. Respir Physiol 23:291–300

    Google Scholar 

  • Scheid P, Piiper J (1970a) Analysis of gas exchange in the avian lung: theory and experiments in the domestic fowl. Respir Physiol 9:246–262

    Google Scholar 

  • Scheid P, Piiper J (1970b) Direkte Messung der Strömungsrichtung der Atemluft in der Entenlunge. Pfluegers Arch 319:R59

    Google Scholar 

  • Scheid P, Piiper J (1971) Direct measurement of the pathway of respired gas in duck lungs. Respir Physiol 11:308–314

    Google Scholar 

  • Scheid P, Piiper J (1972) Cross-current gas exchange in avian lungs: effects of reversed parabronchial air flow in ducks. Respir Physiol 16:304–312

    Google Scholar 

  • Scheid P, Piiper J (to be published) Intrapulmonary gas mixing and stratification. In: West JB (ed) Pulmonary gas exchange. Academic Press, New York, London

    Google Scholar 

  • Scheid P, Slama H (1975) Remote-controlled device for sampling arterial blood in unrestrained animals. Pfluegers Arch 356:373–376

    Google Scholar 

  • Scheid P, Slama H, Piiper J (1972) Mechanisms of unidirectional flow in parabronchi of avian lungs: measurements in duck lung preparations. Respir Physiol 14:83–95

    Google Scholar 

  • Scheid P, Slama H, Gatz RN, Fedde MR (1974a) Intrapulmonary CO2 receptors in the duck: III. Functional localization. Respir Physiol 22:123–136

    Google Scholar 

  • Scheid P, Slama H, Willmer H (1974b) Volume and ventilation of air sacs in ducks studied by inert gas wash-out. Respir Physiol 21:19–36

    Google Scholar 

  • Scheid, P, Worth H, Holle JP, Meyer M (1977) Effects of oscillating and intermittent ventilatory flow on efficacy of pulmonary O2 transfer in the duck. Respir Physiol 31:251–258

    Google Scholar 

  • Scheid P, Gratz RK, Geiser J, Powell FL (1978) Patterns of respiratory gases in the bronchi of spontaneously breathing ducks. Pfluegers Arch [Suppl.] 131:R36

    Google Scholar 

  • Scheipers G, Kawashiro T, Scheid P (1975) Oxygen and carbon dioxide dissociation of duck blood. Respir Physiol 24:1–73

    Google Scholar 

  • Schmidt-Nielsen K (1971) How birds breathe. Sci Am No 6, 225:72–79

    Google Scholar 

  • Schmidt-Nielsen K (1972) How animals work. Cambridge University Press, Cambridge

    Google Scholar 

  • Schmidt-Nielsen K (1975) Recent advances in avian respiration. Symp Zool Soc (Lond) 35:33–47

    Google Scholar 

  • Schmidt-Nielsen K, Kanwisher J, Lasiewski RC, Cohn JE, Bretz WL (1969) Temperature regulation and respiration in the ostrich. Condor 71:341–352

    Google Scholar 

  • Schmidt-Nielsen K, Hainsworth FR, Murrish DE (1970) Counter-current heat exchange in the respiratory passages: effect on water and heat balance. Respir Physiol 9:263–276

    Google Scholar 

  • Severinghaus JW (1964) Blood gas concentrations. In: Fenn WO, Rahn H (eds) Handbook of physiology, Sect. 3: Respiration, Vol II. Am Physiol Soc, Washington DC, pp 1475–1487

    Google Scholar 

  • Shepard RH, Sladen BK, Peterson N, Enns T (1959) Path taken by gases through the respiratory system of the chicken. J Appl Physiol 14:733–735

    Google Scholar 

  • Siegwart B, Gehr P, Gil J, Weibel ER (1971) Morphometric estimation of pulmonary diffusion capacity. IV. The normal dog lung. Respir Physiol 13:141–159

    Google Scholar 

  • Simons JA (1966) The ontogeny of the multiple molecular forms of hemoglobin in the developing chick under normal and experimental conditions. J Exp Zool 162:219–230

    Google Scholar 

  • Stanislaus M (1937) Untersuchungen an der Kolibrilunge. Z Morphol Ökol Tiere 33:261–289

    Google Scholar 

  • Tomlinson JT (1963) Breathing of birds in flight. Condor 65:514–516

    Google Scholar 

  • Tomlinson JT, McKinnon RS (1957) Pigeon wing-beats synchronized with breathing. Condor 59:401

    Google Scholar 

  • Torre-Bueno JR (1978) Respiration during flight in birds. In: Piiper J (ed) Respiratory function in birds, adult and embryonic. Springer, Berlin, Heidelberg, New York, pp 89–94

    Google Scholar 

  • Tucker VA (1966) Oxygen consumption of a flying bird. Science 154:150–151

    Google Scholar 

  • Tucker VA (1968a) Respiratory physiology of house sparrows in relation to high-altitude flight. J Exp Biol 48:55–66

    Google Scholar 

  • Tucker VA (1968b) Respiratory exchange and evaporative water loss in the flying budgerigar. J Exp Biol 48:67–88

    Google Scholar 

  • Tucker VA (1974) Energetics of natural avian flight. In: Paynter RA (ed) Avian energetics. Nuttall Ornithological Club, Cambridge Mass., pp 298–333

    Google Scholar 

  • Vandecasserie C, Schnek AG, Léonis J (1971) Oxygen-affinity studies of avian hemoglobins. Chicken and pigeon. Eur J. Biochem 24:284–287

    Google Scholar 

  • Vandecasserie C, Paul C, Schnek AG, Léonis J (1973) Oxygen affinity of avian hemoglobins. Comp Biochem Physiol [A] 44:711–718

    Google Scholar 

  • Vos HF (1935) Über den Weg der Atemluft in der Entenlunge. Z Vergl Physiol 21:552:578

    Google Scholar 

  • Walter WG (1934) Beiträge zur Frage über den Weg der Luft in den Atmungsorganen der Vögel. Arch Neerl Physiol 19:529–537

    Google Scholar 

  • Weibel ER (1963) Morphometry of the human lung. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Weibel ER (1972) Morphometric estimation of pulmonary diffusion capacity. V. Comparative morphometry of alveolar lungs. Respir Physiol 14:26–43

    Google Scholar 

  • Weibel ER (1973) Morphological basis of alveolar capillary gas exchange. Physiol Rev 53:419–495

    Google Scholar 

  • Weingarten JP, Rollema HS, Bauer C, Scheid P (1978) Effects of inositol hexaphosphate on the Bohr effect induced by CO2 and fixed acid in chicken hemoglobin. Pfluegers Arch 377:135–141

    Google Scholar 

  • Wells RMG (1976) The oxygen affinity of chicken hemoglobin in whole blood and erythrocyte suspensions. Respir Physiol 27:21–31

    Google Scholar 

  • West NH, Bamford OS, Jones DR (1977) A scanning electron microscopy study of the microvasculature of the avian lung. Cell Tissue Res 176:553–564

    Google Scholar 

  • White FN (1978) Comparative aspects of vertebrate cardiorespiratory physiology. Ann Rev Physiol 40:471–499

    Google Scholar 

  • Zeuthen E (1942) The ventilation of the respiratory tract in birds. Kgl Dans Vidensk Selsk Biol Med 17:1–50

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag

About this chapter

Cite this chapter

Scheid, P. (1979). Mechanisms of gas exchange in bird lungs. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 86. Reviews of Physiology, Biochemistry and Pharmacology, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0031533

Download citation

  • DOI: https://doi.org/10.1007/BFb0031533

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09488-3

  • Online ISBN: 978-3-540-35210-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics