Skip to main content

Dynamics and control of 6-legged walking machines

  • Part 9 Biomechanical Aspects Of Robots And Manipulators 2
  • Conference paper
  • First Online:
RoManSy 9

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 187))

Abstract

For the design of technical walking machines a first — step approach using biological constructional conceptions and neurobiological control strategies is presented. A suitable mechanical model consists of 19 rigid bodies (1 central body and 6 legs with 3 segments each). The bodies form multiple closed kinematic chains corresponding to the regarded gait pattern. Thus, the changing structure during the walking motion yields a dynamic system with time-varying topology. For a stable locomotion control of future technical solutions a small net of neuron-like controllers is presented, which is designed on the basis of results of neurobiological research and establishes a stable gait movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Beer, R., Chiel, H., Sterling, L.: A Biological Perspective on Autonomous Agent Design, Robotics and Autonomous Systems 6 (1990) pp. 169–186

    Google Scholar 

  2. Bremer, H.: Dynamik und Regelung mechanischer Systeme, Teubner Stuttgart 1988

    Google Scholar 

  3. Brooks, R.A.: A Robot that Walks; Emergent Behaviours from a carefully evolved Network, MIT AI Memo 1091, February, 1989

    Google Scholar 

  4. Cruse, H.: The Function of the Legs in the Free Walking Stick Insect, Carausius morosus, Journal of Comparative Physiology 112, (1976)

    Google Scholar 

  5. Cruse, H.: What mechanisms coordinate leg movement in walking arthropods ? Trends in Neural Sciences 13:15–21

    Google Scholar 

  6. Danowski, P.: Simulation einer Stabheuschrecke, Diplomarbeit am Institut B für Mechanik der TU München 1989

    Google Scholar 

  7. Dean, J.: A model of leg coordination in the stick insect, Carausius morosus I: A geometrical consideration of contralateral and ipsilateral coordination mechanisms between two adjacent legs. Biol. Cybern. 64

    Google Scholar 

  8. Dean, J.: A model of leg coordination in the stick insect, Carausius morosus II: Description of the kinematic model and simulation of normal step patterns Biol. Cybern. 64, pp 393–402

    Google Scholar 

  9. Dean, J.: Coding Proprioceptive Information to Control Movement to a Target: Simulation with a Simple Neural Network Biol. Cybern. 64, pp 403–411

    Google Scholar 

  10. Graham, D.: A Behavioural Analysis of the Temporal Organisation of Walking Movements in the 1st Instar and Adult Stick Insect (Carausius morosus)

    Google Scholar 

  11. Kumar V., Waldron, K.J.: Force Distribution in Closed Kinematic Chains, IEEE Transactions of Robotics and Automation

    Google Scholar 

  12. Otter, M., Brandl, H., Johanni, R.: A very efficient algorithm for the simulation of robots and similar multibody systems without inversion of the mass matrix. Proceedings of the IFAC/IFIP/IMACS International Symposium on Theory of Robots, Vienna, Austria, Dec. 1986

    Google Scholar 

  13. Otter, M., Brandl, H., Johanni, R.: An algorithm for the simulation of multibody systems with kinematic loops. Proceedings of the 7th World Congress on Theory of Machines and Mechanisms, IFToMM, Sevilla, Spain, 1987.

    Google Scholar 

  14. Pfeiffer, F., Weidemann, H.-J., Danowski, P.: Dynamics of the Walking Stick Insect. IEEE Control Systems, February 1991, pp 9–13

    Google Scholar 

  15. Pfeiffer, F., Weidemann, H.-J.: Walking of the Stick Insect — Theory and Practice. Proc. of the VIII. CISM IFToMM Symposium on Theory and Practice of Robots and Manipulators, July 2–6, Cracow, Poland.

    Google Scholar 

  16. Pfeiffer, F.: Über unstetige, insbesondere stoßerregte Schwingungen, Z. Flugwiss. Weltraumforsch. 12 (1988) 358–367

    Google Scholar 

  17. Weidemann, H.-J.: Bewegungsgleichungen für Laufmaschinen. Institutsbericht TUM LBM 1990/1, Technical University Munich, 1990.

    Google Scholar 

  18. Waldron, K.J.: Force and Motion Management in Legged Locomotion, IEEE Journal of Robotics and Automation, Vol. RA-2, No. 4, December 1986

    Google Scholar 

  19. Zimmermann, M., Truninger, R., Schweitzer, G., Werder, M.: Design of a Sensor-Supported Mobile Working Platform for Rough Terrain, Proc. Eight Int. Symp. on Automatien and Robotics in Construction, Stuttgart, Germany, July 3–5, 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

A. Morecki G. Bianchi K. Jaworek

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag London Limited

About this paper

Cite this paper

Weidemann, HJ., Pfeiffer, F. (1993). Dynamics and control of 6-legged walking machines. In: Morecki, A., Bianchi, G., Jaworek, K. (eds) RoManSy 9. Lecture Notes in Control and Information Sciences, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0031463

Download citation

  • DOI: https://doi.org/10.1007/BFb0031463

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19834-5

  • Online ISBN: 978-3-540-39315-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics