Advertisement

Stellar diffusion

  • Henryk Cugier
Invited Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 438)

Keywords

White Dwarf Convective Zone Main Sequence Meridional Circulation Diffusion Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. H. Aller, S. Chapman: Diffusion in the Sun. Astrophys. J. 132, 461–472 (1960)Google Scholar
  2. [2]
    A. M. Boesgaard, Tripicco: Lithium in the Hyades cluster. Astrophys. J. Lett. 302, L49–L53 (1986)Google Scholar
  3. [3]
    M. Breger: Main-sequence pulsation in open clusters. Astrophys. J. 176, 373–380 (1972)Google Scholar
  4. [4]
    J. M. Burgers: Flow Equations for Composite Gases, Academic Preff, New York (1969)Google Scholar
  5. [5]
    S. Chapman: Convection and diffusion in giant stars. MNRAS 77, 540 (1917)Google Scholar
  6. [6]
    S. Chapman, T. G. Cowling: The Mathematical Theory of Non-Uniform Gases, Cambridge University Press (1970)Google Scholar
  7. [7]
    P. Charbonneau, G. Michaud: Two-dimentional particle transport in HgMn and FmAm stars. Astrophys. J. 327, 809–816 (1988)Google Scholar
  8. [8]
    J. Christensen-Dalsgaard, C. R. Proffitt, M. J. Thompson: Effects of diffusion on solar models and their oscillation frequences. Astrophys. J. 403, L75–L78 (1993)Google Scholar
  9. [9]
    H. Cugier: Carbon abundance in the primaries of six Algol-type stars. Astron. Astrophys. 214, 168–178 (1989)Google Scholar
  10. [10]
    H. Cugier, W. Dziembowski, A. A. Pamyatnykh: Nonadiabatic observables in β Cephei star models. in Pulsation, Rotation and Mass Loss in Early-Type Stars IAU Symposium 162 (1993), eds. L. A. Balona and H.Huib (Kluver)Google Scholar
  11. [11]
    H. Cugier, W. Dziembowski, A. A. Pamyatnykh: Nonadiabatic observables in β Cephei models. Astron. Astrophys. (in press)Google Scholar
  12. [12]
    H. Cugier, J. Hardorp: Carbon abundance in β Persei and λ Tauri. Astron. Astrophys. 202, 101–108 (1988)Google Scholar
  13. [13]
    J. P. De Greve, H. Cugier: Evolution of the surface abundance of carbon in massexchanging binaries. Astron. Astrophys. 211, 356–360 (1989)Google Scholar
  14. [14]
    W. A. Dziembowski, A. A. Pamyatnykh, R. Sienkiewicz: Helium content in the solar convective envelope from helioseismology. MNRAS 249, 602–605 (1991)Google Scholar
  15. [15]
    A. S. Eddington: The Internal Constitution of the Stars, Cambridge University Press (1926)Google Scholar
  16. [16]
    A. S. Eddington: MNRAS 90, 54 (1929)Google Scholar
  17. [17]
    F. Fricke, R. Kippenhahn: Evolution of rotating stars. Ann. Rev. Astron. Astrophys., 10, 45–72 (1972)Google Scholar
  18. [18]
    J. A. Guzik, A. N. Cox: Using solar p-modes to determine the convection zone depth and constrain diffusion-produced composition gradients. Astrophys. J. 411, 394–401 (1993)Google Scholar
  19. [19]
    C. A. Iglesias, F. J. Rogers, B. G. Wilson: Spin-orbit interaction effects on the Rosseland mean opacity. Astrophys. J. 397, 717–728 (1992)Google Scholar
  20. [20]
    R. Kippenhahn, G. Ruschenplatt, H. C. Thomas: The time scale of thermohaline mixing in stars. Astron. Astrophys. 91, 175–180 (1980)Google Scholar
  21. [21]
    A. G. Kosovichev, J. Christensen-Dalsgaard, W. Dappen, W. A. Dziembowski, D. O. Gough, M. J. Thompson: Sources of uncertainty in direct seismological measurements of the solar helium abundance. MNRAS 259, 536–558 (1993)Google Scholar
  22. [22]
    G. Michaud: Diffusion processes in peculiar A stars. Astrophys. J. 160, 641–658 (1970)Google Scholar
  23. [23]
    G. Michaud: Diffusion, meridional circulation and mass loss in main sequence and horizontal branch stars. in Evolution of Stars: The Photospheric Abundance Connection IAU Symp. No. 145 (1991), eds. G. Michaud and A. Tutukov Kluwer Academic Publishers, pp. 111–124Google Scholar
  24. [24]
    G. Michaud, P. Charbonneau: The Lithium abundance in stars. Space Sci. Rev. 57, 1–58 (1991)Google Scholar
  25. [25]
    G. Michaud, Y. Charland: Mass loss in A and F stars: the λ Bootis stars. Astrophys. J. 311, 326–334 (1986)Google Scholar
  26. [26]
    D. Mihalas, W. Dappen, D. G. Hummer: The equation of state for stellar envelopes. II. Algorithm and selected results. Astrophys. J. 331, 815–825 (1988)Google Scholar
  27. [27]
    D. Muchmore: Diffusion in white dwarf stars. Astrophys. J. 278, 769–783 (1984)Google Scholar
  28. [28]
    P. D. Noerdlinger: Diffusion of helium in the Sun. Astron. Astrophys. 57, 407–415 (1977)Google Scholar
  29. [29]
    B. Paczynski: Evolutionary processes in close binary systems. Ann. Rev. Astron. Astrophys. 9, 183–208 (1971)Google Scholar
  30. [30]
    C. R. Proffitt: Effects of heavy-element settling on solar neutrino fluxes and interior structures. Astrophys. J. 425, 849–855 (1994)Google Scholar
  31. [31]
    C. R. Proffitt, G. Michaud: Diffusion and mixing of Lithium and Helium in population II dwarfs. Astrophys. J. 371, 584–601 (1991)Google Scholar
  32. [32]
    R. Rebolo: Lithium and Beryllium in main sequence stars. in Evolution of Stars: The Photospheric Abundance Connection IAU Symp. No. 145 (1991), eds. G. Michaud and A. Tutukov Kluwer Academic Publishers, pp. 85–97Google Scholar
  33. [33]
    J. Richer, G. Michaud, C. R. Proffitt: Helium gravitational settling in the envelopes of evolving main-sequence A and F stars. Astrophys. J. Suppl. 82, 329–350 (1991)Google Scholar
  34. [33]
    M. Sarna: Chemical evolution of Algol-type stars: mass-exchanging binary systems in cases AB and early B. MNRAS 259, 17–36 (1992)Google Scholar
  35. [34]
    E. Schatzman: White Dwarfs, North Holland Publ. Comp. Amsterdam, (1958)Google Scholar
  36. [35]
    E. Schatzman: Gravitational separation of the elements and turbulent transport. Astron. Astrophys. 3, 331–346 (1969)Google Scholar
  37. [36]
    M. J. Seaton, Y. Yan, D. Mihalas, A. K. Pradhan: Opacities for stellar envelopes. MNRAS 266, 805–828 (1994)Google Scholar
  38. [37]
    M. E. Stern: Tellus 12, 172 (1960)Google Scholar
  39. [38]
    P. A. Sweet: The importance of rotation in stellar evolution. MNRAS 110, 548–558 (1950)Google Scholar
  40. [39]
    J. Tomkin, D. L. Lambert, M. Lemke: The chemical composition of Algol systems — V. Confirmation of carbon deficiencies in the primaries of eight systems. MNRAS 265, 581–587 (1993)Google Scholar
  41. [40]
    R. K. Ulrich: Thermohaline convection in stellar interiors. Astrophys. J. 172, 165–177 (1972)Google Scholar
  42. [41]
    S. Vauclair: Turbulence and the Lithium Abundance in Giants and Main-Sequence Disk and Halo Stars. in Evolution of Stars: The Photospheric Abundance Connection IAU Symp. No. 145 (1991), eds. G. Michaud and A. Tutukov Kluwer Academic Publishers, pp. 327–340Google Scholar
  43. [42]
    S. Vauclair, G. Vauclair: Element segregation in stellar outher layers. Ann. Rev. Astron. Astrophys. 20, 37–60 (1982)Google Scholar
  44. [43]
    G. Vauclair, S. Vauclair, A. Pamyatnykh: Diffusion processes in the envelopes of main-sequence A stars: model variations due to helium depletion. Astron. Astrophys. 31, 63–70 (1974)Google Scholar
  45. [44]
    H. Von Zeipel: MNRAS 84, 665 (1924)Google Scholar
  46. [45]
    H. Vogt: Zum Strahlungsgleichgewicht der Sterne. Astron. Nachr. 223, 229–232 (1925)Google Scholar
  47. [46]
    W. D. Watson: Element diffusion and abundance anomalies in metallic A stars. Astrophys. J. Lett. 162, L45–L48 (1970)Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Henryk Cugier
    • 1
  1. 1.Astronomical Institute of the Wroclaw UniversityWroclawPoland

Personalised recommendations