Advertisement

Diffusion of lattice gases in disordered lattices

  • Klaus W. Kehr
  • Thomas Wichmann
Invited Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 438)

Abstract

A survey of recent simulations and analytical work on collective diffusion of lattice gases in lattices with site-energy disorder is given. In one-dimensional disordered lattices, exact results have been obtained in the limit of small and large particle concentrations. Simulation results at intermediate concentrations show that the time-dependent site-occupancy correlations are not yet satisfactorily understood. In higher-dimensional disordered lattices, an effective-medium theory, which uses mean-field transition rates, gives an improvement over the phenomenological description and qualitative agreement with the simulations. The main effects derive from saturation of deep trapping sites. One conspicuous example is the existence of a coefficient of collective diffusion in a situation where no single-particle diffusion coefficient exists.

Keywords

Transition Rate Master Equation Site Energy Trap Site Full Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    See, for instance, R.C. Brouwer, J. Rector, N. Koeman, and R. Griessen, Phys. Rev. B 40 (1989) 3546Google Scholar
  2. [2]
    R. Kirchheim, Progr. Mat. Sci. 32 (1988) 262Google Scholar
  3. [3]
    for referencies, see C. H. Mak, H. C. Anderson, and S. M. George, J. Chem. Phys. 88 (1988) 4052Google Scholar
  4. [4]
    R. Kutner, Phys. Lett. A 81 (1981) 239Google Scholar
  5. [5]
    R. Kutner and K. W. Kehr, Phil. Mag. A 48 (1983) 199Google Scholar
  6. [6]
    For a review, see J. W. Haus and K. W. Kehr, Phys. Rep. 150 (1987) 263Google Scholar
  7. [7]
    P. Gartner and R. Pitis, Phys. Rev. B 45 (1992) 7739Google Scholar
  8. [8]
    C. Van den Broeck, in: Noise and nonlinear phenomena in nuclear systems, eds. J. L. Munoz-Cobo and F. C. Difilippo (Plenum, New York, 1989) p. 3Google Scholar
  9. [9]
    K. W. Kehr, O. Paetzold, and T. Wichmann, Phys. Lett. A 182 (1993) 135Google Scholar
  10. [10]
    O. Paetzold, Comput. Phys. Commu. 64 (1991) 1Google Scholar
  11. [11]
    P. M. Richards, Phys. Rev. B 16 (1977) 1393Google Scholar
  12. [12]
    R. A. Oriani, Acta metall. 18 (1970) 147Google Scholar
  13. [13]
    K. W. Kehr and O. Paetzold, Defect and Diffusion Forum 95–98 (1993) 1167Google Scholar
  14. [14]
    R. Kirchheim, F. Sommer and G. Schluckebier, Acta metall. 30 (1982) 1059Google Scholar
  15. [15]
    E. Salomons, J. Phys. C 21 (1988) 5953Google Scholar
  16. [16]
    R. A. Tahir-Kheli, Phys. Ref. B /28 (1983) 3049Google Scholar
  17. [17]
    M. H. Ernst, T. M. Nieuwenhuizen, and P. F. J. van Velthoven, J. Phys. A 20 (1987) 5335Google Scholar
  18. [18]
    M. Braun and K.W. Kehr, Phil.Mag.A 61 (1990) 855Google Scholar
  19. [19]
    T. Wichmann and K. W. Kehr, in preparationGoogle Scholar
  20. [20]
    S. Kirkpatrick, Rev. Mod. Phys. 45 (1973) 574Google Scholar
  21. [21]
    H. Scher, M. F. Shlesinger, and J. T. Bendler, Phys. Today 44 (1) (1991) 26Google Scholar
  22. [22]
    S. Havlin, B. L. Trus, and G.H. Weiss, J. Phys. A. 19 (1986) L817Google Scholar
  23. [23]
    T. Wichmann, K. G. Wang, and K. W. Kehr, J. Phys. A 27 (1994) L263Google Scholar
  24. [24]
    K. W. Kehr and O. Paetzold, Physica A 190 (1992) 1Google Scholar
  25. [25]
    D. Knoedler, and W. Dieterich, Physica A 191 (1992) 426Google Scholar
  26. [26]
    W. Dieterich, D. Knoedler, and P. Pendzig, J. Non-cryst. Solids (in press)Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Klaus W. Kehr
    • 1
  • Thomas Wichmann
    • 1
  1. 1.Institut für Festkörperforschung, Forschungszentrum JülichJülichGermany

Personalised recommendations