Advertisement

Simple quantum dynamics in presence of topological disorder

  • Andrzej Lusakowski
  • Lukasz A. Turski
Invited Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 438)

Abstract

The theory of particles moving in topologically random disordered environment is just in its infancy. Following our previous work on classical random walk in the presence of topological disorder due to randomly distributed line defects, we analyze the problem of a quantum, spinless, charged particle moving on a topologically disordered lattice. Specifically we discuss the motion on a d=2 square lattice penetrated by an array of randomly distributed Bohm-Aharonov magnetic fluxes. Next, we discuss the situation in which particle moves over a d=3 lattice containing random array of screw-dislocation dipoles. We show that the particle dynamics becomes highly anisotropic and that the underlying dynamics can be approximated by that of a quantum particle with anisotropic effective mass lighter in the direction towards which the dislocation dipoles are aligned.

Keywords

Magnetic Flux Screw Dislocation Quantum Dynamics Quantum Particle Topological Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes North-Holland, Amsterdam (1981). Chapt.V, Sec.4.Google Scholar
  2. [2]
    R. Bausch, R. Schmitz, and L.A. Turski, submitted for publication.Google Scholar
  3. [4]
    N.G. van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam, (1981).Google Scholar
  4. [5]
    E. Kröner, Kontinuumstheorie der Versetzungen and Eigenspannungen, Springer Verlag, Berlin (1958). For recent review of Kröner approach c.f. E. Kröner, in Physics of Defects, Les Houches Session XXXV edited by R. Ballian, North-Holland, Amsterdam (1981).Google Scholar
  5. [6]
    M. Zórawski, Theorie Mathematique des Dislocations, Dunod, Paris (1967).Google Scholar
  6. [7]
    T. Schneider, A. Politi and R. Badii, Phys. Rev. A 34, 2505 (1986).Google Scholar
  7. [8]
    A. Lusakowski and L.A. Turski, Phys. Rev. B 48, 3835, 1993.Google Scholar
  8. [9]
    For comprehensive review of. M. Peshkin, Phys. Reports. 80, 375 (1981). Elementary exposition of the Bohm-Aharonov effect is given in 1. Bialynicki-Birula, M. Cieplak and J. Kamiński, Theory of Quanta Oxford University press, Oxford (1992).Google Scholar
  9. [10]
    c.fF. Wegner Phys. Rep.67, p. 15, (1980); L. Schaefer, F. Wegner Z. Phys. B 38, 113, (1980); G. Bergmann Phys. Rep. 107, p. 1, (1984); Localization, Interaction and Transport Phenomena edited by B. Kramer, G. Bergmann, Y. Bruynserade, Springer Series in Solid State Sciences 61 (Springer Verlag, Berlin 1985); Lee P. A., Ramakrishnan T. V., Rev. Mod. Phys. 57, 287, (1985); S. Chakravarty, A. Schmid Phys. Rep. 140, 193 (1986).Google Scholar
  10. [11]
    Craig Pryor, A. Zee, Phys. Rev. B 46, 3116 (1992).Google Scholar
  11. [12]
    J. Rammer, A. L. Shelankov Phys. Rev. B 36, 3155 (1987).Google Scholar
  12. [13]
    S. J. Bending, K. v. Klitzing, K. Ploog, Phys. Rev. Lett. 65, 1060, (1990).Google Scholar
  13. [14]
    R. Bausch, H. Leschke Zeit. f. Phys.B 53, p. 249, (1983).Google Scholar
  14. [15]
    A. Kosevitch, Foundations of the Crystalline Lattice Mechanics, Science, Moscow (1972) ( in russian).Google Scholar
  15. [16]
    L.A. Turski, Bull. Polon. Acad. Sci. Ser.IV (Mechanics) 14, 281 (1966) and in Methods of Geometry in Physics and Technology, edited by P. Kucharczyk, WNT, Warsaw (1966).Google Scholar
  16. [17]
    H. Kleinert, Gauge Fields in Condensed Matter, World Scientific, Singapore (1989).Google Scholar
  17. [18]
    K. Kawamura, Z. für Physik B 29, 101 (1978), ibid B 30, 1 (1978).Google Scholar
  18. [19]
    A. Lusakowski, L.A. Turski, to be published.Google Scholar
  19. [20]
    B.L. Altshuler, A.G. Aronov, D.E. Khmelnitski, and A.I. Larkin, in Quantum Theory of Solids edited by I.M. Lifshitz, (MIR Publishers, Moscow 1982).Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Andrzej Lusakowski
    • 1
  • Lukasz A. Turski
    • 2
  1. 1.Institute of PhysicsPolish Academy of SciencesWarszawaPoland
  2. 2.Center for Theoretical PhysicsPolish Academy of SciencesWarszawaPoland

Personalised recommendations