Skip to main content

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 94))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aars H (1972) Reflex inhibition of sympathetic nerve activity by phenoxybenzamine. Acta Physiol Scand 85:433–437

    PubMed  Google Scholar 

  • Aars H, Akre S (1968) Effect of angiotensin on sympathetic nerve activity. Acta Physiol Scand 74:134–141

    PubMed  Google Scholar 

  • Aars H, Akre S (1970) Reflex changes in sympathetic activity and arterial blood pressure evoked by afferent stimulation of the renal nerve. Acta Physiol Scand 78:184–188

    PubMed  Google Scholar 

  • Abe K, Sato M, Haruyama T, Sato K (1980) The role of prostaglandins in the renin release mechanism following sodium deprivation and captopril administration in humans. Proc Int Symp Prostaglandins and the Kidney. Stuttgart, West Germany, p 19

    Google Scholar 

  • Adam WR (1980) Aldosterone and dopamine receptors in the kidneys: sites for pharmacologic manipulation of renal functions. Kindey Int 18:623–635

    Google Scholar 

  • Adrian ED, Bronk DW, Phillips G (1932) Discharges in mammalian sympathetic nerves. J Physiol 74:115–133

    Google Scholar 

  • Alexander RW, Gill JR, Yamabe H, Lovenberg W, Keiser HR (1974) Effects of dietary sodium and of acute saline infusion on the interrelationship between dopamine excretion and adrenergic activity in man. J Clin Invest 54:194–200

    PubMed  Google Scholar 

  • Ammons WS, Santiesteban HL, Kozama S, Manning JW (1980) Carotid baroreflex regulation of plasma renin levels. Am J Physiol 239:H342–H348

    PubMed  Google Scholar 

  • Anderson RJ, Henrich WL, Erickson AL, Gross P (1980) Role of renal nerves, angiotensin II and prostaglandins in antinatriuretic response to hypercapnic acidosis. Clin Res 28:434A

    Google Scholar 

  • Andreucci VE, Dal Canto A, Corradi A, Migone L (1976a) Efferent arterioles in glomerular hemodynamics. Proc Eur Dial Transplant Assoc 12:169–173

    PubMed  Google Scholar 

  • Andreucci VE, Dal Canto A, Corradi A, Stanziate R, Migone L (1976b) Role of the efferent arteriole in glomerular hemodynamics of superficial nephrons. Kidney Int 9:475–480

    PubMed  Google Scholar 

  • Arendhorst WJ, Beierwaltes WH (1979) Renal tubular reabsorption in spontaneously hypertensive rats. Am J Physiol 237:F38–F47

    PubMed  Google Scholar 

  • Arruda JAL, Sabatini S (1980) Dopamine inhibits water transport in the toad bladder: role of locally formed dopamine. Clin Res 28:782A

    Google Scholar 

  • Astrom A, Crafford J (1967) Afferent activity recorded in the kidney nerves of rats. Acta Physiol Scand 70:10–15

    PubMed  Google Scholar 

  • Astrom A, Crafford J (1968) Afferent and efferent activity in the renal nerves of cats. Acta Physiol Scand 74:69–78

    PubMed  Google Scholar 

  • Atlas D, Melamed E, Lahar M (1977) Beta adrenergic receptors in rat kidney. Lab Invest 36:465–468

    PubMed  Google Scholar 

  • Aukland K (1976) Renal blood flow. In: Thurau K (ed) International review of physiology: Kidney and urinary tract physiology II, Vol 2. University Park, Baltimore, pp 25–79

    Google Scholar 

  • Aukland K (1980a) “Redistribution” of intrarenal blood flow: facts or methodological artifacts. In: Leaf A, Giebisch G (eds) Renal pathophysiology — recent advances. Raven, New York, pp 145–154

    Google Scholar 

  • Aukland K (1980b) Methods for measuring renal blood flow: total flow and regional distribution. Annu Rev Physiol 42:543–555

    Article  PubMed  Google Scholar 

  • Ayus JC, Stanton CJ, Eneas JF, Humphreys MH (1978) Mechanisms involved in the reflex circulatory changes initiated by acute unilateral nephrectomy. Proc Int Congr Nephrol 7:F-7

    Google Scholar 

  • Azer M, Gannon R, Kaloyanides GJ (1972) Effect of renal denervation on the antinatriuresis of caval constriction. Am J Physiol 222:611–616

    PubMed  Google Scholar 

  • Baines AD, Chan W (1980) Production of urine free dopamine from DOPA; a micro-puncture study. LifeSci 26:253–259

    Google Scholar 

  • Baines A, Morgunov N (1980) Catecholamines and sodium excretion. In: Lichardus B, Schrier RW, Ponec J (eds) Hormonal regulation of sodium excretion. Elsevier/North Holland, Amsterdam, pp 21–32

    Google Scholar 

  • Baines AD, Craan A, Chan W, Morgunov N (1979) Tubular secretion and metabolism of dopamine, norepinephrine, methoxytyramine and normetanephrine by the rat kidney. J Pharmacol Exp Ther 208:144–147

    PubMed  Google Scholar 

  • Barajas L (1978) Innervation of the renal cortex. Fed Proc 37:1192–1201

    PubMed  Google Scholar 

  • Barajas L (1979) Anatomy of the juxtaglomerular apparatus. Am J Physiol 237:F333–F343

    PubMed  Google Scholar 

  • Barajas L (1981) The juxtaglomerular apparatus: anatomical considerations in feedback control of glomerular filtration rate. Fed Proc 40:78–86

    PubMed  Google Scholar 

  • Barajas L, Wang P (1975) Demonstration of acetylcholinesterase in the adrenergic nerves of the renal glomerular arterioles. J Ultrastruct Res 53:244–253

    Article  PubMed  Google Scholar 

  • Barajas L, Wang P (1978) Myelinated nerves of the rat kidney. J Ultrastruct Res 65:148–162

    Article  PubMed  Google Scholar 

  • Barajas L, Wang P (1979) Localization of tritiated norepinephrine in the renal arteriolar nerves. Anat Res 195:525–534

    Article  Google Scholar 

  • Barajas L, Silverman AJ, Muller J (1974) Ultrastructural localization of acetylcholinesterase in the renal nerves. J Ultrastruct Res 49:297–311

    Article  PubMed  Google Scholar 

  • Barajas L, Wang P, Desantis S (1976) Light and electron microscopic localization of acetylcholinesterase activity in the rat renal nerves. Am J Anat 147:219–234

    Article  PubMed  Google Scholar 

  • Barger AC, Liebowtiz MR, Muldowney FP (1959a) The role of the kidney in the homeostatic adjustments of congestive heart failure. J Chronic Dis 9:571–582

    Article  PubMed  Google Scholar 

  • Barger AC, Mudlowney FP, Liebowitz MR (1959b) Role of the kidney in the pathogenesis of congestive heart failure. Circulation 20:273–285

    PubMed  Google Scholar 

  • Baum T, Shropshire AT (1973) Reduction of sympathetic outflow by central administration of L-dopa, dopamine and norepinephrine. Neuropharmacology 12:49–56

    Article  PubMed  Google Scholar 

  • Baum T, Shropshire AT (1975) Inhibition of efferent sympathetic nerve activity by 5-hydroxytryptophan in centrally administered 5-hydroxytryptamine. Neuropharmacology 14:227–233

    Article  PubMed  Google Scholar 

  • Beacham WS, Kunze DL (1969) Renal receptors evoking a spinal vasomotor reflex. J Physiol 201:73–85

    PubMed  Google Scholar 

  • Beierwaltes WH, Schryver S, Olson PS, Romerao JC (1980) Interaction of the prostaglandin and renin-angiotensin systems in isolated rat glomeruli. Am J Physiol 239:F602–F608

    PubMed  Google Scholar 

  • Bell C, Lang WJ (1973) Neural dopaminergic vasodilator control in the kidney. Nature 246:27–29

    Google Scholar 

  • Bell C, Lang WJ, Laska F (1978) Dopamine-containing vasomotor nerves in the dog kidney. J Neurochem 31:77–83

    PubMed  Google Scholar 

  • Benchetrit G, Eteradossi J, Lemarchands H (1966) Effects d'une enervation chronique du rein sur la diurese et la saliurese du chien eveille. Pathol Biol (Paris) 14:944–951

    PubMed  Google Scholar 

  • Bello-Reuss E (1980) Effect of catecholamines on fluid reabsorption by the isolated proximal convoluted tubule. Am J Physiol 238:F347–F352

    PubMed  Google Scholar 

  • Bello-Reuss E, Colindres RE, Pastoriza-Munoz E, Mueller RA, Gottschalk CW (1975) Effects of acute unilateral denervation in the rat. J Clin Invest 56:208–217

    PubMed  Google Scholar 

  • Bello-Reuss E, Trevino DL, Gottschalk CW (1976) Effect of renal sympathetic nerve stimulation on proximal water and sodium reabsorption. J Clin Invest 57:1104–1107

    PubMed  Google Scholar 

  • Bello-Reuss E, Pastoriza-Munoz E, Colindres RE (1977) Acute unilateral renal denervation in rats with extracellular volume expansion. Am J Physiol 232:F26–F32

    PubMed  Google Scholar 

  • Bencsath P, Szalay L, Demeczky L, Takacs L (1971) Effects of chlorothiazide and furosemide on sodium and water excretion after unilateral splanchicotomy in the dog. Nephron 8:329–343

    PubMed  Google Scholar 

  • Bencsath P, Bonvalet J-P, De Rouffignac C (1972) Tubular factors in denervation diuresis and natriuresis. In: Worz H, Spinelli F (eds) Recent advances in renal physiology. Karger, Basel, pp 96–106

    Google Scholar 

  • Bencsath P, Asztalos B, Szalay L, Takacs L (1979) Renal handling of sodium after chronic renal sympathectomy in the anesthetized rat. Am J Physiol 236:F513–F518

    PubMed  Google Scholar 

  • Ben-Ishay D, Knudsen KD, Dahl LK (1973) Exaggerated response to isotonic saline loading in genetically hypertension-prone rats. J Lab Clin Med 82:597–604

    PubMed  Google Scholar 

  • Bennett ED, Keddie J (1974) Increased glomerular filtration in patients with myocardial infarction. Clin Sci 47:8–9

    Google Scholar 

  • Bennett ED, Brooks NH, Keddi J, Lis Y, Wilson A (1977) Increased renal function in patients with acute left ventricular failure: a possible homeostatic mechanism. Clin Sci 52:43–50

    Google Scholar 

  • Bennett ED, Brooks NH, Lis Y, Wilson A (1979) Is the elevated renal function in patients with acute heart failure a homeostatic mechanism? In: Hainsworth R, Kidd C, Linden RJ (eds) Cardiac receptors. Cambridge Univ, Cambridge, p 468

    Google Scholar 

  • Berecek KH, Shaffer RA, Brody MJ (1980) Circulating epinephrine is the source for the sympathetic transmitter mediating active beta-adrenergic vasodilation. Circulation (Suppl III) 62:III–24

    Google Scholar 

  • Berl T, Henrich WL, Erickson AL, Schrier RW (1979) Prostaglandins in the beta adrenergic and baroreceptor mediated secretion of renin. Am J Physiol 236:F472–F477

    PubMed  Google Scholar 

  • Bernard C (1859) Lecons sur les proprietes physiologiques des liquides de l'organisme. Bailliere, Paris, pp 172–173

    Google Scholar 

  • Berne RM (1952) Hemodynamics and sodium excretion of denervated kidney in anesthetized and unanesthetized dog. Am J Physiol 171:148–158

    PubMed  Google Scholar 

  • Berthelsen S, Pettinger WA (1977) A functional basis for classification of alpha adrenergic receptors. Life Sci 21:595–606

    Article  PubMed  Google Scholar 

  • Besarab A, Silva P, Landsberg L, Epstein FH (1977) Effect of catecholamines on tubular function in the isolated perfused rat kidney. Am J Physiol 233:F39–F45

    PubMed  Google Scholar 

  • Better OS, Massry SG (1978) Effect of chronic bile duct obstruction on renal handling of salt and water. J Clin Invest 51:402–411

    Google Scholar 

  • Bevan JA (1978) Bascular neuroeffector mechanisms. Raven, New York

    Google Scholar 

  • Blackshear JL, Spielman WS, Knox FG, Romero JC (1979) Dissociation of renin release and renal vasodilatation by prostaglandin synthesis inhibitors. Am J Physiol 237:F20–F24

    PubMed  Google Scholar 

  • Blair ML (1980) Renin secretion rate is increased by infusion of alpha adrenoceptor agonists into the renal artery. Fed Proc 39:1084

    Google Scholar 

  • Blair ML (1981) Inhibition of renin secretion by intrarenal alpha adrenoceptor blockade. Am J Physiol 240:E682–E688

    PubMed  Google Scholar 

  • Blake WD (1962) Relative roles of glomerular filtration and tubular reabsorption in denervation diuresis. Am J Physiol 202:777–780

    PubMed  Google Scholar 

  • Blantz RC (1980) Segmental renal vascular resistance: single nephron. Annu Rev Physiol 42:573–588

    Article  PubMed  Google Scholar 

  • Blantz RC, Konnen KS, Tucker BJ (1976) Angiotensin II effects upon the glomerular microcirculation and ultrafiltration coefficient of the rat. J Clin Invest 57:419–434

    PubMed  Google Scholar 

  • Blasingham MC, Shade RE, Share L, Nasjletti A (1980) The effect of meclofenamate on renal bood flow in the unanesthetized dog: relation to renal prostaglandins and sodium balance. J Pharmacol Exp Ther 214:1–4

    PubMed  Google Scholar 

  • Blaufox MD, Lewis EJ, Jagger P, Lauler D, Hickler R, Merrill JP (1969a) Physiologic respones of the transplanted human kdiney. N Engl J Med 280:62–66

    PubMed  Google Scholar 

  • Blaufox MD, Lewis EJ, Jagger P, Lauler D, Hickler R, Merrill JP (1969b) Perseverance of the renal nerves. N Engl J Med 280:448–449

    Google Scholar 

  • Blendis LM, Auld RB, Alexander EA, Levinsky NG (1972) Effect of renal beta and alpha adrenergic stimulation on proximal sodium reabsorption in dogs. Clin Sci 43:569–576

    PubMed  Google Scholar 

  • Block MA, Wakim KG, Mann FC (1952a) Circulation through kidney during stimulation of the renal nerves. Am J Physiol 169:659–669

    PubMed  Google Scholar 

  • Block MA, Wakim KG, Mann FC (1952b) Renal function during stimulation of renal nerves. Am J Physiol 169:670–677

    PubMed  Google Scholar 

  • Bond GC, Lightfoot B (1981) Role of renal nerves in mediating changes in renin secretion during CPPV. Fed Proc 40:558

    Google Scholar 

  • Bonjour J-P, Churchill PC, Malvin RL (1969) Change of tubular reabsorption of sodium and water after renal denervation in the dog. J Physiol 204:571–582

    PubMed  Google Scholar 

  • Boykin J, Cadnapaphornchai P, Burke T, McDonald KM, Schrier RW (1974) Mechanism of the diuretic effect of atrial tachycardia. Clin Res 22:265A

    Google Scholar 

  • Bricker NS, Staffon RA, Mahoney EP, Merrill JP (1958) The functional capacity of the kidney denervated by autotransplantation in the dog. J Clin Invest 37:185–193

    PubMed  Google Scholar 

  • Brod J, Fejfar Z, Fajfarova MH (1954) The role of neuro-humoral factors in the genesis of renal hemodynamic changes in heart failure. Acta Med Scand 148:273–290

    PubMed  Google Scholar 

  • Brody M (1962) Mechanisms of renal vasodilatation. Fed Proc 21:111

    Google Scholar 

  • Brody MJ, Johnson AK (1980) Role of the anteroventral third ventricle region in fluid and electrolyte balance, arterial pressure regulation and hypertension. In: Martini L, Ganong WF (eds) Frontiers in neuroendocrinology, vol 6. Raven, New York, pp 249–292

    Google Scholar 

  • Brody MJ, Fink GD, Buggy J, Haywood JR, Gordon FJ, Knuepfer M, Mow M, Mahoney L, Johnson AK (1979) Critical role of the anteroventral third ventricle (AV3V) region in development and maintenance of experimental hypertension. In: Meyer P, Schmitt H (eds) Nervous system and hypertension. Flammarion, Paris, pp 76–84

    Google Scholar 

  • Brosnihan KG, Szilagyi JE, Masaki Z, Ferrario CM (1978) Interaction of sodium and catecholamines on control of blood pressure. Physiologist 21:13

    Google Scholar 

  • Brown AM (1980) Receptors under pressure. An update on baroreceptors. Circ Res 46:1–10

    PubMed  Google Scholar 

  • Burn JH, Rand MJ (1965) Acetylcholine in adrenergic transmission. Annu Rev Pharmacol 5:163–182

    Article  Google Scholar 

  • Cacciaguida RJ, Pablo NC, Basilio RD, Porush JG (1969) Antinatriuresis associated with propranolol administration in the dog. Nephron 11:58–64

    Google Scholar 

  • Calaresu FR, Stella A, Zanchetti A (1976) Hemodynamic responses and renin release during stimulation of afferent renal nerves in the cat. J Physiol 255:687–700

    PubMed  Google Scholar 

  • Calaresu FR, Stella A, Zanchetti A (1977) The role of efferent and afferent renal nerves in the release of renin in the cat. In: Buckley JP, Ferrario CM (eds) Central actions of angiotensin and related hormones. Pergamon, New York, pp 113–122

    Google Scholar 

  • Calaresu FR, Kim P, Nakamura H, Sato A (1978) Electrophysiological characteristics of renorenal reflexes in the cat. J Physiol 283:141–154

    PubMed  Google Scholar 

  • Campbell WB, Zimmer JA (1980) Insulin-induced renin release: blockade by indomethacin in the rat. Clin Sci 58:415–428

    PubMed  Google Scholar 

  • Campbell WB, Graham RM, Jackson EK (1979) Role of renal prostaglandins in sympathetically mediated renin release in the rat. J Clin Invest 64:448–456

    PubMed  Google Scholar 

  • Cant JR, Vander AJ (1973) Sodium excretion and intrarenal distribution of blood flow with small doses of norepinephrine. Fed Proc 32:353

    Google Scholar 

  • Carlson DE, Schramm LP (1978) Humoral and mechanical factors modulating neural input to the renal vasculature. Am J Physiol 235:R64–R75

    PubMed  Google Scholar 

  • Carlsson E, Ablad B, Brandstrom A, Carlsson B (1972) Differentiated blockade of the chronotropic effects of various adrenergic stimuli in the cat heart. Life Sci 11:953–958

    Article  Google Scholar 

  • Carrara MC, Baines AD (1976) Propranolol induces acute natriuresis by beta blockade and dopaminergic stimulation. Can J Physiol Pharmacol 54:683–691

    PubMed  Google Scholar 

  • Carriere S, Cardinal J, Le Grimmellec CL (1980) Influence of sodium intake on catecholamine release by angiotensin and renal nerve stimulation in dogs. Can J Physiol Pharmacol 58:1092–1101

    PubMed  Google Scholar 

  • Caretero OA, Scicli AG (1980) The renal kallikrein-kinin system. Am J Physiol 238:F247–F255

    PubMed  Google Scholar 

  • Chaimovitz C, Massry SG, Friedler RM, Coburn JW (1974) Effect of renal denervation and alpha adrenergic blockade on sodium excretion in dogs with chronic ligation of the common bile duct. Proc Soc Exp Biol Med 146:764–770

    PubMed  Google Scholar 

  • Chan YL (1980a) The role of norepinephrine in the regulation of fluid absorption in the rat proximal tubule. J Pharmacol Exp Ther 215:65–70

    PubMed  Google Scholar 

  • Chan YL (1980b) Adrenergic control of bicarbonate absorption in the proximal convouted tubule of the rat kidney. Pfluegers Arch 388:159–164

    Article  Google Scholar 

  • Chapman LW, Mittman U, Meehan JP (1971) Neural effect of cardiac receptors on renal salt excretion. Fed Proc 30:608

    Google Scholar 

  • Ciriello J, Calaresu FR (1980) Hypothalamic projections of renal afferent nerves in the cat. Can J Physiol Pharmacol 58:574–576

    PubMed  Google Scholar 

  • Clement DL, Pelletier CL, Shepherd JT (1972) Role of vagal afferents in the control of renal sympathetic nerves in the rabbit. Circ Res 31:824–830

    PubMed  Google Scholar 

  • Click RL, Joyner WL, Gilmore JP (1979) Reactivity of glomerular afferent and efferent arterioles in renal hypertension. Kidney Int 15:109–115

    PubMed  Google Scholar 

  • Coleridge HM, Coleridge JCG (1980) Cardiovascular afferents involved in regulation of peripheral vessels. Annu Rev Physiol 42:413–427

    Article  PubMed  Google Scholar 

  • Colindres RE, Spielman WS, Moss NG, Harrington WW, Gottschalk CW (1980) Functional evidence for renorenal reflexes in the rat. Am J Physiol 239:F265–F270

    PubMed  Google Scholar 

  • Concha J, Norris B (1968) Studies on renal vasomotion. Br J Pharmacol 34:277–290

    PubMed  Google Scholar 

  • Coote JH, MacLeod VH (1974) The influence of bulbospinal monoaminergic pathway on sympathetic nerve activity. J Physiol 241:453–475

    PubMed  Google Scholar 

  • Cornish KG, Gilmore JP (1981) Failure of increased left atrial pressure to alter renal function in the conscious non-human primate. Fed Proc 40:588

    Google Scholar 

  • Dampney RAL, Stella A, Golin R, Zanchetti A (1979) Vagal and sinoaortic reflexes in postural control of circulation and renin release. Am J Physiol 237:H146–H152

    PubMed  Google Scholar 

  • Data JL, Gerber JG, Crump WL, Frohlich JC, Hollifield JW, Nies AS (1978) The prostaglandin system. A role in canine baroreceptor control of renin release. Circ Res 42:454–458

    PubMed  Google Scholar 

  • Davila D, Davila T, Oliw E, Anggard E (1978) The influence of dietary sodium on urinary prostglandin excretion. Acta Physiol Scand 103:100–106

    PubMed  Google Scholar 

  • Davis HA, Horton EW (1972) Output of prostaglandins from the kidney, its increase on renal nerve stimulation and its inhibition by indomethacin. Br J Pharmacol 46:658–675

    PubMed  Google Scholar 

  • Davis JO, Freeman RH (1976) Mechanisms regulating renin release. Physiol Rev 56:1–56

    PubMed  Google Scholar 

  • De Chatel R (1978) Mechanism of carotid occlusion diuresis. Acta Physiol Acad Sci Hung 52:367–374

    PubMed  Google Scholar 

  • De Forrest JM, Davis JO, Freeman RH, Seymour AA, Row BP, Williams GM, Davis TP (1980) Effects of indomethacin and meclofenamate on renin release and renal hemodynamic function furing chronic sodium depletion in conscious dogs. Circ Res 47:99–107

    PubMed  Google Scholar 

  • De Haven J, Sherwin R, Hendler R, Felig P (1980) Nitrogen and sodium balance and sympathetic nervous system activity in obese subjects treated with a low calorie protein or mixed diet. N Engl J Med 302:477–483

    PubMed  Google Scholar 

  • De Muylder GG (1952) The “neurility” of the kidney. Blackwell, Oxford

    Google Scholar 

  • De Torrente A, Robertson GL, McDonald KM, Schrier RW (1975) Mechanism of diuretic response to increased left atrial pressure in the anesthetized dog. Kidney Int 8:355–361

    PubMed  Google Scholar 

  • DiBona GF (1977) Neurogenic regulation of renal tubular sodium reabsorption. Am J Physiol 233:F73–F81

    PubMed  Google Scholar 

  • DiBona GF (1978) Symposium: neural control of renal function. Fed Proc 37:1191–1221

    Google Scholar 

  • DiBona GF (1981) The role of the renal sympathetic nerves in the control of renal function. In: Worcel M, Bonvalet JP, Langer SZ, Menard J, Sassard J (eds) New trends in arterial hypertension. INSERM Symposium No 17. Elsevier/North Holland, Amsterdam, pp 225–240

    Google Scholar 

  • DiBona GF, Johns EJ (1980) A study of the role of renal nerves in the renal responses to 60° head-up tilt in the anesthetized dog. J Physiol 299:117–126

    PubMed  Google Scholar 

  • DiBona GF, Osborn JL (1981) Nature of renal tubular adrenoceptor medaiting neural regulation of sodium reabsorption. Fed Proc 40:553

    Google Scholar 

  • DiBona GF, Rios LL (1978) Mechanism of exaggerated diuresis in spontaneously hypertensive rats. Am J Physiol 235:F409–F416

    Google Scholar 

  • DiBona GF, Rios LL (1980) Renal nerves in compensatory renal responses to contralateral renal denervation. Am J Physiol 238:F26–F30

    PubMed  Google Scholar 

  • DiBona GF, Sawin LL (1981) Renal innervation required for renal adaptation to low sodium diet. Clin Res 29:553A

    Google Scholar 

  • DiBona GF, Zambraski EJ, Aguilera AJ, Kaloyanides GJ (1977) Neurogenic control of renal tubular sodium reabsorption in the dog. Circ Res (Supp I) 40:I–127–I–130

    Google Scholar 

  • DiBona GF, Johns EJ, Osborn JL (1981) The effect of vagotomy on 60° head-up tilt. J Physiol 320:293–302

    PubMed  Google Scholar 

  • Dinerstein RJ, Vannice J, Henderson RC, Roth LJ, Goldberg LI, Hoffmann PC (1979) Histofluorescence techniques provide evidence for dopamine-containing neuronal elements in canine kidney. Science 205:497–499

    PubMed  Google Scholar 

  • DiSalvo J, Fell C (1971) Changes in renal blood flow during renal nerve stimulation. Proc Soc Exp Biol Med 136:150–153

    PubMed  Google Scholar 

  • Diz DI, Baer PG, Nasjletti A (1980) Influence of renal nerves on intrarenal hormonal systems. Fed Proc 39:1084

    Google Scholar 

  • Diz DI, Nasjletti A, Baer PG (1981) Effect of renal denervation on development of hypertension, plasma renin and urinary excretion of kallikrein, PGE2 and sodium in the New Zealand genetically hypertensive rat. Fed Proc 40:435

    Google Scholar 

  • Donald DE (1979) Studies on the release of renin by direct and reflex activation of renal sympathetic nerves. Physiologist 22:39–42

    Google Scholar 

  • Donald DE, Shepherd JT (1978) Reflexes from the heart and lungs: physiological curiosities or important regulatory mechanisms. Cardiovasc Res 12:449–469

    Google Scholar 

  • Donald DE, Shepherd JT (1980) Autonomic regulation of the peripheral circulation. Annu Rev Physiol 42:429–439

    Article  PubMed  Google Scholar 

  • Dunham EW, Zimmerman BG (1970) Release of prostaglandin-like material from dog kidney during nerve stimulation. Am J Physiol 219:1279–1285

    PubMed  Google Scholar 

  • Dunn MJ, Liard JF, Dray F (1978) Basal and stimulated rates of renal secretion and excretion of prostaglandins E2, F2 and 13,14-dihydro15-keto F2 in the dog. Kidney Int 13:136–143

    Google Scholar 

  • Echtenkamp SF, Gilmore JP (1980) Intravascular mechanoreceptor modulation of renal sympathetic nerve activity in the cat. Am J Physiol 238:H801–H808

    PubMed  Google Scholar 

  • Echtenkamp SF, Zucker IH, Gilmore JP (1980) Characterization of high and low pressure baroreceptor influences on renal nerve activity in Macaca fascicularis. Circ Res 46:726–730

    PubMed  Google Scholar 

  • Effendigil MC, Harley A, Deegan T, McKendrick CS (1975) Changes in GFR following myocardial infarction. Cardiovasc Res 9:741

    PubMed  Google Scholar 

  • Ehrhart IC, Bond GC, Ginsburg JM (1979) Indomethacin increases renal vascular resistance after adrenergic interruption in the dog. Proc Soc Exp Biol Med 162:112–115

    PubMed  Google Scholar 

  • Eliahou HE, Gavendo S, Serban I, Kapuler S, Iaina A (1980) Beta adrenergic receptors in rat kidneys. Proc Int Symp Radionuclides Nephrol Thieme, Stuttgart. 4:106–110

    Google Scholar 

  • Engelhorn R (1957) Aktionspotentiale der Nierennerven. Arch Exp Pathol Pharmakol 231:219–234

    Google Scholar 

  • Epstein M (1978) Renal effects of head-out water immersion in man: implications for an understanding of volume homeostasis. Physiol Rev 58:529–581

    PubMed  Google Scholar 

  • Epstein SE, Braumwald E (1966) The effect of beta adrenergic blockade on patterns of urinary sodium excretion. Ann Int Med 65:20–27

    PubMed  Google Scholar 

  • Epstein M, Lifschitz MD (1980) Volume status as a determinant of the influence of renal PGE on renal function. Nephron 25:157–159

    PubMed  Google Scholar 

  • Fater DC, Sundet WD, Schultz HD, Goetz KL (1980) Cardiac denervation eliminates the diuretic response elicited by increasing left atrial pressure with a balloon. Fed Proc 39:951

    Google Scholar 

  • Fedina L, Katunskii AY, Khayutin VM, Mitsanyi A (1966) Responses of renal sympathetic nerves to stimulation of afferent A and C fibers of tibial and mesenterial nerves. Acta Physiol Acad Sci Hung 29:157–176

    PubMed  Google Scholar 

  • Fedina L, Kovach GB, Huszar V (1970) Effect of 1-(4-oxyphenyl)-2Nbutylaminoethanone hydrochlorine (BON) on blood circulation. 3. Effect on the sympathetic nerve fibers of the heart and kidneys. Arzneim Forsch 20:1656–1659

    Google Scholar 

  • Felder R, Pelyao J, Wargo A, Schoelkopf L, Cooke M, Jose P, Eisner G (1980a) Glomerular adrenergic receptors. Physiologist 23:162

    Google Scholar 

  • Felder R, Schoekopf L, Pelazo J, Blecher M, Calcagno P, Eisner G, Jose P (1980b) Adrenergic and dopaminergic receptors in glomeruli and cortical tubules. Proc Am Soc Nephrol 13:132A

    Google Scholar 

  • Felder R, Pelayo J, Blecher M, Calcagno P, Eisner G, Jose P (1981) Multiple renal dopamine receptors. Clin Res 29:462A

    Google Scholar 

  • Felder RB, Thames MD (1980) Reflex depressor responses to epicardial bradykinin mediated by cardiac sympathetic afferents. Circ (Supp III) 62:III-135

    Google Scholar 

  • Ferrario CM, McCubbin JW, Berti G (1976) Centrally mediated hemodynamic effects of angiotensin. In: Onesti G, Fernandez M, Kim KE (eds) Regulation of blood pressure by the central nervous system. Grune and Stratton, New York, pp 175–182

    Google Scholar 

  • Fewell JE, Bond GC (1979) Renal denervation eliminates the renal response to continuous positive-pressure ventilation. Proc Soc Exp Biol Med 161:574–578

    PubMed  Google Scholar 

  • Fink GD, Brody MJ (1978) Neurogenic control of the renal circulation in hypertenson. Fed Proc 37:1202–1208

    PubMed  Google Scholar 

  • Fink GD, Bryan WJ (1980) Renal vascular resistance and reactivity in the neurogenic hypertensive rat. Am J Physiol 239:F474–F477

    PubMed  Google Scholar 

  • Fink GD, Buggy J, Haywood JR, Johnson AK, Brody MJ (1978) Hemodynamic effects of electrical stimulation of forebrain angiotensin and osmosensitive sites. Am J Physiol 235:H445–H451

    PubMed  Google Scholar 

  • Fink GD, Takeshita A, Mark AL, Brody MJ (1980) Determinants of renal vascular resistance in the Dahl strain of genetically hypertensive rat. Hypertension. 2:274–280

    PubMed  Google Scholar 

  • Fisher SJ, Mslvin RL (1980) Role of neural pathways in renin response to intravascular volume expansion. Am J Physiol 238:H611–H617

    PubMed  Google Scholar 

  • Folkow B, Johannson B, Lofving B (1961) Aspects of functional differentiation of the sympatho-adrenergic control of the cardiovascular system. Med Exp 4:321–328

    PubMed  Google Scholar 

  • Francisco LL, DiBona GF (1979) Hemodynamic effects of afferent renal nerve stimulation. Fed Proc 37:1312

    Google Scholar 

  • Francisco LL, Hoversten LG, DiBona GF (1980a) Renal nerves in the compensatory adaptation to ureteral occlusion. Am J Physiol 238:F229–F234

    PubMed  Google Scholar 

  • Francisco LL, Osborn JL, DiBona GF (1980b) The role of prostaglandins in macula densa mediated renin release in the rat. Fed Proc 39:826

    Google Scholar 

  • Francisco LL, Sawin LL, DiBona GF (1981) Renal sympathetic nerve activity and the exaggerated natriuresis of the spontaneously hypertensive rat. Hypertension 3:134–138

    PubMed  Google Scholar 

  • Fray JCS (1980) Stimulus-secretion coupling of renin. Circ Res 47:485–493

    PubMed  Google Scholar 

  • Fray JCS, Johnson MD, Barger AC (1977) Renin release and pressor response to renal arterial hypotension: effect of dietary sodium. Am J Physiol 233:H191–H195

    PubMed  Google Scholar 

  • Friedman SM, Hinke JAM, Hardwick DF (1955) Sodium tolerance in experimental hypertension. Circ Res 3:297–302

    PubMed  Google Scholar 

  • Friggi A, Chevalier-Cholat A-M, Bodard H (1977a) Effects of a beta-adrenergic blocking drug atenolol, on efferent renal nerve activity in rabbits. Experientia 33:1207–1208

    Article  PubMed  Google Scholar 

  • Friggi A, Chevalier-Cholat A-M, Torresani J (1977b) Reduction of efferent renal nerve activity by propranolol in rabbits. Acad Sci Comptes Rendus 284:1835–1837

    Google Scholar 

  • Frolich JC, Hollifield JW, Wilson JP, Sweetman BJ, Seyberth HW, Oates JA (1976) Suppression of plasma renin activity in man: independence of sodium retention. Clin Res 24:271

    Google Scholar 

  • Fukiyama K (1972) Central action of angiotensin and hypertension-increased central vasomotor outflow by angiotensin. Jpn Circ J 36:599–602

    PubMed  Google Scholar 

  • Gallardo R, Pang PKT, Sawyer WH (1980) Neural influences on bullfrog renal functions. Proc Soc Exp Biol Med 165:233–240

    PubMed  Google Scholar 

  • Gauer OH, Henry JP (1976) Neurohormonal control of plasma volume. In: Guyton AC, Cowley AW (eds) International review of physiology: cardiovasculr physiology II, vol 9. University Park, Baltimore, pp 145–190

    Google Scholar 

  • Gavendo S, Kapuler S, Serban I, Iania I, Ben-David E, Eliahou H (1980) Beta-1 adrenergic receptors in kidney tubular cell membrane in the rat. Kidney Int 17:764–770

    PubMed  Google Scholar 

  • Gazdar A (1969) Perseverance of renal nerves. N Engl J Med 280:448–449

    Google Scholar 

  • Gazdar AF, Dammin GF (1970) Neural degeneration and regeneration in human renal transplants. N Engl J Med 283:222–224

    PubMed  Google Scholar 

  • Gebber GL (1980) Central oscillators responsible for sympathetic nerve discharge. Am J Physiol 239:H143–H155

    PubMed  Google Scholar 

  • Gerber JG, Keller RT, Nies AS (1979) Prostaglandins and renin release: the effect of PGI2, PGE2 and 13,14 dihydroxy PGE2 on the baroreceptor mechanism of renin release in the dog. Circ Res 44:796–799

    PubMed  Google Scholar 

  • Gerber JG, Olson RD, Nies AS (1980) The importance of the adrenals in the sympathetic mediated increase in plasma renin activity during hypothensive hemorrhage. Circ (Supp III) 62:III–222

    Google Scholar 

  • Gill JR Jr (1969) The role of sympathetic nervous system in the regulation of sodium excretion by the kidney. In: Ganong WF, Martin L (eds) Frontiers in neuroendocrinology. Oxford Univ, London Toronto, pp 289–305

    Google Scholar 

  • Gill JR Jr (1979) Neural control of renal tubular sodium reabsorption. Nephron 23:116–118

    PubMed  Google Scholar 

  • Gill JR Jr, Bartter FC (1966) Adrenergic nervous system in sodium metabolism. II. Effects of guanethidine on the renal response to sodium deprivation in normal man. N Engl J Med 275:1466–1471

    PubMed  Google Scholar 

  • Gill JR Jr, Casper AGT (1969) Role of the sympathetic nervous system in the renal response to hemorrhage. J Clin Invest 48:915–922

    PubMed  Google Scholar 

  • Gill JR Jr, Casper AGT (1971) Depression of proximal tubular sodium reabsorption in the dog in response to renal beta adrenergic stimulation by isoproterenol. J Clin Invest 50:112–118

    PubMed  Google Scholar 

  • Gill JR Jr, Casper AGT (1972) Effect of renal alpha adrenergic stimulation on proximal tubular sodium reabsorption. Am J Physiol 233:1201–1205

    Google Scholar 

  • Fill JR Jr, Carr AA, Fleischmann LE, Casper AGT, Bartter, FC (1967) Effects of pentolinium on sodium excretion in dogs with constriction of the vena cava. Am J Physiol 212:191–196

    PubMed  Google Scholar 

  • Gilmore JP (1964) Contribution of baroreceptors to the control of renal function. Circ Res 14:301–317

    PubMed  Google Scholar 

  • Gilmore JP, Cornish KG, Rogers SD, Joyner WL (1980) Direct evidence for myogenic autoregulation of the renal microcirculation in the hamster. Circ Res 47:226–230

    PubMed  Google Scholar 

  • Gilmore JP, Zucker IH (1975) The contribution of atrial stretch receptors to salt and water homeostasis in the human. Basic Res Cardiol 70:355–363

    Article  PubMed  Google Scholar 

  • Gilmore JP, Zucker IH (1978) Failure of left atrial distention to alter renal function in the nonhuman primate. Circ Res 42:267–270

    PubMed  Google Scholar 

  • Goetz KL (1979) A search for evidence linking atrial receptors to renal regulatory mechanism.s In: Hainsworth R, Kidd C, Linden RJ (eds) Cardiac receptors. Cambridge Univ, Cambridge, pp 213–233

    Google Scholar 

  • Goetz KL, Bond GC (1973) Reflex diuresis during tachycardia in the dog. Circ Res 32:434–441

    PubMed  Google Scholar 

  • Goetz KL, Bond GC, Bloxham DD (1975) Atrial receptors and renal function. Physiol Rev 55:157:205

    PubMed  Google Scholar 

  • Goetz KL, Wang BC, Hakumaki MOK, Fater DC, Geer PG, Sundet WD (1981) Cardiovascular, renal and humoral effects of applying local anesthetic to the atria of conscious dogs. Proc Soc Exp Biol Med 167:101–109

    PubMed  Google Scholar 

  • Goldberg LI (1979) The dopamine vascular receptor. In: Imbs JL, Schwartz J (eds) Peripheral dopaminergic receptors: Proceedings of the satellite symposium of the 7th International Congress of Pharmacology. Pergamon, New York, pp 408

    Google Scholar 

  • Goldberg LI, Kohli JD (1979) Peripheral pre-and post-synaptic dopamine receptors: are they different from dopamine receptors in the central nervous system? Commun Psychopharmacol 3:447–456

    PubMed  Google Scholar 

  • Goldberg LI, Weder AB (1980) Connections between endogenous dopamine, dopamine receptors and sodium excretion: evidences and hypotheses. Rec Adv Clin Pharmacol 3:149–166

    Google Scholar 

  • Goldberg LI, Volkman PH, Kohli JD (1978) A comparison of the vascular dopamine receptor with other dopamine receptors. Annu Rev Pharmacol Toxicol 18:57–79

    Article  PubMed  Google Scholar 

  • Golin R, Busnardo I, Stella A, Zanchetti A (1980) Effects of afferent renal stimulation on renal functions and hemodynamics. Eur J Clin Invest 10:14

    Google Scholar 

  • Gomer SK, Zimmerman BG (1972) Determination of sympathetic vasodilator responses during renal nerve stimulation. J Pharmacol Exp Ther 181:75–82

    PubMed  Google Scholar 

  • Gomez DM (1951) Evaluation of renal resistances with specific reference to changes in essential hypertension. J Clin Invest 30:1143–1155

    PubMed  Google Scholar 

  • Gordon D, Peart WS, Wilcox CS (1979) Requirement of the adrenergic nervous system for conservation of sodium by the rabbit kidney. J Physiol 293:24P

    Google Scholar 

  • Gorgas K (1978a) Innervation of the juxtaglomerular apparatus. In: Coupland RE, Forssman WG (eds) Peripheral neuroendocrine interaction. Springer, Berlin Heidelberg New York, pp 144–152

    Google Scholar 

  • Gorgas K (1978b) Struktur und Innervation des juxtaglomerularen Apparates der Ratte. Adv Anat 54:1–84

    Google Scholar 

  • Gottschalk CW (1978) Symposium: Control of kidney function by the nervous system. Proc Int Cong Nephrol 8:544–571

    Google Scholar 

  • Gottschalk CW (1979) Renal nerves and sodium excretion. Annu Rev Physiol 41:229–240

    Article  PubMed  Google Scholar 

  • Graham RM, Brabson JH, Stephenson WH, Pettinger WA (1978) Increased renal alpha adrenergic receptors in genetically hypertensive rats. Clin Res 26:363A

    Google Scholar 

  • Graham RM, Sagalowsky AI, Pettinger WA, Murphy T, Gandler T, Sanford SE (1980) Renal alpha receptors in experimental hypertension in the rat. Fed Proc 39:497

    Google Scholar 

  • Grandjean B, Annat G, Vincent M, Sassard J (1978) Influence of renal nerves on renin secretion in the conscious dog. Pfluegers Arch 373:161–165

    Article  Google Scholar 

  • Greven J, Klein H (1977) Effects of dopamine on whole kidney function and proximal transtubular volume fluxes in the rat. Naunyn Schmiedebergs Arch Pharmacol 296:289–292

    Article  PubMed  Google Scholar 

  • Grignolo A, Koepke JP, Obrist PA (1980) Urine and sodium output and glomerular filtration rate during treadmill exercise and shock-avoidance in saline-infused dogs. Physiologist 23:105

    Google Scholar 

  • Gross R, Kirchheim H (1980) Effects of bilateral carotid occlusion and auditory stimulation on renal blood flow and sympathetic nerve activity in the conscious dog. Pfluegers Arch 383:233–239

    Article  Google Scholar 

  • Gross R, Ruffman K, Kirchheim H (1979 The separate and combined influences of common carotid occlusion and nonhypotensive hemorrhage on kidney blood flow. Pfluegers Arch 379:81–88

    Article  Google Scholar 

  • Gross R, Kirchheim H, Ruffmann K (1981a) Effect of carotid occlusion and of perfusion pressure on renal function in conscious dogs. Circ Res 48:774–784

    Google Scholar 

  • Gross R, Hackenburg H-M, Hackenthal E, Kirchheim H (1981b) Interaction between perfusion pressure and sympathetic nerves in renin release by carotid baroreflex in conscious dogs. J Physiol 313:237–250

    PubMed  Google Scholar 

  • Grossman RA, Rosing DR, Szidon JP, Goldberg M (1974) The polyuria of paroxysmal tachycardia: mode and mechanism. Clin Res 221:572A

    Google Scholar 

  • Hall JE, Guyton AD, Cowley AW (1977a) Dissociation of renal blood flow and filtration rate autoregulation by renin depletion. Am J Physiol 232:F215–F221

    PubMed  Google Scholar 

  • Hall JE, Guyton AC, Jackson TE, Coleman TG, Lohmeier TE, Trippodo NC (197b) Control of glomerular filtration rate by renin-angiotensin system. Am J Physiol 233:F366–F372

    Google Scholar 

  • Heinbecker P, White HL (1941) Hypothalamicohypophyseal system and its relationship to water balance in the dog. Am J Physiol 133:582–593

    Google Scholar 

  • Henrich WL, Anderson RJ, Berns AS, McDonald KM, Paulsen PJ, Berl T, Schrier RW (1978) The role of renal nerves and prostaglandins in control of renal hemodynamics and plasma renin activity during hypotensive hemorrhage in the dog. J Clin Invest 61:744–750

    PubMed  Google Scholar 

  • Henrich WL, Schrier RW, Berl T (1979) Mechanisms of renin secretion during hemorrhage in the dog. J Clin Invest 64:1–7

    PubMed  Google Scholar 

  • Hermansson K, Larson M, Kallskog O, Wolgast M (1981) Influence of renal nerve activity on arteriolar resistance, ultrafiltration dynamics and fluid reabsorption. Pfluegers Arch 389:85–90

    Article  Google Scholar 

  • Hiatt N, Chapman LW, Davidson MB (1981) Neural factor in K homeostasis of hyperkalemic ureter-ligated dogs. Proc Soc Exp Biol Med 166:501–505

    PubMed  Google Scholar 

  • Higashi Y, Bello-Reuss E (1980) Dopamine decreases fluid reabsorption in straight portions of isolated proximal tubule. Clin Res 28:749A

    Google Scholar 

  • Hillemand B, Leroy J, Joly JP, Le Grix A (1976) Effects of the nervous system on the kidney. Sem Hop Paris 52:958–963, 1163–1172

    PubMed  Google Scholar 

  • Hilton SM, Spyer KM (1980) Central nervous regulation of vascular resistance. Annu Rev Physiol 42:399–411

    Article  PubMed  Google Scholar 

  • Himori N, Hayakawa S, Ishimori T (1979) Role of beta-1 and beta-2 adrenoceptors in isoproterenol induced renin release in conscious dogs. Life Sci 24:1953–1958

    Article  PubMed  Google Scholar 

  • Himori N, Izumi A, Ishimori T (1980) Analysis of beta-adrenoceptors mediating renin release produced by isoproterenol in conscious dogs. Am J Physiol 238:F387–F393

    PubMed  Google Scholar 

  • Hoffman BB, Lefkowitz RJ (1980) Radioligand binding studies of adrenergic receptors: new insights into molecular and physiological regulation. Annu Rev Pharmacol Toxicol 20:581–608

    Article  PubMed  Google Scholar 

  • Holdaas H, DiBona GF (1981) The role of left atrial receptors in the regulation of renin release in anesthetized dogs. Acta Physiol Scand 111:497–500

    Google Scholar 

  • Holdaas H, DiBona GF, Kiil F (1981) Effect of low-level renal nerve stimulation on renin release from nonfiltering kidneys. Am J Physiol 241:F156–F161

    PubMed  Google Scholar 

  • Hollenberg NK, Adams DF, Rashid A, Epstein M, Abrams HL, Merrill JP (1971) Renal vascular response to salt restriction in normal man. Circulation 43:845–851

    PubMed  Google Scholar 

  • Hollenberg NK, Adams DF, Solomon H, Chenitz WR, Burger BM, Abrams HL, Merrill JP (1975) Renal vascular tone in essential and secondary hypertension. Medicine 54:29–44

    PubMed  Google Scholar 

  • Hollingsead P, Willis LR (1980) Beta adrenergic receptor mediated renal tubular sodium reabsorption. Fed Proc 39:521

    Google Scholar 

  • Honig A (1979) Electrolytes, body fluid volumes and renal function in acute hypoxic hypoxia: role of arterial chemoreceptors. Acta Physiol Pol (Suppl 18) 30:93–125

    PubMed  Google Scholar 

  • Honig A, Schmidt M (1980) Kidney function during carotid chemoreceptor stimulation: influence of unilateral renal nerve section. In: Lichardus B, Schrier RW, Ponec J (eds) Hormonal regulation of sodium excretion. Elsevier/North Holland, Amsterdam, pp 93–98

    Google Scholar 

  • Honig A, Schmidt M, Freyse EJ (1979) Influence of unilateral renal nerve section on the kidney: effects of carotid chemoreceptor stimulation. Acta Biol Med Ger 38:1647–1650

    PubMed  Google Scholar 

  • Houck CR (1951) Alterations in renal hemodynamics and function in separate kidneys during stimulation of renal artery nerves in dogs. Am J Physiol 167:523–530

    PubMed  Google Scholar 

  • Humphreys MH, Ayus JC (1978) Role of hemodynamic changes in the increased cation excretion after acute unilateral nephrectomy in the anesthetized dog. J Clin Invest 61:590–596

    PubMed  Google Scholar 

  • Humphreys MH, Ayus JC, Stanton CJ (1980) Prevention by vagotomy or atropine administration of the hemodynamic changes occurring after acute unilateral nephrectomy in the dog. Circ Res 46:575–580

    PubMed  Google Scholar 

  • Iino Y, Brenner BM (1979) Stimulation of chloride transport by isoproterenol in isolated rabbit cortical collecting tubule. Kindey Int 16:821

    Google Scholar 

  • Iino Y, Flier SR, Brenner BM (1979) Effects of catecholamines on transepithelial potential difference and net water reabsorption in isolated rabbit cortical collecting tubule. Clin Res 27:418A

    Google Scholar 

  • Insel PA, Snavely MD (1981) Catecholamines and the kidney: receptors and renal function. Annu Rev Physiol 43:625–636

    Article  PubMed  Google Scholar 

  • Jarecki M, Thoren PN, Donald DE (1978) Release of renin by the carotid baroreflex in anesthetized dogs. Role of cardiopulmonary vagal afferents and renal arterial pressure. Circ Res 42:614–619

    PubMed  Google Scholar 

  • Jarrott B, Louis WJ, Somers RJ (1979) Characteristics of [3H] clonidine binding to an alpha adrenoceptor in membranes from guinea pig kindey. Br J Pharmacol 65:663–670

    PubMed  Google Scholar 

  • Johns EJ (1979) Action of angiotensin I converting enzyme inhibitor on the control of renal function in the cat. Clin Sci 56:365–371

    PubMed  Google Scholar 

  • Johns EJ (1980) A comparison of the ability of two angiotensin II receptor blocking drugs, 1-sar, 8-ala angiotensin II and 1-sar, 8-ile angiotensin II, to modify the regulation of glomerular filtration rate in the cat. Br J Pharmacol 71:499–506

    PubMed  Google Scholar 

  • Johns EJ (1981) An investigation into the type of beta adrenoceptor mediating sympathetically activated renin release in the cat. Br J Pharmacol 73:749–754

    PubMed  Google Scholar 

  • Johns EJ, Lewis BA, Singer B (1976) The sodium retaining effect of renal nerve activity in the cat: role of angiotensin formation. Clin Sci 51:93–102

    Google Scholar 

  • Johns EJ, Murdock R, Singer B (1977) The effect of agniotensin I converting enzyme inhibitor on the release of prostaglandins by rabbit kidney in vivo. Br J Pharmacol 60:573–581

    PubMed  Google Scholar 

  • Johnson MD, Barger AC (1981) Circulating catecholamines in control of renal electrolyte and water excretion. Am J Physiol 240:F192–F199

    PubMed  Google Scholar 

  • Johnson MD, Malvin RL (1977) Stimulation of renal sodium reabsorption by angiotensin II. Am J Physiol 232:F298–F306

    PubMed  Google Scholar 

  • Johnson MD, Fahri ER, Troen BR, Barger AC (1979a) Plasma epinephrine and control of plasma renin activity: possible extrarenal mechanisms. Am J Physiol 236:H854–H859

    PubMed  Google Scholar 

  • Johnson MD, Shier DN, Barger AC (1979b) Circulating catecholamines and control of plasma renin activity in conscious dogs. Am J Physiol 236:H463–H470

    PubMed  Google Scholar 

  • Judy WV, Farrell SK (1979) Arterial baroreceptor reflex control of sympathetic nerve activity in the spontaneously hypertensive rat. Hypertension 1:605–614

    PubMed  Google Scholar 

  • Judy WV, Thompson JR, Wilson MF (1971) Effect of isotonic saline loading on renal nerve activity and renal function. Physiologist 14:169

    Google Scholar 

  • Judy WV, Watanabe AM, Henry DP, Besch HR Jr, Murphy WR, Hockel GM (1976) Sympathetic nerve activity. Role in regulation of blood pressure in spontaneously hypertensive rat. Circ Res (Suppl II) 38:21–29

    PubMed  Google Scholar 

  • Kaczmarczyk G, Eigenheer F, Gatzka M, Kuhl U, Reinhardt HW (1978) No relation between atrial natriuresis and renal blood flow in conscious dogs. Pfluegers Arch 373:49–58

    Article  Google Scholar 

  • Kaczmarczyk G, Schimmrick B, Mohnhaupt R, Reinhardt HW (1979) Atrial pressure and postprandial volume regulation in conscious dogs. Pfluegers Arch 381:143–150

    Article  Google Scholar 

  • Kaczmarczyk G, Echt M, Mohnhaupt R, Simgen B, Reinhardt H-W (1980) Postprandial volume regulation and renin angiotensin system in conscious dogs. Proc Int Union Physiol Sci 14:154

    Google Scholar 

  • Kady NN (1974) Functional aspects of the renal innervation. Ph.D. Thesis, University of London

    Google Scholar 

  • Kahl FR, Flint JF, Szidon FP (1974) Influence of left atrial distention on renal vasomotor tone. Am J Physiol 226:240–246

    PubMed  Google Scholar 

  • Kalsner S, Chan CC (1979) Adrenergic antagonists and the presynaptic receptor hypothesis in vascular tissue. J Pharmacol Exp Ther 211:257–264

    PubMed  Google Scholar 

  • Kampine JP, Bosnjak ZJ, Coon RI, Kostreva DR, Seagard JL, Zuperku EJ (1980) The role of cardiopulmonary reflexes in the regulation of sympathetic nerve activity. Proc Int Union Physiol Sci 14:154–155

    Google Scholar 

  • Kaplan SA, Rapaport S (1951) Urinary excretion of sodium and chloride after splanchnicotomy. Effect on the proximal tubule. Am J Physiol 164:175–186

    PubMed  Google Scholar 

  • Kappagoda CT (1979) Atrial receptors and urine flow. In: Hainsworth R, Kidd C, Linden RJ (eds) Cardiac receptors. Cambridge Univ, Cambridge, pp 193–212

    Google Scholar 

  • Kappagoda CT, Linden RJ, Snow HM (1973) Effect of stimulating right atrial receptors on urine flow in the dog. J Physiol 235:493–502

    PubMed  Google Scholar 

  • Kappagoda CT, Linden RJ, Snow HM Whitaker EM (1974) Left atrial receptors and the antidiuretic hormone. J Physiol 221:427–440

    Google Scholar 

  • Kappagoda CT, Linden RJ, Snow HM, Whitaker EM (1975) Effect of destruction of the posterior pituitary on the diuresis from left atrial receptors. J Physiol 244:757–770

    PubMed  Google Scholar 

  • Kappagoda CT, Knapp MF, Linden RJ, Pearson MJ, Whitaker EM (1979a) Diuresis from left atrial receptors: effect of plasma on the secretion of the malphigian tubules of rhodnius prolixus. J Physiol 291:381–391

    PubMed  Google Scholar 

  • Kappagoda CT, Linden RJ, Sreeharan N (1979b) The role of renal nerves in the diuresis and natriuresis caused by stimulation of atrial receptors. J Physiol 287:17P–18P

    PubMed  Google Scholar 

  • Karim F, Kappagoda T (1980) Interaction of the influences of arterial baroreceptors and left atrial receptors on renal blood flow. Physiologist 23:42

    Google Scholar 

  • Karim F, Kidd C, Malpus CM, Penna PE (1972) Effects of stimulation of the left atrial receptors on sympathetic efferent nerve activity. J Physiol 227:243–260

    PubMed  Google Scholar 

  • Kass DA, Sulzman FM, Fuller CA, Moore-Ede MC (1980) Renal responses to central vascular expansion are suppressed at night in conscious primates. Am J Physiol 239:F343–F351

    PubMed  Google Scholar 

  • Katholi RE, Naftilan AJ, Oparil S (1980a) Importance of renal sympathetic tone in the development of DOCA-salt hypertension in the rat. Hypertension 2:266–273

    PubMed  Google Scholar 

  • Katholi RE, Winternitz SR, Oparil S (1981b) Role of the venal nerves in the pathogenesis of one-kidney renal hypertension in the rat. Circulation (Suppl III) 62:III–88; Hypertension 3:404–409

    Google Scholar 

  • Katholi RE, Winterntiz SR, Oparil S (1981) Alterations in peripheral sympathetic activity following renal denervation in one-kidney one-clip Goldblatt hypertension in the rat. Clin Res 29:358A

    Google Scholar 

  • Katz MA, Shear L (1975) Effects of renal nerves on renal hemodynamics. II. Renal denervation models. Nephron 14:390–397

    PubMed  Google Scholar 

  • Keeton TK, Campbell WB (1980) The pharmacologic alteration of renin release. Pharmacol Rev 32:81–212

    PubMed  Google Scholar 

  • Kendrick E, Oberg B, Wennergren G (1972) Vasoconstrictor fiber discharge to skeletal muscle kidney, intestine and skin at varying levels of arterial baroreceptor activity in the cat. Acta Physiol Scand 85:464–476

    PubMed  Google Scholar 

  • Kezdi P, Geller E (1968) Baroreceptor control of postganglionic sympathetic nerve discharge. Am J Physiol 214:427–435

    PubMed  Google Scholar 

  • Kim JK, Linas SL, Schrier RW (1979) Catecholamines and sodium transport in the kidney. Pharmacol Rev 31:169–178

    PubMed  Google Scholar 

  • Kinney MJ, Stein RM, Discala VA (1974) The polyuria of paroxysmal atrial tachycardia. Circulation 50:429–435

    PubMed  Google Scholar 

  • Kiowski W, Julius S (1978) Renin Response to stimulation of cardiopulmonary mechanorecpeotrs in man. J Clin Invest 62:656–663

    PubMed  Google Scholar 

  • Kirchheim H (1976) Systemic arterial baroreceptor reflexes. Physiol Rev 56:100–176

    PubMed  Google Scholar 

  • Kirchheim HR, Gross R (1978) Response of renal blood flow and renal sympathetic nerve activity to baroreceptor and emotional stimuli in the conscious dog. In: Bauer RD, Busse R (eds) The arterial system. Springer, Berlin Heidelberg New York, pp 203–208

    Google Scholar 

  • Klein LA, Liberman B, Laks M, Kleeman CR (1971) Interrelated effects of antidiuretic hormone and adrenergic drugs on water metabolism. Am J Physiol 221:1657–1665

    PubMed  Google Scholar 

  • Kline RL, Mercer PF (1980a) Functional reinnervation and development of supersensitivity to NE after renal denervation. Am J Physiol 238:R353–R358

    PubMed  Google Scholar 

  • Kline RL, Mercer PF (1980b) Inhibition of angiotensin I convertin enzyme prevents hypertension due to aortic depressor nerve transection in rats. Physiologist 23:64

    Google Scholar 

  • Kline RL, Kelton PM, Mercer PF (1978) Effect of renal denervation on the development of hypertension in spontaneously hypertensive rats. Can J Physiol Pharmacol 56:818–822

    PubMed  Google Scholar 

  • Kline RL, Stuart PJ, Mercer PF (1980a) Effect of renal denervation on arterial pressure and renal norepinephrine concentration in Wistar-Kyoto and spontaneously hypertensive rats. Can J Physiol Pharmacol 58:1384–1388

    PubMed  Google Scholar 

  • Kline RL, Ciriello J, Mercer PF (1980b) Effect of renal denervation on changes in arterial pressure after aortic depressor nerve transection in the rat. Fed Proc 39: 962

    Google Scholar 

  • Knapp MF, Linden RJ, Mary DASG, Pearson MJ (1980) Role of angiotensin II and bradykinin in the diuresis caused by stimulation of atrial receptors. Q J Ex Physiol 65:335–347

    Google Scholar 

  • Knox FG, Burnett JC Jr, Kohan DE, Spielman WS, Strand JC (1980) Escape from the sodium-retaining effects of mineralocorticoids. Kidney Int 17:263–276

    PubMed  Google Scholar 

  • Knuepfer MM, Mohrland JS, Shaffer RA, Gebhart GF, Johnson AK, Brody MJ (1980) Effects of afferent renal nerve stimulation and baroreceptor activation on unit activity in the anteroventral third ventricle region. Red Proc 39:837

    Google Scholar 

  • Koepke JP, Grignolo A, Obrist PA (1981) Decreased urine and sodium excretion rates during signalled shock-avoidance in dogs: role of beta-adrenergic receptors. Fed Proc 40:553

    Google Scholar 

  • Kopp U (1980) Mechanisms involved in the neural control of renin release. Ph.D. Dissertation, University of Goteborg, Goteborg, Sweden

    Google Scholar 

  • Kopp U, Aurell M, Nilsson IM, Ablad B (1980a) The role of beta-1 adrenoceptors in the renin release response to graded renal sympathetic nerve stimulation. Pfluegers Arch 387:107–113

    Article  Google Scholar 

  • Kopp U, Hjemdahl P, Eriksson B-M, Bradley T (1980b) Release of endogenous noradrenaline and dopamine from blood perfused canine kidney in situ: effects of metoprolol, phenoxybenzamine and indomethacin. Naunyn Schmiedebergs Arch Pharmacol (Suppl) 313:R21

    Google Scholar 

  • Kopp U, Aurell M, Sjolander M, Ablad B (1981a) The role of prostaglandins in the alpha and beta-adrenoceptor mediated renin release response to graded renal nerve stimulation. Pfluegers Arch 391:1–8

    Article  Google Scholar 

  • Kopp U, Aurell M, Svensson L, Ablad B (1981b) Effects of prenalterol, a beta-1 adrenoceptor agonist, on renal function in anesthetized dogs. Acta Pharmacol Toxicol 49:230–235

    Google Scholar 

  • Kostreva DR, Castaver A, Kampine JP (1980) Reflex effects of hepatic baroreceptors on renal and cardiac sympathetic nerve activity. Am J Physiol 238:R390–R394

    PubMed  Google Scholar 

  • Kostreva DR, Seagard JL, Castaner A, Kampine JP (1981) Reflex effects of renal afferents on the heart and kidney. Am J Physiol 241:R286–R292

    PubMed  Google Scholar 

  • Kottra G, Takacs L (1980) Non-occurrence of a reno-renal vasoconstrictor reflex induced by acetylcholine in anesthetized dogs. Proc Int Union Physiol Sci 14:525

    Google Scholar 

  • Kottra G, Albert K, Takacs L (1978) Effects of isotonic volume expansion on renal nervous activity and renal function in the rat. Renal Physiol 1:296–300

    Google Scholar 

  • Kurkus J, Sadowski J, Gellert R, Krus S (1980) Influence of renal denervation on urine concentration in awake and anesthetized dogs. Eur J Clin Invest 10:463–467

    PubMed  Google Scholar 

  • La Grange RG, Mitchell SW (1978) Evidence for a neural component of the saluretic-diuretic response to atrial tachycardia. Clin Res 26:468A

    Google Scholar 

  • La Grange RG, Sloop CH, Schmid HE (1973) Selective stimulation of renal nerves in the anesthetized dog. Circ Res 33:704–712

    PubMed  Google Scholar 

  • Lappe RW, Henry DOP, Willis LR (1980a) Mechanism of renal tubular secretion of norepinephrine in the rabbit. J Pharmacol Exp Ther 125:443–449

    Google Scholar 

  • Lappe RW, Henry DP, Willis LR (1980b) Effects of renal sympathetic nerve activity on the urinary excretion of endogenous norepinephrine. Pharmacologist 22:257

    Google Scholar 

  • Larsson C, Weber P, Anggard E (1974) Arachidonic acid increases and indomethacin decreases plasma renin activity in the rabbit. Eur J Pharmacol 28:391–394

    Article  PubMed  Google Scholar 

  • Lazzara R, Carson RP, Klain GJ (1970) Diuresis initiated by coronary stretch receptors: a neurogenic mechanism for intravascular volume homeostatsis. Fed Proc 29:460

    Google Scholar 

  • Leavitt ML, Miller RE, Kotchen TA (1980) Suppression of stimulated plasma renin by clonidine in the dog. Hypertension 2:187–191

    PubMed  Google Scholar 

  • Ledsome JR, Linden RJ (1968) The role of left atrial receptors in the diuretic response to left atrial distension. J Physiol 198:487–503

    PubMed  Google Scholar 

  • Lees P (1968) The influence of beta adrenoceptive receptor blocking agents on urinary function in the rat. Br J Pharmacol 34:429–444

    PubMed  Google Scholar 

  • Levinsky NG (1979) The renal kallikrein-kinin system. Circ Res 44:441–459

    PubMed  Google Scholar 

  • Liang CC (1979) The influence of hepatic portal circulation on urine flow. J Physiol 214:571–581

    Google Scholar 

  • Liard JF (1976) Renal denervation delays blood pressure increase in the spontaneously hypertensive rat. Experientia 33:339–342

    Article  Google Scholar 

  • Lifschitz MD (1978) Lack of a role for the renal nerves in renal sodium reabsorption in conscious dogs. Clin Sci 54:567–572

    Google Scholar 

  • Linden RJ (1975) Reflexes from the heart. Proc Cardiovasc Dis 18:102–221

    Google Scholar 

  • Linden RJ (1978) Neurocirculatory control of sodium and water excretion. In: Dickenson CJ, Marks J (eds) Developments in cardiovascular medicine. MTP, Lancaster, pp 191–203

    Google Scholar 

  • Linden RJ, Sreeharan N (1979) Does the renal humoral response to stimulation of atrial receptors include a natriuresis? J Physiol 291:43P–44P

    PubMed  Google Scholar 

  • Linden RJ, Mary DASG, Weatherill D (1979) The response of renal nerve inhibition of atrial receptors during changes in carotid sinus pressure in the dog. J Physiol 290:32P–33P

    PubMed  Google Scholar 

  • Linden RJ, Mary DASG, Weatherill D (1980) The nature of the atrial receptors responsible for a reflex decrease in activity in renal nerves in the dog. J Physiol 300:31–40

    PubMed  Google Scholar 

  • Livnat A, Zehr JE (1980) Reflex inhibition of renin secretion and induced renal vasodilatation following acute left circumflex occlusion in dogs. Physiologist 23:127

    Google Scholar 

  • Ljungqvist A (1975) Effect of angiotensin infusion, sodium loading and sodium restriction on renal and cardiac sympathetic nerves. Acta Pathol Microbiol Scand 83:661–668

    Google Scholar 

  • Lloyd TC, Friedman JJ (1977) Effect of a left atrium-pulmonary vein baroreflex on peripheral vascular beds. Am J Physiol 233:H587–H591

    PubMed  Google Scholar 

  • MacFarlane MD (1970) A renorenal vasoconstrictor reflex induced by acetylcholine. Am J Physiol 218:851–856

    PubMed  Google Scholar 

  • Mahoney LT, Haywood JR, Packwood WJ, Johnson AK, Brody MJ (1978) Effect of anteroventral third ventricle (AV3V) lesions on regional hemodynamic responses to renal afferent nerve stimulation. Circulation (Suppl II) 58:II–68

    PubMed  Google Scholar 

  • Mancia G, Donald DE, Shepherd JT (1973) Inhibition of adrenergic outflow to peripheral blood vessels by vagal afferents from the caridiopulmonary region in the dog. Circ Res 33:713–721

    PubMed  Google Scholar 

  • Mancia G, Romero JC, Strong CG (1974) Neural influence on canine renal prostaglandin secretion. Acta Physiol Lat Am 24:555–560

    PubMed  Google Scholar 

  • Mancia G, Shepherd JT, Donald DE (1976) Interplay among carotid sinus, cardiopulmonary and carotid body reflexes in dogs. Am J Physiol 230:19–24

    PubMed  Google Scholar 

  • Mason JM, Ledsome JR (1974) Effects of obstruction of the mitral orifice or distention of the pulmonary vein-atrial junction on renal and hind limb vascular resistance in the dog. Circ Res 35:24–32

    PubMed  Google Scholar 

  • McCall RB, Gebber GL (1976) Differential effect of baroreceptor reflexes and clonidine on frequency components of sympathetic discharge. Eur J Pharmacol 36:69–78

    Article  PubMed  Google Scholar 

  • McGiff JC, Crowshaw K, Terragno NA, Linigro AJ, Strand JC, Williamson MA, Lee JB, Ng, KKF (1970) Prostaglandin-like substances appearing in canine renal venous blood during renal ischemia. Circ Res 27:765–782

    PubMed  Google Scholar 

  • McGiff JC, Crowshaw K, Terragno NA, Malik KU, Lonigro AJ (1972) Differential effect of noradrenaline and renal nerve stimulation on vascular resistance in the dog kidney and the release of a prostaglandin E-like substance. Clin Sci 42:223–233

    PubMed  Google Scholar 

  • Mills IH, Osbaldiston GW (1968) The effect of stretch of the right atrium on arterial pressure and renal function in the dog. J Physiol 197:40–41P

    Google Scholar 

  • Minneman KP, Pittman RN, Molinoff PB (1981) Beta-adrenergic receptor subtypes: properties, distribution and regulation. Annu Rev Neurosci 4:419–461

    Article  PubMed  Google Scholar 

  • Mitchell GAG (1950) The nerve supply ofthe kidneys. Acta Anat 10:1–37

    PubMed  Google Scholar 

  • Montgomery S, Jose P, Spiro P, Slotkoff L, Eisner G (1979) Regional differences in the canine kdiney cortex. Proc Soc Exp Biol Med 162:260–263

    PubMed  Google Scholar 

  • Morel F (1981) Sites of hormone action in the mammalian nephron. Am J Physiol 240:F159–F164

    PubMed  Google Scholar 

  • Morel F, Imbert-Teboul M, Chabardes D (1981) Distribution of hormone-dependent adenylate cyclase in the nephron and its physiological significance. Annu Rev Physiol 43:569–581

    Article  PubMed  Google Scholar 

  • Morgunov N (1980) Norepinephrine and dopamine release by renal nerves. Ph.D. Thesis. University of Toronto

    Google Scholar 

  • Morgunov N, Baines AD (1981a) Renal nerves and catecholamine excretion. Am J Physiol 240:F75–F81

    PubMed  Google Scholar 

  • Morgunov N, Baines AD (1981b) Vagal afferent activity and renal nerve release of dopamine. Clin Res 29:471A

    Google Scholar 

  • Moss NG, Harrington WW (1980) Renal nerves and the reflex control of sodium excretion. Clin Res 28:535A

    Google Scholar 

  • Moss NG, Harrington WW (1981) Reinnervation of the kidney following nerve crush. Fed Proc 40:553

    Google Scholar 

  • Mroczek WJ, Davidov M, Gabrilovich L, Finnerty FA (1970) The response of hypertensive patients to a hypertonic saline load after beta-adrenergic blockade. Clin Res 18:511

    Google Scholar 

  • Mullins MM, Banks RO (1976) Age related changes in sodium excretion in saline loaded spontaneously hypertensive rats. Am J Physiol 231:1364–1370

    PubMed  Google Scholar 

  • Mursch DA, Bishop VS (1980) Effects of vagal cold block on plasma renin activity and renin secretion in the conscious dog. Fed Proc 39:840

    Google Scholar 

  • Myers BD, Deen WD, Brenner BM (1975) Effects of norepinephrine and angiotensin II on the determinants of glomerular ultrafiltration and proximal tubule fluid reabsorption in the rat. Circ Res 37:101–110

    PubMed  Google Scholar 

  • Nagatsu T, Rurt LA, Dequattro V (1969) The activity of tyrosine hydroxylase and related enzymes of catecholamine synthesis and metabolism in dog kidney: effect of denervation. Biochem Pharmacol 18:1441–1446

    Article  PubMed  Google Scholar 

  • Nies AS, McNeil JS, Schrier RW (1971) Mechanism of increased sodium reabsorption during propranolol administration. Circ 44:596–604

    Google Scholar 

  • Niijima A (1971) Afferent discharges from arterial mechanoreceptors in the kidney of the rabbit. J Physiol 219:477–485

    PubMed  Google Scholar 

  • Niijima A (1972a) Studies on the blood pressure sensitive receptors in the rabbit kidney in vivo. Jpn J Physiol 22:433–440

    PubMed  Google Scholar 

  • Niijima A (1972b) The effect of discharges in renal nerves on the activity of arterial mechanoreceptors in the kidney in rabbit. J Physiol 222:335–343

    PubMed  Google Scholar 

  • Niijima A (1975) Observation on the localization of mechanoreceptors in the kidney and afferent nerve fibers in the renal nerves in the rabbit. J Physiol 245:81–90

    PubMed  Google Scholar 

  • Niijima A (1976) Baroreceptor effects on renal and adrenal nerve activity. Am J Physiol 230:1733–1736

    PubMed  Google Scholar 

  • Ninomiya I, Fujita S (1976) Reflex effects of thermal stimulation on sympathetic nerve activity to skin and kidney. Am J Physiol 230:271–278

    PubMed  Google Scholar 

  • Ninomiya I, Irisawa H, Woolley G (1974) Intestinal mechanoreceptor reflex effects on sympathetic nerve activity to intestine and kidney Am J Physiol 227:684–691

    PubMed  Google Scholar 

  • Noland PL, Reid IA (1978) Mechanism of suppression of renin secretion by clonidine in the dog. Circ Res 42:206–211

    PubMed  Google Scholar 

  • Nomura G, Kurosaki M, Takabatake T, Kibe Y, Takeuchi J (1972) Reinnervation and renin release after unilateral renal denervation in the dog. J Appl Physiol 33:649–655

    PubMed  Google Scholar 

  • Nomura G, Kibe Y, Arai S, Uno D, Takeuchi J (1976) Distribution of intrarenal blood flow after renal denervation in the dog. Nephron 16:126–133

    PubMed  Google Scholar 

  • Nomura G, Takabatake T, Arai S, Uno D, Shimao M, Hattori N (1977) Effect of acute unilateral renal denervation on tubular sodium reabsorption in the dog. Am J Physiol 232:F16–F19

    PubMed  Google Scholar 

  • Nomura G, Arai S, Uno D, Shimao M, Takata M, Takabatake T, Hattori N (1978) Effect of propranolol on sodium reabsorption and the renal circulation. Renal Physiol 1:132–139

    Google Scholar 

  • Noresson E, Ricksten S-E, Thoren P (1979) Left atrial pressure in normotensive and spontaneously hypertensive rats. Acta Physiol Scand 107:9–12

    PubMed  Google Scholar 

  • Norvell JE (1968) The aorticorenal ganglion and its role in renal innervation. J Comp Neurol 133:101–112

    Article  PubMed  Google Scholar 

  • Norvell JE (1970) Renal nerves: are they essential? N Engl J Med 283:261

    Google Scholar 

  • Norvell JE, Weitsen HA, Sheppek GG (1970) The intrinsic innervation of human renal homotransplants. Transplantation 9:168–176

    PubMed  Google Scholar 

  • Oates NS, Ball SG, Perkins CM, Lee MR (1979) Plasma and urine dopamine in man given sodium chloride in the diet. Clin Sci 56:261–264

    PubMed  Google Scholar 

  • Oberg B, White S (1970) The role of vagal cardiac nerves and arterial baroreceptors in the circulatory adjustments to hemorrhage in the cat. Acta Physiol Scand 80:395–403

    PubMed  Google Scholar 

  • Oliver JA, Pinto J, Sciacca RR, Cannon PJ (1980a) Basal norepinephrine overflow into the renal vein: effect of renal nerve stimulation. Am J Physiol 239:F371–F377

    PubMed  Google Scholar 

  • Oliver JA, Pinto J, Sciacca RR, Cannon PJ (1980b) Increased renal secretion of norepinephrine and prostaglandin E2 during sodium depletion in the dog. J Clin Invest 66:748–756

    PubMed  Google Scholar 

  • Olson RD, Nies AS, Gerber JG (1980a) Macula densa mediates renal alpha adrenoceptor stimulated renin release. Circ (Suppl III) 62:III–88

    Google Scholar 

  • Olson RD, Nies AS, Gerber JG (1980b) Canine renal beta-2 adrenoceptor activation increases renin secretion. Circ (Suppl III) 62:III–223

    Google Scholar 

  • Olson RD, Skoglund ML, Nies AS, Gerber JG (1980c) Prostaglandins mediate the macula densa stimulated renin release. In: Samuelsson B, Ramwell P, Paoletti R (eds) Advances in prostaglandin and thromboxane research, vol 7. Raven, New York, pp 1135–1137

    Google Scholar 

  • Olson U, Magnussen M, Eilersten E (1976) Prostaglandins, a link between renal hydro-and hemodynamics in dogs. Acta Physiol Scand 97:369–376

    PubMed  Google Scholar 

  • Opgenroth TJ, Wappel M, Zehr JE (1980) Failure of indomethacin to suppress the renin release to salt depletion in dogs. Fed Proc 39:497

    Google Scholar 

  • Osborn JL, DiBona GF (1979) Effect of low level renal nerve stimulation during aortic constriction on renin secretion in filtering and non-filtering kidneys. Physiologist 22:97

    Google Scholar 

  • Osborn JL, DiBona GF, Thames MD (1981a) Beta-1 receptor mediation of renin secretion elicited by low frequency renal nerve stimulation. J Pharmacol Exp Ther 216:265–269

    PubMed  Google Scholar 

  • Osborn JL, DiBona GF, Thames MD (1982) Role of alpha adrenoceptors mediating renin secretion. Am J Physiol 242:F620–F626

    PubMed  Google Scholar 

  • Pang PKT, Uchiyama M, Sawyer WH (1982) Endocrine and neural control of amphibian renal functions. Fed Proc 41:2365–2370

    PubMed  Google Scholar 

  • Pappenheim S (1840) Arch of Anat Physiol U Wissensch Med 7:534. In: Baker R, Tarabulcy E (1966) Effect of contralateral nephrectomy and renal nerves on renal function. Med Ann District Columbia 35:467–469

    Google Scholar 

  • Pastoriza E (1979) Effect of alpha-adrenergic stimulation and blockade in the proximal convoluted tubule of the rat. Kidney Int 16:831

    Google Scholar 

  • Pearson JE, Williams RL (1968) Analysis of direct renal actions of alpha and beta adrenergic stimulation upon sodium excretion compared to acetylcholine. Br J Pharamcol Chemother 33:223–241

    Google Scholar 

  • Pelletier CL, Shepherd JT (1975a) Relative infouence of carotid baroreceptors and muscle receptors in the control of renal and hindlimb circulations. Can J Physiol Pharmacol 53:1042–1049

    PubMed  Google Scholar 

  • Pelletier CL, Shepherd JT (1975b) Effect of hypoxia on vascular response to the carotid baroreflex. Am J Physiol 228:331–336

    PubMed  Google Scholar 

  • Pettinger W, Sanchez A, Gandler T, Sanchez J, Saavedra J (1981) Dietary sodium regulates abnormal renal alpha adrenergic receptors in the Dahl hypertensive rat. Clin Res 29:276A

    Google Scholar 

  • Pines IL (1960) The electrophysiological characteristic of the afferent connections of the kidney with the central nervous system. Sechenov Physiol J USSR 46:1622–1630

    Google Scholar 

  • Pines YL (1966) Fatigue in the receptors of the kidneys. Bull Exp Biol Med 62:16–21

    Article  Google Scholar 

  • Pines YL (1969) Electrophysiological investigation of the effects of chemical substances in the urine on renal receptors. Bull Exp Biol Med 67:3–7

    Article  Google Scholar 

  • Pogglitsch H (1973) Die neurale Regulation der renalen Hämodynamik, Wasser-und Natriumausscheidung. Wiener Med Wochenschr (Suppl 3) 123:2–16

    Google Scholar 

  • Polhemus RE, Hall DA (1980) Effect of catecholamines on the potential difference and chloride efflux in the mouse thick ascending limb of Henle's loop. Proc Am Soc Nephrol 13:146A

    Google Scholar 

  • Pomeranz BH, Birtch AG, Barger AC (1968) Neural control of intrarenal blood flow. Am J Physiol 215:1067–1081

    PubMed  Google Scholar 

  • Powis DA, Donald DE (1979) Involvement of renal alpha and beta-adrenoceptors in release of renin by carotid baroreflex. Am J Physiol 236:H580–H585

    PubMed  Google Scholar 

  • Prosnitz EH, DiBona GF (1978) Effect of decreased renal sympathetic nerve activity on renal tubular sodium reabsorption. Am J Physiol 235:F557–F563

    PubMed  Google Scholar 

  • Prosnitz EH, DiBona GF (1980) Effects of propranolol on renal function. Clin Res 28:64A

    Google Scholar 

  • Prosnitz EH, Zambraski EJ, DiBona GF (1977) Mechanism of intrarenal blood flow distribution after carotid artery occlusion. Am J Physiol 232:F167–F172

    PubMed  Google Scholar 

  • Purtock RV, Colditz JH von, Seagard JL, Igler FO, Zuperku EJ, Kampine JH (1977) Reflex effects of thoracic sympathetic afferent nerve stimulation on the kidney. Am J Physiol 233:H580–H586

    PubMed  Google Scholar 

  • Quinby WC (1916) The junction of the kidney when deprived of its nerves. J Exp Med 25:535–548

    Article  Google Scholar 

  • Rand MJ, Majewski H, Medgett IC, McCulloch MW, Story DF (1980) Prejunctional receptors modulating autonomic neuroeffector transmission. Circ Res (Supp I) 46:I–70–I–76

    Google Scholar 

  • Recordati GM, Spielman WS (1977) Effects of fluid volume expansion on renal sympathetic efferent nerve activity in the rat. Fed Proc 36:487

    Google Scholar 

  • Recordati GM, Moss NG, Waselkov L (1978) Renal chemoreceptors in the rat. Circ Res 43:534–543

    PubMed  Google Scholar 

  • Recordati G, Genovesi S, Cerati D, Dicintio R (1980a) Reno-renal and reno-adrenal reflexes in the rat. Clin Sci 59:323S–325S

    PubMed  Google Scholar 

  • Recordati GM, Moss NG, Genovesi S, Rogenes PR (1980b) Renal receptors in the rat sensitive to chemical alterations of their environment. Circ Res 46:395–405

    PubMed  Google Scholar 

  • Reid IA, Schrier RW, Early LE (1972) An effect of extrarenal beta-adrenergic stimulation on the release of renin. Clin Invest 51:1861–1869

    Google Scholar 

  • Reid IA, Morris BJ, Ganong WF (1978) The renin-angiotensin system. Annu Rev Physiol 40:377–410

    Article  PubMed  Google Scholar 

  • Reimann KA, Weaver LC (1980) Contrasting reflexes evoked by chemical activation of cardiac afferent nerves. Am J Physiol 239:H316–H325

    PubMed  Google Scholar 

  • Reinhardt HW, Behrenbeck DW (1967) Untersuchungen an wachen Hunden über die Einstellung der Natriumbilanz. I. Die Bedeutung des Extracellularraumes für die Einstellung der Natrium-Tagesbilanz. Pfluegers Arch 295:266–279

    Article  Google Scholar 

  • Reinhardt H-W, Kaczmarczyk G, Mohnhaupt R, Simgen B (1980a) The possible mechanims of atrial natriuresis — experiments on chronically instrumented dogs. In: Lichardus B, Schrier RW, Ponec J (eds) Hormonal regulation of sodium excretion. Elsevier/North Holland, Amsterdam, pp 43–51

    Google Scholar 

  • Reinhardt H-W, Kaczmarczyk G, Mohnhaupt R, Simgen B, Wegener S (1980b) Is the control of sodium excretion partly due to signals from receptors located in the left atrium of the heart? Proc Int Union Physiol Sci 14:222

    Google Scholar 

  • Reynolds GP, Ceasar PM, Ruthven CRJ, Sandler M (1978) The effect of urinary pH and flow rate on monoamine output. Clin Chim Acta 84:225–231

    Article  PubMed  Google Scholar 

  • Richards AN, Plant OH (1922) Urine formation in the perfused kidney. The influence of adrenalin on the volume of the perfused kidney. Am J Physiol 59:184–190

    Google Scholar 

  • Ricksten S-E (1980) Function of cardiac mechanoreceptors in primary hypertension: experimental studies in spontaneously hypertensive rats. Doctoral Thesis, University of Goteborg, Goteborg, Sweden

    Google Scholar 

  • Ricksten S-E, Thoren P (1980) Reflex inhibition of sympathetic activity during volume load in awake normotensive and spontaneously hypertensive rats. Acta Physiol Scand 110:77–82

    PubMed  Google Scholar 

  • Ricksten S-E, Noresson E, Thoren P (1979) Inhibition of renal sympathetic nerve traffic from cardiac receptors in normotensive and spontaneously hypertensive rats. Acta Physiol Scand 106:17–22

    PubMed  Google Scholar 

  • Ricksten S-E, Yao T, DiBona GF, Thoren P (1981) Renal nerve activity and exaggerated natriuresis in conscious spontaneous hypertensive rats. Acta Physiol Scand 112:161–167

    PubMed  Google Scholar 

  • Robie NW (1979) Presynaptic inhibition of canine renal adrenergic nerves by acetylcholine in vivo. Am J Physiol 237:H326–H331

    PubMed  Google Scholar 

  • Robie NW (1980) Evaluation of presynaptic alpha-receptor function in the canine renal vascular bed. Am J Physiol 239:H422–H426

    PubMed  Google Scholar 

  • Robie NW (1981) Modulation by histamine agonists and antagonists of renal adrenergic neuronal vasoconstriction in vivo. Fed Proc 40:242

    Google Scholar 

  • Rocchini AP, Barger AC (1979) Renin release with carotid occlusion in the conscious dog: role of renal arterial pressure. Am J Physiol 236:H108–H111

    PubMed  Google Scholar 

  • Rocchini AP, Cant JR, Barger AC (1977) Carotid sinus reflex in dogs with low to high sodium intake. Am J Physiol 233:H196–H202

    PubMed  Google Scholar 

  • Rogenes PR, Gottschalk WC (1980) Denervation diuresis and natriuresis in conscious rast. Proc Am Soc Nephrol 13:148A

    Google Scholar 

  • Romero JC, Dunlap CL, Strong CG (1976) The effect of indomethacin and other anti-inflammatory drugs on the renin-angiotensin system J Clin Invest 58:282–288

    PubMed  Google Scholar 

  • Rouot BR, Snyder SH (1979) [3H]-paraaminoclonidine: a novel ligand which binds with high affinity to alpha adrenergic receptors. Life Sci 25:769–774

    Article  PubMed  Google Scholar 

  • Rumpf KW, Frenzel S, Lowtiz HD, Scheler F (1975) The effect of indomethacin on plasma renin activity in man under normal conditions and after stimulation of the renin angiotensin system. Prostaglandins 10:641–648

    PubMed  Google Scholar 

  • Sadowski J, Kurkus J, Gellert R (1979a) Denervated and intact kidney responses to saline load in awake and anesthetized dogs. Am J Physiol 237:F262–F267

    PubMed  Google Scholar 

  • Sadowski J, Kurkus J, Gellert R (1979b) Reinvestigation of denervation diuresis and natriuresis in conscious dogs. Arch Int Physiol Biochem 87:663–672

    Google Scholar 

  • Sadowski J, Kurkus J, Gellert R (1980) Have renal nerves a major role in control of sodium excretion? In: Lichardus B, Schrier RW, Ponec J (eds) Hormonal regulation of sodium excretion. Elsevier/North Holland, Amsterdam, pp 33–42

    Google Scholar 

  • Sawchenko PE, Friedman MI (1979) Sensory functions of the liver — a review. Am J Physiol 236:R5–R20

    PubMed  Google Scholar 

  • Schad H, Seller H (1975) A method for recording autonomic nerve activity in unanesthetized, freely moving cats. Brain Res 100:425–430

    Article  PubMed  Google Scholar 

  • Schad H, Seller H (1976) Reduction of renal nerve activity by volume expansion in conscious cats. Pfluegers Arch 363:155–159

    Article  Google Scholar 

  • Schiffrin EL, Garcia R, Gutkowska J, Boucher R, Genest J (1980) Role of prostaglandins, beta-adrenoceptors and the central nervous control of renin release in conscous sodium-depleted rats. Proc Soc Exp Biol Med 165:151–154

    PubMed  Google Scholar 

  • Schneider E, McLane-Vega L, Hanson R, Childers J, Gleason S (1978) Effect of chronic bilateral renal denervation on daily sodium excretion in the conscious dog. Fed Proc 37:645

    Google Scholar 

  • Schram LP, Carlson DE (1975) Inhibition of renal vasoconstriction by elevated ureteral pressure. Am J Physiol 228:1126–1133

    PubMed  Google Scholar 

  • Schrier RW (1974) Effects of adrenergic nervous system and catecholamines on systemic and renal hemodynamics, sodium and water excretion, and renin secretion. Kidney Int 6:291–306

    PubMed  Google Scholar 

  • Schrier RW, Humphreys MH, Ufferman RC (1971) Role of cardiac output and the autonomic nervous system in the antinatriuretic response to acute constriction of the thoracic superior vena cava. Circ Res 29:490–498

    PubMed  Google Scholar 

  • Schultz HD, Fater DC, Sundet WD, Goetz KL (1980) Renal responses to partial obstruction at various points in the intrathoracic circulation of conscious dogs. Physiologist 23:129

    Google Scholar 

  • Scott CK, Vanderwende C (1980) The identification of [3H] apomorphine binding sites in dog renal cortex membrane preparations. Fed Proc 38:1007

    Google Scholar 

  • Seymour AA, Zehr JE (1979) Influence of renal prostaglandin synthesis on renal control mechanisms in the dog. Circ Res 45:13–25

    PubMed  Google Scholar 

  • Shvalev VN (1966) Problems in the morphology and nature of renal innervation. Fed Proc (Transl Supp) 25:T595–T600

    Google Scholar 

  • Simgen B, Kaczmarczyk G, Mohnhaupt R, Schulze G, Reinhardt HW (1979) The contribution of the renal nerves to adjustments of the sodium balance. Pfluegers Arch 382:R17

    Google Scholar 

  • Sivananthan N, Kappagoda CT, Linden RJ (1981) The nature of atrial receptors responsible for the increase in urine flow caused by distension of the left atrium in the dog. Q J Exp Physiol 66:51–59

    PubMed  Google Scholar 

  • Slick GL, DiBona GF, Kaloyanides GJ (1974) Renal sympathetic nerve activity in sodium retention of acute caval constriction. Am J Physiol 226:925–932

    PubMed  Google Scholar 

  • Slick GL, Aguilera AJ, Zambraski EJ, DiBona GF, Kaloyanides GJ (1975) Renal neuroadrenergic transmission. Am J Physiol 229:60–65

    PubMed  Google Scholar 

  • Smith HW (1937) The physiology of the kidney. Oxford Univ, New York, pp 245–246

    Google Scholar 

  • Smith HW (1951) The kidney: structure and function in health and disease. Oxford Univ, New York, pp 424–596

    Google Scholar 

  • Smith HW, Chasis H, Goldring W, Ranges HA (1940) Glomerular dynamics in the normal human kidney. J Clin Invest 19:751

    Google Scholar 

  • Spencer HW, Yarger WE (1977) The effect of time and anesthesia on denervation natriuresis in the rat. Clin Res 25:43A

    Google Scholar 

  • Spyer KM (1981) The neural organization and control of the baroreceptor reflex. Rev Physiol Biochem Pharmacol 88:23–124

    Google Scholar 

  • Starke K (1977) Regulation of noradrenaline release by presynaptic receptor systems. Rev Physiol Biochem Pharmacol 77:1–124

    PubMed  Google Scholar 

  • Starke K (1981a) Alpha adrenoceptor subclassification. Rev Physiol Biochem Pharmacol 88:199–236

    PubMed  Google Scholar 

  • Starke K (1981b) Presynaptic receptors. Annu Rev Pharmacol Toxicol 21:7–30

    Article  PubMed  Google Scholar 

  • Stein JH, Osgood RW, Ferris TF (1972) The effect of beta adrenergic stimulation on proximal tubular sodium reabsorption. Proc Soc Exp Biol Med 141:901–905

    PubMed  Google Scholar 

  • Steiner RW, Blantz RC (1979) Acute reversal by saralasin of multiple intrarenal effects of angiotensin II. Am J Physiol 237:F386–F391

    PubMed  Google Scholar 

  • Steiner RW, Tucker BJ, Blantz RC (1979) Glomerular hemodynamics in rats with chronic sodium depletion: Effect of saralasin. J Clin Invest 64:503–512

    PubMed  Google Scholar 

  • Stella A, Dampney RAL, Golin R, Zanchetti A (1978a) Afferent vagal control of renin release in the anesthetized cat. Circ Res (Supp I) 43:I–107–I–111

    Google Scholar 

  • Stella A, Dampney RAL, Golin R, Zanchetti A (1978b) Differences in reflex control of arterial pressure and renin release during head-up tilting in the cat. Clin Sci Mol Med 55:1795–1815

    Google Scholar 

  • Stephenson RK, Sole MJ, Baines AD (1982) Neural and extraneural catecholamine production by rat kidneys. Am J Physiol 242:F261–F266

    PubMed  Google Scholar 

  • Stinson JM, Barnes AB, Zakheim RM, Chimoskey JE, Spinelli FR, Barger AC (1969) Reflex cholinergic vasodilatation during renal artery constriction in the unanesthetized dog. Am J Physiol 217:239–246

    PubMed  Google Scholar 

  • Stinson JM, Mootry PJ, Jackson CG, Gates HO, Scott MT (1976) Renal vasodilatation in response to coronary artery ligation in the dog. Clin Exp Pharmacol Physiol 3:191–194

    PubMed  Google Scholar 

  • Stitzer SO, Malvin RL (1975) Right atrium and renal sodium excretion. Am J Physiol 228:184–190

    PubMed  Google Scholar 

  • Standhoy JW, Schneider EG, Willis LR, Knox FG (1974) Intrarenal effects of phenoxybenzamine on sodium reabsorption. J Lab Clin Med 83:263–270

    PubMed  Google Scholar 

  • Struyker-Boudier HAJ, Van Essen H, Sinits JFM, Evenwel R (1979) Exaggerated diuresis and natriuresis in conscious spontaneously hypertensive rats. Therapiewoche 29:7740–7743

    Google Scholar 

  • Stryuker-Boudier HAJ, Smits JFM, Evenwel R (1980) Exaggerated diuresis and natriuresis in conscious SHR. Int Soc Hypertension 7:128

    Google Scholar 

  • Szalay L, Bencsath P, Takacs L (1977a) Effect of splanchnicotomy on the renal excretion of inorganic phosphate in the anesthetized dog. Pfluegers Arch 367:283–286

    Article  Google Scholar 

  • Szalay L, Bencsath P, Takacs L (1977b) Effect of splanchnicotomy on the renal excretion of para-aminohippuric acid in the anesthetized dog. Pfluegers Arch 367:287–290

    Article  Google Scholar 

  • Szalay L, Bencsath P, Takacs L (1977c) Effect of splanchnicotomy on the renal excretion of d-glucose in the anesthetized dog. Pfluegers Arch 369:79–84

    Article  Google Scholar 

  • Szalay L, Bencsath P, Takacs L (1977d) Impaired proximal tubular transport functions in anesthetized splanchnicotomized dogs. Experientia 33:42–43

    Article  PubMed  Google Scholar 

  • Szalay L, Lang E, Bencsath P, Mohai L, Fischer A, Takacs L (1977e) Effect of splanchnicotomy on the renal excretion of uric acid in anesthetized dogs. Pfluegers Arch 368:185–188

    Article  Google Scholar 

  • Szalay L, Colindres RE, Jackson R, Adkinson JT, Lassiter WE, Gottschalk CW (1980) Phosphate transport in chronically denervated rat kidney. Proc Am Soc Nephrol 13:10A

    Google Scholar 

  • Szenasi G, Bencsath P, Lehoczky E, Takacs L (1981) Tubular transport and urinary excretion of phosphate after renal denervation in the anesthetized rat. Am J Physiol 240:F481–F486

    PubMed  Google Scholar 

  • Taher MS, McLain LG, McDonald KM, Schrier RW (1976) Effect of beta-adrenergic blockade on renin response to renal nerve stimulation. J Clin Invest 57:459–465

    PubMed  Google Scholar 

  • Takacs L, Bencsath P, Szalay L (1978) Decreased proximal tubular transport capacity after renal sympathectomy. Proc Int Cong Nephrol 8:553–558

    Google Scholar 

  • Takacs L, Bencsath P, Szenasi G (1979) Effect of acute and chronic unilateral renal denervation on excretion and Tm of inorganic phosphate in normal and TPTX rats. Upsalla J Med Sci (Suppl) 26:71

    Google Scholar 

  • Takeshita AL (1978) Neurogenic contribution to hindquarters vasoconstriction during high sodium intake in Dahl strain of genetically hypertensive rat. Circ Res 43:I86–I90

    Google Scholar 

  • Takeshita A, Mark AL, Brody MJ (1979) Prevention of salt-induced hypertension in the Dahl strain by 6-hydroxydopamine. Am J Physiol 236:H48–H52

    PubMed  Google Scholar 

  • Takeuchi J, Uchida E, Nakayama S, Takeda T, Yagi S, Inoue G, Ueda H (1961) Experimental studies on the nervous control of the renal circulation. Jpn Heart J 2:65–75

    PubMed  Google Scholar 

  • Takeuchi J, Iino S, Hanada S, Sakai S, Oya N, Kitamura K (1964) Experimental studies on the nervous control of the renal circulation-effect of the electrical stimulation of the spinal cord on the renal circulation. Jpn Heart J 5:69–80

    Google Scholar 

  • Takeuchi J, Iino S, Hanada S, Sakai S, Oya N, Kitamura K (1965) Experimental studies on the nervous control of the renal circulation. Jpn Heart J 6:543–557

    PubMed  Google Scholar 

  • Takeuchi J, Ohya N, Sakai S, Nakamura H, Nohara T, Hirasawa K, Shinoda A (1968) Nervous control of the renal tubular function. Jpn Heart J 9:564–572

    PubMed  Google Scholar 

  • Takeuchi J, Aoki S, Nomura G, Mizumura Y, Shimizu H, Kubo T (1971) Nervous control of renal circulation — on the existence of sympathetic cholinergic fibers. J Appl Physiol 31:686–692

    PubMed  Google Scholar 

  • Thames MD (1978) Contribution of cardiopulmonary baroreceptors to the control of the kidney. Fed Proc 37:1209–1213

    PubMed  Google Scholar 

  • Thames MD (1979) Acetylstrophanthidin-induced reflex inhibition of canine renal sympathetic nerve activity mediated by cardiac receptors with vagal afferents. Circ Res 44:8–15

    PubMed  Google Scholar 

  • Thames MD, Abboud FM (1979a) Reflex inhibition of renal sympathetic nerve activity during myocardial ischemia mediated by left ventricular receptors with vagal afferents in dogs. J Clin Invest 63:395–402

    PubMed  Google Scholar 

  • Thames MD, Abboud FM (1979b) Interaction of somatic and cardiopulmonary receptors in control of renal circulation. Am J Physiol 237:H560–H565

    PubMed  Google Scholar 

  • Thames MD, DiBona GF (1979) Renal nerves modulate the secretion of renin mediated by nonneural mechanisms. Circ Res 44:645–652

    PubMed  Google Scholar 

  • Thames MD, Schmid PG (1979) Cardiopulmonary receptors with vagal afferents tonically inhibit ADH release in the dog. Am J Physiol 237:H299–H304

    PubMed  Google Scholar 

  • Thames MD, Klopfenstein HS, Abboud FM, Mark AL, Walker JL (1978) Preferential distribution of inhibitory cardiac receptors with vagal afferents to the inferoposterior wall of the left ventricle activated during coronary occlusion in the dog. Circ Res 43:512–519

    PubMed  Google Scholar 

  • Thames MD, Osborn JL, DiBona GF (1980a) Renin release mediated solely by renal nerves; inhibition by blockade of prostaglandin synthesis. Circulation (Suppl III) 62:III–122

    Google Scholar 

  • Thames MD, Waickman LA, Abboud FM (1980b) Sensitization of cardiac receptors (vagal afferents) by intracoronary acetylstrophanthidin. Am J Physiol 239:H628–H635

    PubMed  Google Scholar 

  • Thoren P (1979) Role of cardiac vagal C-fibers incardiovascular control. Rev Physiol Biochem Pharmacol 86:1–94

    PubMed  Google Scholar 

  • Thoren P, Ricksten S-E (1979) Recordings of renal and splanchnic sympathetic nervous activity in normotensive and spontaneously hypertensive rats. Clin Sci 57:197s–199s

    PubMed  Google Scholar 

  • Thoren P, Noresson E, Ricksten S-E (1979a) Resetting of cardiac C-fiber endings in the spontaneously hypertensive rat. Acta Physiol Scand 107:13–18

    PubMed  Google Scholar 

  • Thoren P, Noresson E, Ricksten S-E (1979b) Cardiac reflexes in normotensive and spontaneously hypertensive rats. Am J Cardiol 44:884–888

    Article  PubMed  Google Scholar 

  • Touw KB, Haywood JR, Shaffer R,A, Brody MJ (1980) Contribution of the sympathetic nervous system to vascular resistance in conscious young and adult spontaneously hypertensive rats. Hypertension 2:408–418

    PubMed  Google Scholar 

  • Tucker BJ, Blantz RC (1978) Inhibition of tubuloglomerular feedback induced reduction in nephron filtration rate with saralasin. Kidney Int 14:784A

    Google Scholar 

  • Tucker BJ, STeiner RW, Gushwa L, Blantz RC (1978) Studies on the tubuloglomerular feedback system in the rat. J Clin Invest 62:993–1004

    PubMed  Google Scholar 

  • Uchida Y (1979) Mechanisms of excitation of cardiac sympathetic afferents. In: Hainsworth R, Kidd C, Linden RJ (eds) Cardiac receptors. Cambridge Univ, Cambridge, pp 301–318

    Google Scholar 

  • Uchida Y, Kamisaka K, Ueda H (1971) Two types of renal mechanoreceptors. Jpn Heart J 12:233–241

    PubMed  Google Scholar 

  • Ueda H, Uchida Y (1968) Afferent impulses in the renal nerves. Jpn Heart J 9:517–519

    PubMed  Google Scholar 

  • Ueda H, Uchida Y, Kaisaka K (1967) Mechanism of the reflex depressor effect by kidney in dog. Jpn Heart J 8:597–606

    PubMed  Google Scholar 

  • Ueda H, Uchida Y, Kamisaka K (1971) Responses of renal mechanoreceptors to vasopressor substances. Jpn Heart J 12:347–353

    PubMed  Google Scholar 

  • Ueda J, Kishimoto T, Shimizu H, Yamamoto K (1968) Renal vascular response to ganglionic stimulants in the dog. Jpn Circ J 32:705–714

    PubMed  Google Scholar 

  • U'Prichard DC, Snyder SH (1979) Distinct alpha noradrenergic receptors differentiated by binding and physiological relationships. Life Sci 24:79–88

    Article  PubMed  Google Scholar 

  • Vandewalle A, Farman N, Bonvalet J-P (1978) Renal handling of sodium in Kyoto-Okamoto rats. Am J Physiol 235:F394–F402

    PubMed  Google Scholar 

  • Vatner SF (1974) Effects of hemorrhage on regional blood flow distribution in dogs and primates. J Clin Invest 54:225–235

    PubMed  Google Scholar 

  • Vaughan ED, Shemasky JH, Gillenwater JY (1971) Mechanism of acute hemodynamic response to ureteral occlusion. Invest Urology 9:109–118

    Google Scholar 

  • Waickman LA, Abboud FM (1980) Circumflex coronary occlusion inhibits the compensatory increase in sympathetic activity during arterial hypotension. Clin Res 28:717A

    Google Scholar 

  • Walker JL, Thames MD, Abboud FM, Mark AL, Klopfenstein HS (1978) Preferential distribution of inhibitory cardiac receptors in left ventricle of the dog. Am J Physiol 235:H188–H192

    PubMed  Google Scholar 

  • Wasserman K, Huss R, Kullmann R (1980) Dopamine-induced diuresis in the cat without changes in renal hemodynamics. Naunyn-Schmiedebergs Arch Pharmacol 312:77–83

    Article  PubMed  Google Scholar 

  • Watanabe AM, Judy WV, Cardon PV (1974) Effect of L-dopa on blood pressure and sympathetic nerve activity after decarboxylase inhibition in cats. J Pharmacol Exp Ther 188:107–113

    PubMed  Google Scholar 

  • Waugh WM (1970) Evidence that renal sympathetic tone modulates the degree of natriuresis upon volume expansion. Fed Proc 29:459

    Google Scholar 

  • Weaver LC (1977) Cardiopulmonary sympathetic afferent influences on renal nerve activity. Am J Physiol 233:H592–H599

    PubMed  Google Scholar 

  • Weaver LC, Reimann KA (1979) Comparison of sympathetic and vagal cardiac afferent influences on renal nerves. Fed Proc 38:1201

    Google Scholar 

  • Weaver LC, Macklem LJ, Reimann KA, Mickler RL, Oehl RS (1979) Organization of thoracic sympathetic afferent influences on renal nerve activity. Am J Phyiol 237:H44–H50

    Google Scholar 

  • Weaver LC, Danos LM, Oehl RS, Meckler RL (1981) Contrasting reflex influences of cardiac afferent nerves during coronary occlusion. Am J Physiol 240:H620–H629

    PubMed  Google Scholar 

  • Webb RL, Knuepfer MM, Brody MJ (1981) Central projections of afferent renal nerves. Fed Proc 40:545

    Google Scholar 

  • Weidinger H, Kirchner F (1967) Sympathische Aktionspotentiale bei nicht narkotisierten frei beweglichen Katzen. Pfluegers Arch 294:R23

    Google Scholar 

  • Weitsen HA, Norvell JE (1969) Cholinergic innervation of the autotransplanted canine kidney. Circ Res 251:535–541

    Google Scholar 

  • Wennergren G, Henriksson B-A, Weiss L-G, Oberg B (1976) Effects of stimulation of nonmodulated cardiac afferents on renal water and sodium excretion. Acta Physiol Scand 97:261–263

    PubMed  Google Scholar 

  • Westfall TC (1977) Local regulation of adrenergic neurotransmission. Physiol Rev 57:659–728

    PubMed  Google Scholar 

  • Westfall TC (1980) Neuroeffector mechanisms. Annu Rev Physiol 42:383–397

    Article  PubMed  Google Scholar 

  • Wehlan TJ, McCoord AB, Schilling JA (1952) Experimental ascites: the influence of transplantation of the kidneys to the neck. Surg Forum 4:510–516

    Google Scholar 

  • Whitwam JG, Kidd C, Fussey IV (1979) Responses in sympathetic nerves of the dog evoked by stimulation of somatic nerves. Brain Res 165:219–233

    Article  PubMed  Google Scholar 

  • Wilcox CS, Aminoff MJ, Slater JDH (1977) Sodium homeostasis in patients with autonomic failure. Clin Sci 53:321–328

    Google Scholar 

  • Williams RL, Maines JE, Pearson JE (1971) Direct and systemic effects of guanethidine on renal function. J Pharmacol Exp Ther 177:69–77

    PubMed  Google Scholar 

  • Williamson HE, Marchand GR, Bourland WA, Farley DB, Van Orden DE (1976) Ethacrynic acid induced release of prostaglandin E to increase rena blood flow. Prostaglandins 11:519–522

    Article  PubMed  Google Scholar 

  • Willis LR, Lappe RW, Hendry DP, Evan AP, Terzian AR (1980) Urinary excretion of radiolabelled norepinephrine after release from renal sympathetic nerves. Life Sci 27:2541–2546

    Article  PubMed  Google Scholar 

  • Wilson DR (1980) Pathophysiology of obstructive nephropathy. Kidney Int 16:281–292

    Google Scholar 

  • Wilson DR, Honrath U (1981) Effect of renal denervation, furosemide, and acute saline loading on postobstructive diuresis in the rat. Can J Physiol Pharmacol 59:59–64

    PubMed  Google Scholar 

  • Wilson DR, Honrath U, Cusimano M (1979a) Role of renal nerves in altered sodium reabsorption during transient increases in ureteral pressure. Clin Res 27:433A

    Google Scholar 

  • Wilson DR, Honath U, Sole M (1979b) Effect of acute and chronic denervation on renal function after release of unilateral ureteral obstruction in the rat. Can J Physiol Pharmacol 57:731–737

    PubMed  Google Scholar 

  • Winaver J, Chaimovitz C, Better OS (1978) Natriuretic effect of propranolol on dogs with chronic bile duct ligation. Clin Sci 54:603–607

    Google Scholar 

  • Winternitz SR, Katholi RE, Oparil S (1980) Role of the renal sympathetic nerves in the development and maintenance of hypertension in the spontaneously hypertensive rat. J Clin Invest 66:971–978

    PubMed  Google Scholar 

  • Winternitz SR, Oparil S, Katholi RE (1981) Decrease in hypothalamic catecholamines following renal denervation in one-kidney one-clip Goldblatt hypertensive rats. Clin Res 29:362A

    Google Scholar 

  • Woodcock EA, Funder JW, Johnston CI (1978) Decreased cardiac beta adrenoceptor in hypertensive rats. Clin Exp Pharmacol Physiol 5:545–550

    PubMed  Google Scholar 

  • Young WS, Kuhar MJ (1980) Alpha-2 adrenergic receptors are associated with renal proximal tubules. Eur J Pharmacol 67:493–495

    Article  PubMed  Google Scholar 

  • Yun J, Kelly GM, Bartter FC, Smith H (1977) Role of prostaglandins in the control of renin secretion. Circ Res 40:459–464

    PubMed  Google Scholar 

  • Zambraski EJ, DiBona GF (1976) Role of angiotensin II in the antinatriuresis of low level renal nerve stimulation. Am J Physiol 231:1105–1110

    PubMed  Google Scholar 

  • Zambraski EJ, DiBona GF (1979) Interaction of adrenergic stimuli, prostaglandins and angiotensin II in the dog kidney. Proc Soc Exp Biol Med 162:105–111

    PubMed  Google Scholar 

  • Zambraski EJ, Dunn MJ (1980) Prostaglandins and renal function in chronic bile duct ligated dogs. Proc Am Soc Nephrol 13:111A

    Google Scholar 

  • Zambraski EJ, DiBona GF, Kaloyanides GJ (1976a) Specificity of neural effect on renal tubular sodium reabsorption. Proc Soc Exp Biol Med 151:543–546

    PubMed  Google Scholar 

  • Zambraski EJ, DiBona GF, Kaloyanides GJ (1976b) Effect of sympathetic blocking agents on the antinatriuresis of reflex renal nerve stimulation. J Pharmacol Exp Ther 198:464–472

    PubMed  Google Scholar 

  • Zambraski EJ, Prosnitz EH, DiBona GF (1978) Lack of evidence for renal vasodilatation in anesthetized dogs. Proc Soc Exp Biol Med 158:462–465

    PubMed  Google Scholar 

  • Zimmerman BG (1978) Actions of angiotensin on adrenergic nerve endings. Fed Proc 37:199–202

    PubMed  Google Scholar 

  • Zimmerman H, Ganong WF (1980) Pharmacological evidence that stimulation of central seratonergic pathways increases renin secretion. Neuroendocrinology 30:101–107

    PubMed  Google Scholar 

  • Zimmerman H-D (1972) Elektronenmikroskopische Befunde zur Innervation des Nephron nach Untersuchungen an der fetalen Nachniere des Menschen. Z Zellforsch 129:65–75

    Article  PubMed  Google Scholar 

  • Zimmermann H-D (1975) Myelinated nerve fibers in the rat kidney. Cell Tissue Res 160:485–493

    Article  PubMed  Google Scholar 

  • Zucker IH, Gilmore JP (1975) Responsiveness of type B atrial receptors in the monkey. Brain Res 95:159–165

    Article  PubMed  Google Scholar 

  • Zucker IH, Lang M, Hackley JF (1981) Modulation of renal sympathetic nerve activity in the anesthetized dog. Fed Proc 40:522

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag

About this chapter

Cite this chapter

Dibona, G.F. (1982). The functions of the renal nerves. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 94. Reviews of Physiology, Biochemistry and Pharmacology, vol 94. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0031333

Download citation

  • DOI: https://doi.org/10.1007/BFb0031333

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11701-8

  • Online ISBN: 978-3-540-39469-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics