Competition between two kinds of entities in a Diffusion—Limited Aggregration process

  • N. Vandewalle
  • M. Ausloos
Contributed Papers
Part of the Lecture Notes in Physics book series (LNP, volume 438)


An extra degree of freedom (the “spin”) is added in the well-known Diffusion-Limited Aggregation growth model. A physically relevant coupling energy between aggregating spins in presence of an external magnetic field is defined. This model generates a kinetic growth competition between two kinds of entities and leads to a wide variety of kinetic processes and morphologies distributed in the “phase diagram” of the two growth parameters (coupling and field). Out of the cluster, the motion of the spins is still Brownian. The process leads to cluster fractal structures with fractal dimensions varying from 1.68±0.02 to 1.99±0.01 depending on the coupling parameters. Some physical ideas are presented in order to describe the new kinetic processes. Beside geometrical properties of the clusters, physical properties were also measured. For finite size clusters, a “transition” in the magnetization occurs at fixed (βJ, βH)c values. This “transition” shows that a species can dominate the other in finite clusters. Moreover, the fractal dimension of the clusters drastically drops at the same critical values. These behaviours are interestingly new and unexpected.


Fractal Dimension Antiferromagnetic Order Sticking Probability Seed Site Spin Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. J. Hermann, Phys. Rep. 136, 153 (1986)Google Scholar
  2. [2]
    A. Bunde, H. J. Hermann, A. Margolina and H. E. Stanley, Phys. Rev. Lett. 55, 653 (1985)Google Scholar
  3. [3]
    R. F. Xiao, J. I. D. Alexander and F. Rosenberger, Phys. Rev. A 38, 2447 (1988)Google Scholar
  4. [4]
    T. A. Witten and L. M. Sander,Phys. Rev. Lett. 47, 1400 (1981); see also T. A. Witten and L. M. Sander, Phys. Rev. B 27, 5686 (1983)Google Scholar
  5. [5]
    M. Matsushita, M. Sano, Y. Hayakawa, H. Honjo and Y. Sawada, Phys. Rev. Lett. 53, 286 (1984)Google Scholar
  6. [6]
    J. Nittmann, Physica 140A, 124 (1986)Google Scholar
  7. [7]
    L. Niemeyer, L. Pietronero and H. J. Wiesmann, Phys. Rev. Lett. 52, 1033 (1984)Google Scholar
  8. [8]
    Z. Xin and W. Zi-Quin, Z. Phys. B 73, 129 (1988)Google Scholar
  9. [9]
    L. H. Sperling, in Introduction to Physical Polymer Science, (New York, John Wiley & Sons INC., 2d. 1992), p.41Google Scholar
  10. [10]
    M. Silverman and M. Simon, in Mobile genetic elements. ed. J. A. Shapiro (Orlando, Academic Press, 1983), p. 537Google Scholar
  11. [11]
    P. Ossadnik, C.-H. Lam and L. M. Sander, Phys. Rev. E 49, R1788 (1994)Google Scholar
  12. [12]
    M. Ausloos, N. Vandewalle and R. Cloots, Europhys. Lett. 24, 629–634 (1993)Google Scholar
  13. [13]
    The Diffusion-Controlled Aggregation model introduced by Meakin adds only one sticking probability p ∈ [0,1] to DLA and this does not imply any internal degree of freedom. P. Meakin, Phys. Rev. A 27, 604–607 (1983); ibid. Phys. Rev. A 27, 1495 (1983)Google Scholar
  14. [14]
    D. Dhar and R. Ramaswamy, Phys. Rev. Lett. 54, 1346 (1985)Google Scholar
  15. [15]
    M. Plischke and Z. Racz, Phys. Rev. Lett. 53, 415 (1984)Google Scholar
  16. [16]
    L. Pietronero, A. Erzan and C. Evertsz, Phys. Rev. Lett. 61, 861 (1988)Google Scholar
  17. [17]
    Y. Sawada, S. Ohta, M. Yamazaki and H. Honjo, Phys. Rev. A 26, 3557 (1982)Google Scholar
  18. [18]
    N. Vandewalle and M. Ausloos, submitted for publication. (1994) Lacunarity, Fractal and Magnetic Transition behaviors in a generalized Eden growth process Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • N. Vandewalle
    • 1
  • M. Ausloos
    • 1
  1. 1.S.U.P.R.A.S., Institut de PhysiqueLiegeBelgium

Personalised recommendations