Advertisement

Fractal dimension and roughness of profiles and surfaces

  • J. G. Moreira
  • J. Kamphorst Leal da Silva
  • S. Oliffson Kamphorst
Invited Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 438)

Keywords

Fractal Dimension Hausdorff Dimension Fractional Brownian Motion Weierstrass Function Surface Fractal Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. B. Mandelbrot: “The Fractal Geometry of Nature” (Freeman, San Francisco, 1982).Google Scholar
  2. [2]
    J. Feder, “Fractals” (Plenum, New York, 1988).Google Scholar
  3. [3]
    P. Meakin, J. of Coll. and Inter. Science 134, 235 (1990).Google Scholar
  4. [4]
    B. B. Mandelbrot in “Fractals in Physics”, edited by L. Pietronero and E. Tosatti (North-Holland, Amsterdam 1986), p. 3.Google Scholar
  5. [5]
    “Random Fluctuations and Pattern Growth”, edited by H. E. Stanley and N. Ostrowsky (Kluwer, Dordrecht 1988).Google Scholar
  6. [6]
    T. Vicsek, “Fractal Growth Phenomena” (World Scientific, Singapore, 1989).Google Scholar
  7. [7]
    F. Family, Physica A 168, 561 (1990).Google Scholar
  8. [8]
    H. E. Stanley, S. V. Buldyrev, A. L. Goldberger, Z. D. Goldberger, S. Havlin, R. N. Mantegna, S. M. Ossadnik, C.-K. Peng and M. Simons, Physica A 205 214 (1994).Google Scholar
  9. [9]
    K. J. Måløy, A. Hansen, E. L. Hinrichsen and S. Roux, Phys. Rev. Lett. 68 213 (1992).Google Scholar
  10. [10]
    B. B. Mandelbrot, Phys. Scr. 32, 257 (1985).Google Scholar
  11. [11]
    R. F. Voss, Physica D 38, 362 (1989).Google Scholar
  12. [12]
    “Dynamics of Fractal Surfaces”, edited by F. Family and T. Vicsek (World Scientific, Singapore 1991)Google Scholar
  13. [13]
    G. Bouligand, Bull. Sci. Math. 2, 185 (1929).Google Scholar
  14. [14]
    K. Falconer, “Fractal Geometry” (John Wiley & Sons, Chichester, 1990).Google Scholar
  15. [15]
    C. Tricot, J. F. Quiniou, D. Wehbi, C. Roques-Carmes and B. Dubuc, Rev. Phys. Appl. 23, 111 (1988).Google Scholar
  16. [16]
    B. Dubuc, J. F. Quiniou, C. Roques-Carmes, C. Tricot and S. W. Zucker, Phys. Rev. A 39, 1500 (1989).Google Scholar
  17. [17]
    B. Dubuc and C. Tricot, C. R. Acad. Sci., Paris 306, 531 (1988).Google Scholar
  18. [18]
    B. Dubuc, S. W. Zucker, C. Tricot, J. F. Quinou and D. Wehbi, Proc. R. Soc. Lond. A 425, 113 (1989).Google Scholar
  19. [19]
    M. Ausloos and D. H. Berman, Proc. R. Soc. Lond. A 400, 331 (1985).Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • J. G. Moreira
    • 1
  • J. Kamphorst Leal da Silva
    • 1
  • S. Oliffson Kamphorst
    • 2
  1. 1.Departamento de Física, Instituto de Ciências ExatasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Departamento de Matemática, Instituto de Ciencias ExatasUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations