Advertisement

Interface bursting and interface depinning

  • J. -F. Gouyet
Invited Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 438)

Abstract

We recall the main features of the fluctuations of self similar interfaces which can be observed in diffusion, invasion of a porous medium by a fluid, thin magnetic films of even corrosion patterns. The relations of this behavior with other physical problems like fragmentation of clusters, cluster dynamics of a lattice gas of particles, or some features of dynamical percolation is also presented. Finally its connections with interface depinning and growth of rough surfaces is discussed.

Keywords

Charge Density Wave Invasion Front Percolation Cluster Fast Particle Bethe Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. H. Thompson, A. J. Katz and R. Raschke, Phys. Rev. Lett. 59 (1987) 29; J. P. Stokes, A. P. Kushnick and M. O. Robbins, Phys. Rev. Lett. 60 (1988) 1386; K. J. Maløy, L. Furuberg, J. Feder and T. Jøssang, Phys. Rev. Lett. 68 (1992) 2161Google Scholar
  2. [2]
    Y. Imry and S. Ma, Phys. Rev. Lett. 35 (1975) 1399; G. J. Grinstein, J. Appl. Phys. 55 (1984) 2371; A. Kirilyuk, J. Ferré and D. Renard, Europhys. Lett. 24 (1993) 403Google Scholar
  3. [3]
    J. L. Hudson, J. Tabora, K. Krisher and I. G. Krevrekidis, Phys. Lett. A. 179 (1993) 355; D. E. Williams, R. C. Newman, Q. Song and R. G. Kelly, Nature (London) 350 (1991) 216; L. Balázs, L. Nyikos, 1. Szabó, and R. Schiller, preprint.Google Scholar
  4. [4]
    See “Charge Density Waves in Solids”, edited by G. Hutiray and J. Solyom, Lecture Notes in Physics, vol. 217 (Springer Verlag, Berlin, 1985).Google Scholar
  5. [5]
    B. Sapoval, M. Rosso, J. F. Gouyet and J. F. Colonna, Solid State Ionics 18 & 19 (1986) 21.Google Scholar
  6. [6]
    D. Sornette, Phys. Rev. Lett. 69 (1992) 1287; T. L. Chelidze, Phys. Earth. Planet. Inter. 28 (1982) 93; G. A. Sobolev, Pure Appl. Geophys. 124 (1986) 811.Google Scholar
  7. [7]
    G. Mackay and N. Jan, J. Phys. A17 (1984) LGoogle Scholar
  8. [8]
    D. Dhar, Phys. Rev. Lett. 64 (1990) 1613.Google Scholar
  9. [9]
    L. Furuberg, J. Feder, A. Aharony and T. Jøssang, Phys. Rev. Lett. 61 (1988) 2117.Google Scholar
  10. [10]
    A. H. Thompson, A. J. Katz and C. E. Krohn, Advances in Physics, 36 (1987) 625.Google Scholar
  11. [11]
    P. Bak, C. Tang and K. Wiesenfeld, Phys. Rev. Lett. 59 (1981) 381.Google Scholar
  12. [12]
    B. Sapoval, M. Rosso and J. F. Gouyet, J. Phys. (Paris) Lett. 46 (1985) L149.Google Scholar
  13. [13]
    L. H. Tang and H. Leschhorn, Phys. Rev. 45 (1992) R8309.Google Scholar
  14. [14]
    S. V. Buldyrev, A. L. Barabäsi, F. Caserta, S. Havlin, H. E. Stanley and T. Vicsek, Phys. Rev. A 45 (1992) R8313; L. A. N. Amaral, A. L. Barabäsi, S. V. Buldyrev, S. Havlin and H. E. Stanley, Fractals 1 (1993) 818, the rupture lines in paper sheets, seem to have a very similar behavior, see J. Kertész, V. K Horváth and F. Weber, Fractals, 1 (1993) 67.Google Scholar
  15. [15]
    J. F. Gouyet and Y. Boughaleb, Phys. Rev. B40 (1989) 4760; B. Sapoval, Philos. Mag. B 59 (1989) 75.Google Scholar
  16. [16]
    J. F. Gouyet, B. Sapoval, Y. Boughaleb and M. Rosso, Physica A 157 (1989) 620.Google Scholar
  17. [17]
    S. Roux and E. Guyon, J. Phys. A 22. (1989) 3693.Google Scholar
  18. [18]
    J. F. Gouyet, Physica A 168 (1990) 581.Google Scholar
  19. [19]
    N. Martys, M. O. Robbins and M. Cieplak, Phys. Rev. B 44 (1991) 12294.Google Scholar
  20. [20]
    V. A. Mukhamedov, private communication.Google Scholar
  21. [21]
    H. J. Hermann, J. Phys. A26 (1993) L1145; W. R. Roseen and C. K. Mamun, Phys. Rev. B 47 (1993) 11815; S. M. Clifford, J. Geophys. Res. E 98 (1993) 10973; P. Meakin, A. Birovljev, V. Frette, J. Feder and T. Jøssang, Physica A 191 (1992) 227; J. J. E. Herrera, Physica D 57 (1992) 249; L. Furuberg, A. Hansen, E. Hinrichsen, J. Feder and T. Jøssang, Phys. Scr. 38(1991) 91; R. Pandey and S. Yu, J. Phys. A 24 (1991) 3959; S. Roux and E. Guyon, J. Phys. A 24 (1991) 1611.Google Scholar
  22. [22]
    J. F. Gouyet, in “Soft Order in Physical Systems”, R. Bruisma and Y. Rabin eds., Plenum Pub. Corp., New York, 1993.Google Scholar
  23. [23]
    J. F. Gouyet, Phys. Rev. B 47 (1993) 5446.Google Scholar
  24. [24]
    S. D. Druger, A. Nitzanand M. A. Ratner,J.Chem.Phys. 76 (1983) 3133; A. K. Harrison and R. Zwanzig, Phys. Rev. A 32 (1985) 1072.Google Scholar
  25. [25]
    T. Grossman and A. Aharony, J. Phys. A 20 (1986) L745.Google Scholar
  26. [26]
    M. Rosso, J. F. Gouyet and B. Sapoval, Phys. Rev. Lett. 57 (1986) 3195; J. F. Gouyet, M. Rosso and B. Sapoval, Phys. Rev. B 37 (1988) 1832.Google Scholar
  27. [27]
    pjαN is the surface of the front. It can also be written as a function of the width (σft)D f-d+1 and corresponds, as a function of concentration to (xc is such that pc) = pc) | p(ξc ± Oft)-p(ξc)| −v(Df-d+1) whose exponent is the exponent w of ref. [19]. The exponent ψs was also found from very different arguments by Martys et al. [19] (and called r′)Google Scholar
  28. [28]
    J. F. Gouyet, April 1991, unpublished.Google Scholar
  29. [29]
    A. R. Kerstein, J. Phys. A 22 (1989) 3371.Google Scholar
  30. [30]
    M. F Gyure and B. F. Edwards, Phys. Rev. Lett. 68 (1992) 2692; B. F. Edwards, M. F. Gyure and M. Ferer, Phys. Rev. A 46 (1992) 6252.Google Scholar
  31. [31]
    W. Kintzel, in Percolation Structures and Processes, G. Deutcher, R. Zallen and J. Adler eds., Annals of the Israel Physical Society, 1983, vol. 5, chap.. 18.Google Scholar
  32. [32]
    T. Vicsek, Fractal Growth Phenomena, 2nd ed., part IV (World Scientific Singapore, 1992); J. F. Gouyet, M. Rosso and B. Sapoval, in Fractals and Disordered Systems, A. Bundle and S. Havlin eds. (Springer Verlag, Heidelberg, 1992); Dynamics of Fractal Surfaces, F. Family and T. Vicsek eds. (World Scientific Singapore, 1991); Les Houches Workshop, R. Jullien, J. Kertesz, P. Meakin and D. E. Wolf eds.(Nova Science, New York, 1992), P. Meakin, Phys. Rep. (to appear); T. HalpinHealey and Y. C. Zhang, Phys. Rev. (to appear).Google Scholar
  33. [33]
    J. P. Nadal, R. M. Bradley and P. N. Strenski, J. Phys. A 19 (1986) L505.Google Scholar
  34. [34]
    M. Cieplak and M. O. Robbins, Phys. Rev. Lett. 60 (1988)2042.Google Scholar
  35. [35]
    M. Martys, M. Cieplak and M. O. Robbins, Phys. Rev. Lett. 66 (1991) 1058.Google Scholar
  36. [36]
    C. S. Nolle, B. Koiller, M. Martys and M. O. Robbins, preprint.Google Scholar
  37. [37]
    H. Ji and M. O. Robbins, Phys. Rev. B 46 (1992) 14519.Google Scholar
  38. [38]
    V. K. Horvath, F. Family and T. Vicsek, J. Phys. A 24 (1991) L25.Google Scholar
  39. [39]
    M. A. Rubio, C. A. Edwards, A. Dougherty and J. P. Gollub, Phys. Rev. Lett. 63 (1989) 1685.Google Scholar
  40. [40]
    S. He, G. Kahanda and P. Z. Wong, Phys. Rev. Lett. 69 (1992) 3731.Google Scholar
  41. [41]
    S. V. Buldyrev, A. L. Barabäsi, S. Havlin, J. Kertesz, H. E. Stanley and H. Xenias, Physica A 191 (1992) 220.Google Scholar
  42. [42]
    K. Sneppen, Phys. Rev. Lett. 69 (1992) 3539; see also Z. Olami, I. Procaccia and R. Zeitak, Phys. Rev. E 49 (1994) 1232.Google Scholar
  43. [43]
    L. A. N. Amaral, A. L. Barabäsi, S. V. Buldyrev, S. Havlin and H. E. Stanley, preprint.Google Scholar
  44. [44]
    H. Leschhorn and L. H. Tang, Phys. Rev. E 49 (1994) 1238.Google Scholar
  45. [45]
    S. Roux and A. Hansen, J. Phys. I France, 4 (1994) 515.Google Scholar
  46. [46]
    M. Kolb, J.-F. Gouyet and B. Sapoval, Europhys. Letters 3 (1987) 33; M. Kolb, T. Gobron, J.-F. Gouyet and B. Sapoval, Europhys. Letters 11 (1990) 601.Google Scholar
  47. [47]
    S. Mazur and S. Reich, J. Phys. Chem., 90 (1986) 1365; R. P. Wool, B.-L. Yuan and O. J. McGarel, Poly. Eng. Sci. 29 (1989) 1340.Google Scholar
  48. [48]
    See for instance B. Sapoval, “A new approach to the linear and non-linear response of self similar electrodes, in “Chaos, Solitons and Factals”, Pergamon Pres., 1994.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • J. -F. Gouyet
    • 1
  1. 1.Laboratoire de Physique de la Matière Condensée Ecole PolytechniquePalaiseauFrance

Personalised recommendations