Advertisement

Anomalous reaction-diffusion systems

  • S. Havlin
  • M. Araujo
  • H. Larralde
  • A. Shehter
  • H. E. Stanley
  • P. Trunfio
Invited Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 438)

Abstract

We review recent developments in the study of the diffusion reaction systems of the type A + BC in which the reactants are initially separated. We consider the case where the A and B particles are initially placed uniformly in Euclidean space at χ > 0 and χ < 0 respectively. We find that whereas for d ≥ 2 the mean field exponent characterizes the width of the reaction zone, fluctuations are relevant in the one-dimensional system. We also present analytical and numerical results for the reaction rate on fractals and percolation systems.

Keywords

Reaction Front Front Line Active Front Active Cluster Silver Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. v. Smoluchowski, Z. Phys. Chem. 92, 129 (1917).Google Scholar
  2. [2]
    See, e.g., S. A. Rice, Diffusion-Limited Reactions (Elsevier, Amsterdam, 1985).Google Scholar
  3. [3]
    A. A Ovchinnikov and Y. B. Zeldovich, Chem. Phys. 28, 215 (1978).Google Scholar
  4. [4]
    D. Toussiant and F. Wilzeck, J. Chem. Phys. 78, 2642 (1983).Google Scholar
  5. [5]
    P. Meakin and H. E. Stanley, J. Phys. A 17, L173 (1984).Google Scholar
  6. [6]
    K. Kang and S. Redner, Phys. Rev. Lett. 52, 955 (1984); Phys. Rev. A 32, 435 (1985).Google Scholar
  7. [7]
    K. Lee and E. J. Weinberg, Nucl. Phys. B246, 354 (1984).Google Scholar
  8. [8]
    G. Zumofen, A. Blumen and J. Klafter, J. Chem. Phys. 82, 3198 (1985).Google Scholar
  9. [19]
    R. Kopelman, Science, 241, 1620 (1988).Google Scholar
  10. [10]
    M. Bramson and J. L. Lebowitz, Phys. Rev. Lett. 61, 2397 (1988); J. Stat. Phys. 65, 941 (1991).Google Scholar
  11. [11]
    P. Argyrakis and R. Kopelman, Phys. Rev. A 41, 2121 (1990).Google Scholar
  12. [12]
    G. H. Weiss, R. Kopelman and S. Havlin, Phys. Rev. A 38, 466 (1989).Google Scholar
  13. [13]
    F. Leyvraz and S. Redner, Phys. Rev. Lett. 66, 2168 (1991); S. Redner and F. Leyvraz, J. Stat. Phys. 65, 1043 (1991).Google Scholar
  14. [14]
    L. W. Anacker and R. Kopelman, Phys. Rev. Lett. 58, 289 (1987); J. Chem. Phys. 91, 5555 (1987).Google Scholar
  15. [15]
    K. Lindenberg, B. J. West and R. Kopelman, Phys. Rev. Lett. 60, 1777 (1988).Google Scholar
  16. [16]
    D. ben-Avraham and C. R. Doering, Phys. Rev. A37, 5007 (1988).Google Scholar
  17. [17]
    E. Clément, L. M. Sander and R. Kopelman, Phys. Rev. A 39, 6455 (1989).Google Scholar
  18. [18]
    L. Gálfi and Z. Rácz, Phys. Rev. A 38, 3151 (1988).Google Scholar
  19. [19]
    Y.E. Koo, L. Li, and R. Kopelman, Mol. Cryst. Liq. Cryst. 183, 187 (1990); Y.E. Koo and R. Kopelman, J. Stat. Phys. 65, 893 (1991).Google Scholar
  20. [20]
    H. Taitelbaum, Y.E Koo, S. Havlin, R. Kopelman and G.H. Weiss, Phys. Rev. A 46 2151 (1992)Google Scholar
  21. [21]
    Z. Jiang and C. Ebner, Phys. Rev. A 42, 7483 (1990).Google Scholar
  22. [22]
    H. Taitelbaum, S. Havlin, J. Kiefer, B. L. Trus, and G.H. Weiss, J. Stat. Phys. 65, 873 (1991).Google Scholar
  23. [23]
    S. Cornell, M. Droz, and B. Chopard, Phys. Rev. A 44, 4826 (1991).Google Scholar
  24. [24]
    M. Araujo, S. Havlin, H. Larralde, and H. E. Stanley, Phys. Rev. Lett. 68, 1791 (1992).Google Scholar
  25. [25]
    M. Araujo, H. Larralde, S. Havlin, and H. E. Stanley, Phys. Rev. Lett. 71, 3592 (1993).Google Scholar
  26. [26]
    E. Ben-Naim and S. Redner, J. Phys. A 25, L575 (1992).Google Scholar
  27. [27]
    H. Larralde, M. Araujo, S. Havlin and H. E. Stanley, Phys. Rev. A 46, 855 (1992).Google Scholar
  28. [28]
    D. Avnir and M. Kagan, Nature, 307, 717 (1984)Google Scholar
  29. [29]
    G. T. Dee, Phys. Rev. Lett. 57, 275 (1986).Google Scholar
  30. [30]
    B. Heidel, C. M. Knobler, R. Hilfer and R. Bruinsma, Phys. Rev. Lett. 60, 2492 (1986).Google Scholar
  31. [31]
    R. E. Liesegang, Naturwiss, Wochensch, 11, 353 (1896).Google Scholar
  32. [32]
    T. Witten and L. M. Sander, Phys. Rev. Lett. 47, 1400 (1981).Google Scholar
  33. [33]
    R. A. Ball, Ausr. Gemmol. 12, 89 (1984).Google Scholar
  34. [34]
    K. F. Mueller, Science, 255, 1021 (1984).Google Scholar
  35. [35]
    H. Larralde, M. Araujo, S. Havlin and H. E. Stanley, Phys. Rev. A 46, R6121 (1992).Google Scholar
  36. [36]
    A. Bunde and S. Havlin eds. Fractals and Disordered Systems (Springer, Heidelberg 1991).Google Scholar
  37. [37]
    S. Havlin and D. Ben-Avraham, Adv. in Phys. 36, 695 (1987).Google Scholar
  38. [38]
    H. Larralde, Y. Lereah, P. Trunfio, J. Dror, S. Havlin, R. Rosenbaum and H. E. Stanley, Phys. Rev. Lett. 70, 1461 (1993).Google Scholar
  39. [39]
    J. Crank, Free and Moving Boundary Problems (Clarendon Press, Oxford, 1984).Google Scholar
  40. [40]
    H. Larralde, P. Trunfio, S. Havlin and H. E. Stanley, to be published.Google Scholar
  41. [41]
    S. Alexander and R. Orbach, J. Physique Lett. 43, L625 (1987).Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • S. Havlin
    • 1
    • 2
  • M. Araujo
    • 1
  • H. Larralde
    • 1
  • A. Shehter
    • 2
  • H. E. Stanley
    • 1
  • P. Trunfio
    • 1
  1. 1.Center for Polymer Studies and Department of PhysicsBoston UniversityBostonUSA
  2. 2.Department of PhysicsBar-Ilan UniversityRamat-GanIsrael

Personalised recommendations