Advertisement

Selfdiffusion of polymer chains in solutions and melts

  • K. Binder
Invited Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 438)

Abstract

Anomalous diffusion of monomers of polymer chains, as well as motion of these chains as a whole, is discussed with an emphasis on Monte Carlo simulations and simple scaling concepts. While the behavior of isolated chains in good solvents or Theta-solvents without excluded volume interactions is fully accounted for by the Rouse model, the behavior is less clear both for isolated chains in bad solvents and for chains in dense melts. Collapsed chains are shown to diffuse as g3(t) = <([rCM (t) -rCM(0)]2〉 ∝ tξ3 where the (effective?) exponent ξ3 simply seems to be linearly temperature-dependent for temperatures T lower than the Σ-temperature, ξ3 T/Θ. A relaxation time τ oc N3 is found, and scaling scenarios which possibly can explain these results are developed.

Short (not entangled!) chains in dense melts also are found to exhibit anomalous center of mass-diffusion, g3(t) ∝ tξ3 with ξ3 ≈ 0.8-0.85, contrary to expectations from the Rouse model. Therefore also the crossover from the Rouse-like behavior for chain length N less than the entanglement chain length Ne to reptation-like behavior for long chains shows some unexpected features.

Finally we briefly discuss the motion of chains in constrained geometry, such as chains constrained in straight tubes and chains end-grafted on a wall in a polymer brush.

Keywords

Polymer Brush Anomalous Diffusion Straight Tube Mode Coupling Theory Dynamic Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Stockmayer W.H.: in Molecular Fluids, ed by R. Balian and G. Weill (Gordon and Breach, New York 1976)Google Scholar
  2. [2]
    De Gennes P.G.: Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, New York 1979)Google Scholar
  3. [3]
    Ferry J.D.: Viscoelastic Properties of Polymers, third edition (J. Wiley, New York 1980)Google Scholar
  4. [4]
    Doi M. and Edwards S.F.: The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986)Google Scholar
  5. [5]
    Bunde A and Havlin S.: (eds.), Fractals and Disorderd Systems (Springer, Berlin 1991)Google Scholar
  6. [6]
    Hohenberg P.C. and Halperin B.I.: Rev. Mod. Phys. 49, 435 (1977)Google Scholar
  7. [7]
    Beretti A. and Sokal A.D.: J. Statist. Phys. 40, 483 (1985)Google Scholar
  8. [8]
    Sokal A.D.: in Monte Carlo and Molecular Dynamics Simulations in Polymer Science, ed. by K. Binder (Oxford University Press, Oxford 1994)Google Scholar
  9. [9]
    Milchev A., Paul W., and Binder K.: J. Chem. Phys. 99, 4786 (1993)Google Scholar
  10. [10]
    Milchev A., and Binder K.: Europhys. Lett. (in press)Google Scholar
  11. [11]
    Rouse P.E.: J. Chem. Phys. 21, 1272 (1953)Google Scholar
  12. [12]
    Zimm B.H.: J. Chem. Phys. 24, 269 (1956)Google Scholar
  13. [13]
    Le Guillou J.C., and Zinn-Justin J.: Phys. Rev. B21, 3976 (1980)Google Scholar
  14. [14]
    Nienhuis B.: Phys. Rev. Lett. 49, 1062 (1982)Google Scholar
  15. [15]
    Paul W., Binder K., Heermann D.W., and Kremer K.: J. Phys. (Paris) 111, 37 (1991)Google Scholar
  16. [16]
    Carmesin I. and Kremer K.: Macromolecules 21, 2819 (1988)Google Scholar
  17. [17]
    Des Cloizeaux J. and Jannink G.: Polymers in Solution: Their Modelling and Structure (Oxford University Press, Oxford 1990)Google Scholar
  18. [18]
    Lifshitz I.M., Grosberg A.Yu., and Khokhlov A.R.: Rev. Mod. Phys. 50, 683 (1978)Google Scholar
  19. [19]
    Grosberg A.Yu, and Kuznetsov D.V.: Macromolecules 25, 1970, 1980, 1991, 1996 (1992)Google Scholar
  20. [20]
    Grosberg A.Yu., Nechaev S.K., and Shakhnovich E.I.: J. Phys. (Paris) 49, 2095 (1988); Grosberg A.Yu., Rabin Y., Havlin S., and Neer A.: Europhys. Lett. 23, 373 (1993)Google Scholar
  21. [21]
    Naghizadeh J. and Kovac J.: Phys. Rev. Lett. 59, 1710 (1987)Google Scholar
  22. [22]
    Milchev A. and Binder K.: Macromol. Theory & Simul., submittedGoogle Scholar
  23. [23]
    De Gennes P.G.: J. Chem. Phys. 69, 5–72 (1972)Google Scholar
  24. [24]
    De Gennes P.G.: Macromolecules 9, 587, 594 (1976)Google Scholar
  25. [25]
    Hess W.: Macromolecules 19, 1395 (1986); 20, 2589 (1987); 21, 2620 (1988)Google Scholar
  26. [26]
    Lodge T.P., Rotstein N.A., and Prager S.: Adv. Chem. Phys. 79, 1 (1990)Google Scholar
  27. [27]
    Des Cloizeaux J.: Europhys. Lett. 5, 437 (1988); 6, 475 (1988) [E]; Macromol. 23, 4678 (1990); 25, 835 (1992)Google Scholar
  28. [28]
    Des Cloizeaux J.: J. Phys. (Paris) 113, 1523 (1993)Google Scholar
  29. [29]
    Schweizer K.S.: J. Chem. Phys. 91, 5802, 5822 (1989); J. Non-Cryst. Solids 131-133, 634 (1991); Physica Scripta T49, 99 (1993)Google Scholar
  30. [30]
    Szamel G.: Phys. Rev. Lett. 70, 3744 (1993), Szamel G. and Schweizer K.S., Phil. Mag. in press; J. Chem. Phys. 100,... (1994)Google Scholar
  31. [31]
    Daoud M. and De Gennes, P.G.: J. Phys. (Paris) 38, 85 (1977)Google Scholar
  32. [32]
    Kremer K. and Binder K.: J. Chem. Phys. 81, 6381 (1984)Google Scholar
  33. [33]
    Milchev A., Paul W., and Binder K.: Macromol. Theory Simul. 3, 305 (1994)Google Scholar
  34. [34]
    Halperin A., Tirrell M., and Lodge T.P.: Adv. Polym. Sci. 100, 31 (1991)Google Scholar
  35. [35]
    Milner S.T.: Science 251, 905 (1991)Google Scholar
  36. [36]
    Alexander S.: J. Phys. (Paris) 38, 983 (1977)Google Scholar
  37. [37]
    Milner S., Witten T., and Cates M.: Macromolecules 21, 2610 (1988)Google Scholar
  38. [38]
    Halperin A. and Alexander S.: Europhys. Lett. 6, 329 (1988); Macromolecules 21, 2403 (1989)Google Scholar
  39. [39]
    Klushin L.I. and Skvortsov A.M.: Macromolecules 24, 1549 (1991)Google Scholar
  40. [40]
    Murat M. and Grest G.S.: Macromolecules 22, 4054 (1989)Google Scholar
  41. [41]
    Lai P.-Y. and Binder K.: J. Chem. Phys. 95, 9288 (1991)Google Scholar
  42. [42]
    Lai P.-Y. and Binder K.: J. Chem. Phys. 97, 586 (1992)Google Scholar
  43. [43]
    Wittmer J., Johner A., Joanny J.F., and Binder K.: J. Chem. Phys. 101 (1994, in press)Google Scholar
  44. [44]
    Binder K., Lai P.-Y., and Wittmer J.: Faraday Disc., subm.Google Scholar
  45. [45]
    Binder K.: in Computational Modeling of Polymers, ed. by J. Bicerano (M. Dekker, New York 1992)Google Scholar
  46. [46]
    De Gennes P.G.: Physics (N.Y.) 3, 97 (1967)Google Scholar
  47. [47]
    Paul W., Binder K., Heermann D. W., and Kremer K.: J. Chem. Phys. 95, 7726 (1991)Google Scholar
  48. [48]
    Kremer K. and Grest G.S.: J. Chem. Phys. 92, 5057 (1990); J. Chem. Soc. Faraday Trans. 88, 1707 (1992)Google Scholar
  49. [49]
    Skolnick J. and Kolinski A.: Adv. Chem. Phys. 78, 223 (1990)Google Scholar
  50. [50]
    Fixman M.: J. Chem. Phys. 89, 3892 (1988)Google Scholar
  51. [51]
    Rostiashvili V.G.: Sov. Phys. JETP 70, 563 (1990)Google Scholar
  52. [52]
    Douglas J.F. and Hubbard J.B.: Macromolecules 24, 3163 (1991)Google Scholar
  53. [53]
    Wilson J.D. and Loring R.F.: J. Chem. Phys. 99, 7150 (1993)Google Scholar
  54. [54]
    Richter D., Farago B., Fetters L.J., Huang J.S., Ewen B., and Lartigue C.: Phys. Rev. Lett. 64, 1389 (1990)Google Scholar
  55. [55]
    Richter D., Butera R., Fetters L.J., Huang J.S., Farago B., and Ewen B.: Macromolecules 25, 6156 (1992)Google Scholar
  56. [56]
    Wittmer J., Paul W., and Binder K.: Macromolecules 25, 7211 (1992)Google Scholar
  57. [57]
    Wittmer J., Paul W., and Binder K.: J. Phys. (Paris), 114, 873 (1994)Google Scholar
  58. [58]
    Richter D., Baumgärtner A., Binder K., Ewen B., and Hayter J.B.: Phys. Rev. Lett. 47, 109 (1981); 48, 1695 (1982)Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • K. Binder
    • 1
  1. 1.Institut für PhysikJohannes Gutenberg Universität MainzMainzGermany

Personalised recommendations