Skip to main content

Complexity and versatility of the transcriptional response to cAMP

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 124

Abstract

The large number of CRE binding proteins reveals the complexity of the cellular response to cAMP and possibly suggests the requirements of cell-specificity and potential cross-talk mechanisms with the PKC pathway. The CREM gene constitutes a paradigm that represents another level of complexity. Its modularity of function, which is mediated by alternative and cell-specific splicing events, is an example of the versatility that the cell must accomplish in order to permit normal and regulated cell growth in response to several stimuli. The generation of CREB/CREM-deficent animals by homologous recombination will be an important step in the determination of the precise roles played by the different CRE binding proteins in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acland P, Dixon M, Peters G, Dickson C (1991) Subcellular fate of the Int-2 oncoprotein is determined by choice of initiation codon. Nature 343: 662–665

    Google Scholar 

  • Andrisani OM, Hayes TE, Roos B, Dixon JE (1987) Identification of the promoter sequences involved in the cell-specific expression of the rat somatostatin gene. Nucleic Acids Res 15: 5715–5728

    Google Scholar 

  • Angel P, Allegretto EA, Okino ST, Hattori K, Boyle WJ, Hunter T, Karin M (1988) Oncogene jun encodes a sequence-specific trans-activator similar to AP-1. Nature 332:166–171

    Google Scholar 

  • Auwerx J, Sassone-Corsi P (1991) IP-1: A dominant inhibitor of Fos/Jun whose activity is modulated by phosphorylation. Cell 64: 983–993

    Google Scholar 

  • Auwerx J, Sassone-Corsi P (1992) AP-1 (Fos-Jun) regulation by IP-1: effect of signal transduction pathways and cell growth. Oncogene 7: 2271–2280

    Google Scholar 

  • Baeuerle PA, Baltimore D (1988) IκB: A specific inhibitor of the NFκB transcription factor. Science 242: 540–546

    Google Scholar 

  • Beimling P, Moelling K (1992) Direct interaction of CREB protein with 21 bp Tax-response elements of HTLV-I LTR. Oncogene 7: 257–262

    Google Scholar 

  • Benbrook DM, Jones NC (1990) Heterodimer formation between CREB and Jun proteins. Oncogene 5: 295–302

    Google Scholar 

  • Berkowitz LA., Riabowol KT, Gilman MZ (1989) Multiple sequence elements of a single functional class are required for cyclic AMP responsiveness of the mouse c-fos promoter. Mol Cell Biol 9: 4272–4281

    Google Scholar 

  • Berridge MJ (1987) Inositol trisphosphate and diacylglycerol: two interacting second messengers. Ann Rev Biochem 56:159–193

    Google Scholar 

  • Binétruy B, Smeal T, Karin M (1991) Ha-Ras augments c-Jun activity and stimulates phosphorylation of its activation domain. Nature 351:122–127

    Google Scholar 

  • Bohmann D, Bos TJH, Admon A, Nishimura T, Vogt PK, Tjian R (1987) Human proto-oncogene c-jun encodes a DNA binding protein with structural and functional properties of transcription factor AP-1. Science 238:1386–1392

    Google Scholar 

  • Borrelli E, Heyman R, Arias C, Sawchenko P, Evans RM (1989) Transgenic mice with inducible dwarfism. Nature 339: 538–541

    Google Scholar 

  • Borrelli E, Montmayeur JP, Foulkes NS, Sassone-Corsi P (1992) Signal transduction and gene control: the cAMP pathway. Critical Rev Oncogenesis 3: 321–338

    Google Scholar 

  • Bravo R, Neuberg M, Burkhardt J, Almendral J, Wallich R, Muller R, (1987) Involvement of common and cell-type specific pathways in c-fos gene control: stable induction by cAMP in macrophages. Cell 48: 251–260

    Google Scholar 

  • Bullitt E (1989) Induction of c-fos-like protein within the lumbar spinal cord and thalamus of the rat following peripheral stimulation. Brain Res 493: 391–397

    Google Scholar 

  • Bush SJ, Sassone-Corsi P (1990) Dimers, leucine zippers and DNA binding domains. Trends Genet 6: 36–40

    Google Scholar 

  • Cambier JC, Newell NK, Justement LB, McGuire JC, Leach KL, Chen ZZ (1987) Ia binding ligand and cAMP stimulates nuclear translocation of PKC in β lymphocytes. Nature 327: 629–632

    Google Scholar 

  • Carter DA, Murphy D (1990) Regulation of c-fos and c-jun expression in the rat supraoptic nucleus. Mol Cell Neurobiol 10: 435–446

    Google Scholar 

  • Chiu R, Boyle WJ, Meek J, Smeal T, Hunter T, Karin M (1988) The c-fos protein interacts with c-Jun/AP-1 to stimulate transcription of AP-1 responsive genes. Cell 54: 541–552

    Google Scholar 

  • Comb M, Birnberg NC, Seasholtz A, Herbert E, Goodman HM (1986) A cyclic-AMP and phorbol ester-inducible DNA element. Nature 323: 353–356

    Google Scholar 

  • Courey AJ, Tjian R, (1989) Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine activation motif. Cell 55: 887–898

    Google Scholar 

  • Dash PK, Karl KA, Colicos MA, Prywes R, Kandel ER (1991) cAMP response element-binding protein is activated by Ca2+/calmodulin-as well as cAMP-dependent protein kinase. Proc Natl Acad Sci USA 88: 5061–5065

    Google Scholar 

  • deGroot RP, Sassone-Corsi P (1992) Activation of Jun/AP-1 by protein kinase A. Oncogene 7: 2281–2286

    Google Scholar 

  • deGroot RP, den Hertog J, Vandenheede JR, Goris J, Sassone-Corsi P (1993) Multiple and cooperative phosphorylation events regulate the CREM activator function. EMBO J 12: 3903–3911

    Google Scholar 

  • Delegeane A, Ferland L, Mellon PL (1987) Tissue specific enhancer of the human glycoprotein hormone α-subunit gene: dependence on cyclic AMP-inducible elements. Mol Cell Biol 7: 3994–4002

    Google Scholar 

  • Delmas V, Laoide BM, Masquilier D, de Groot RP, Foulkes NS, Sassone-Corsi P (1992) Alternative usage of initiation codons in mRNA encodins the cAMP-responsive-element modulator (CREM) generates regulators with opposite functions. Proc Natl Acad Sci USA 89: 4226–4230

    Google Scholar 

  • Descombes P, Schibler U (1991) A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same messenger RNA Cell 67: 569–579

    Google Scholar 

  • Deutsch PJ, Hoeffler JP, Jameson JL, Habener JF (1988) Cyclic AMP and phorbol esterstimulated transcription mediated by similar DNA elements that bind distinct proteins. Proc Natl Acad Sci USA 85: 7922–7926

    Google Scholar 

  • Du W, Maniatis T (1992) An ATF/CREB binding site protein is required for virus induction of the human interferon β gene. Proc Natl Acad Sci USA 89: 2150–2154

    Google Scholar 

  • Fisch T, Prywes R, Simon MC Roeder RG (1989) Multiple sequence elements in the c-fos promoter mediate induction by cAMP. Genes Dev 3: 198–211

    Google Scholar 

  • Flint KJ, Jones NC (1991) Differential regulation of three members of the ATF/CREB family of DNA-binding proteins. Oncogene 6: 2019–2026

    Google Scholar 

  • Foulkes NS, Sassone-Corsi P (1992) More is better: activators and repressors from the same gene. Cell 68: 411–414

    Google Scholar 

  • Foulkes NS, Borrelli E, Sassone-Corsi P (1991a) CREM gene: use of alternative DNA binding domains generates multiple antagonists of cAMP-induced transcription. Cell 64: 739–749

    Google Scholar 

  • Foulkes NS, Laoide BM, Schlotter F, Sassone-Corsi P (1991b) Transcriptional antagonist CREM down-regulates c-fos cAMP-induced expression. Proc Natl Acad Sci USA 88: 5448–5452

    Google Scholar 

  • Foulkes NS, Mellström B, Benusiglio E, Sassone-Corsi P (1992) Developmental switch of CREM function during spermatogenesis: from antagonist to transcriptional activator. Nature 355: 80–84

    Google Scholar 

  • Foulkes NS, Schlotter F, Pévet P, Sassone-Corsi P (1993) Pituitary hormone FSH directs the CREM functional switch during spermatogenesis. Nature 362: 264–267

    Google Scholar 

  • Fujisawa J-I, Toita M, Yoshida M (1989) A unique enhancer element for the trans-activator (p40tax) of human T-cell leukemia virus type I that is distinct from cyclic AMP-and 12-O-tetradacanoylphorbol-13-acetate-response elements. J Virol 63: 3234–3239

    Google Scholar 

  • Gaire M, Chatton B, Kedinger C (1990) Isolation and characterisation of two novel, closely related ATF cDNA clones from Hela cells. Nucleic Acids Res 18: 3467–3473

    Google Scholar 

  • Gaspar ML, Meo T, Bourgarel P, Guenet JL, Tosi M (1991) A single base deletion in the Tfm androgen receptor gene creates a short-lived messenger RNA that directs internal translation initiation Proc Natl Acad Sci USA 88: 8606–8610

    Google Scholar 

  • Gilman AG (1987) G Proteins: Transducers of Receptor-generated Signals. Ann Rev Biochem 86: 615–649

    Google Scholar 

  • Ginty DD, Glowacka D, Bader DS, Hidaka H, Wagner JA (1991) Induction of immediate early genes by Ca2+ influx requires cAMP-dependent protein kinase in PC12 cells. J Biol Chem 266:17454–17458

    Google Scholar 

  • Gonzalez GA, Montminy MR (1989) Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at ser 133. Cell 59: 675–680

    Google Scholar 

  • Gonzalez GA, Yamamoto KK, Fischer WH, Karr K, Menzel P, Briggs III W, Vale WW, Montminy MR (1989) A cluster of phosphorylation sites on the cAMP-regulated nuclear factor CREB predicted by its sequence. Nature 337: 749–752

    Google Scholar 

  • Gonzalez GA, Menzel P, Leonard J, Fischer WH, Montminy MR (1991) Characterization of motifs which are critical for activity of the cyclic AMP-responsive transcription factor CREB. Mol Cell Biol 11: 1306–1312

    Google Scholar 

  • Habener J (1990) Cyclic AMP response element binding proteins: a cornucopia of transcription factors. Mol Endocrionol 4: 1087–1094

    Google Scholar 

  • Hagiwara M, Alberts A, Brindle P, Meinkoth J, Feramisco J, Deng T, Karin M, Shenolikar S, Montminy M (1992) Transcriptional attenuation following cAMP induction requires PP-1-mediated dephosphorylation of CREB. Cell 70: 105–113

    Google Scholar 

  • Hai T-Y, Liu F, Coukos WJ, Green MR (1989) Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA binding heterodimers. Genes Dev 3: 2083–2090

    Google Scholar 

  • Hai T-Y, Curran T, (1991) Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA-binding specificity. Proc Natl Acad Sci 88: 3720–3724

    Google Scholar 

  • Hirai SI, Ryseck RP, Mechta F, Bravo R, Yaniv M (1989) Characterization of the junD, a new member of the jun proto-oncogene family. EMBO J 8: 1433–1439

    Google Scholar 

  • Hoeffler JP, Meyer TE, Yun Y, Jameson JL, Habener JF (1988) Cyclic AMP-responsive DNA-binding protein: structure based on a cloned placental cDNA. Science 242: 1430–1433

    Google Scholar 

  • Hoeffler JP, Lustbader JW, Chen C-Y (1991) Identification of multiple nuclear factors that interact with cyclic adenosine 3' 5'—monophosphate response element-binding protein and activating transcription factor-2 by protein-protein interactions. Mol Endocrinol 5: 256–266

    Google Scholar 

  • Hurst HC, Totty NF, Jones NC (1991) Identification and functional characterization of the cellular activating transcription factor 43 (ATF-43) protein. Nucl. Acids Res 19: 4601–4609

    Google Scholar 

  • Imagawa M, Chiu R, Karin M (1987) Transcription factor AP-2 mediates induction by two different signal-transduction pathways: protein kinase C and cAMP. Cell 51: 251–260

    Google Scholar 

  • Ivashkiv LB, Liou HC, Kara CJ, Lamph WW, Verma IM, Glimcher LH (1990) mXBP/CRE-BP2 and c-jun form a complex which binds to the cAMP, but not to the 12-O-tetradecanoyl phorbol-13-acetate response element. Mol Cell Biol 10: 1609–1621

    Google Scholar 

  • Kara CJ, Liou HC, Ivashkiv LB, Glimcher LH (1990) A cDNA for a human cyclic AMP response element-binding protein which is distinct from CREB and expressed preferentially in the brain. Mol Cell Biol 10: 1347–1353

    Google Scholar 

  • Kim S-J, Wagner S, Liu F, O'Reilly MA, Robbins PD, Green MR (1992) Retinoblastoma gene product activates expression of the human TGF-β2 gene through transcription factor ATF-2. Nature 358: 331–334

    Google Scholar 

  • Kramer IJM, Koornneef I, de Laat SW, van den Eijnden-van Raaij AJM (1991) TGF-β1 induces phosphorylation of the cyclic AMP responsive element binding protein in ML-CCL64 cells. EMBO J 10: 1083–1089

    Google Scholar 

  • Krebs EG, Beavo JA (1979) Phosphorylation-dephosphorylation of enzymes. Ann Rev Biochem 48: 923–959

    Google Scholar 

  • Kruijer W, Cooper JA, Hunter T, Verma IM (1984) Platelet-derived growth factor induces rapid but transient expression of the c-fos gene and protein. Nature 312: 711–716

    Google Scholar 

  • Lamph WW, Wamsley P, Sassone-Corsi P, Verma IM (1988) Induction of proto-oncogene Jun/AP-1 by serum and TPA. Nature 334: 626–631

    Google Scholar 

  • Laoide BM, Foulkes NF, Schlotter F, Sassone-Corsi P (1993) The functional versatility of CREM is determined by its modular structure. EMBO J 12: 1179–1191

    Google Scholar 

  • Lee KAW, Fink SJ, Goodman RH, Green MR (1989) Distinguishable promoter elements are involved in transcriptional activation by E1A and cyclic AMP. Mol Cell Biol 9: 4390–4397

    Google Scholar 

  • Lee CQ, Yun Y, Hoeffler JP, Habener JF (1990) Cyclic-AMP-responsive transcriptional activation involves interdependent phosphorylated subdomains. EMBO J 9: 4455–4465

    Google Scholar 

  • Leff SE, Rosenfeld MG, Evans RM (1986) Complex transcriptional units: diversity in gene expression by alternative RNA processing. Ann Rev Biochem 55: 1091–1117

    Google Scholar 

  • Leonard J, Serup P, Gonzalez G, Edlund T, Montminy M (1992) The LIM family transcription factor Isl-1 requires cAMP response element binding protein to promote somatostatin expression in pancreatic islet cells. Proc Natl Acad Sci USA 89: 6247–6251

    Google Scholar 

  • Lewin B (1991) Oncogenic conversion by regulatory changes in transcription factors. Cell 64: 303–312

    Google Scholar 

  • Lillie JW, Green MR (1989) Transcription activation by the adenovirus E1a protein. Nature 338: 39–44

    Google Scholar 

  • Lin Y, Green MR (1988) Interaction of a common cellular transcription factor, ATF, with regulatory units in both E1A and cyclic AMP inducible promoters. Proc Natl Acad Sci USA 85: 3396–3400

    Google Scholar 

  • Liou H.-C, Boothby MR, Glimcher LH (1988) Distinct cloned class II MHC DNA-binding proteins recognize the X-box transcription element. Science 242: 69–71

    Google Scholar 

  • Liu F, Green MR (1990) A specific member of the ATF transcription factor family can mediate transcription activation by the adenovirus E1a protein. Cell 61: 1217–1224

    Google Scholar 

  • Macgregor PF, Abate C, Curran T (1990) Direct cloning of leucine zipper proteins: Jun binds cooperatively to the CRE with CRE-BP1. Oncogene 5: 451–458

    Google Scholar 

  • Maekawa T, Sakura H, Kanei-Ishii C, Sudo T, Yoshimura T, Fujisawa J, Yoshida M, Ishii S (1989) Leucine zipper structure of the protein CRE-BP1 binding to the cyclic AMP response element in brain. EMBO J 8: 2023–2028

    Google Scholar 

  • Maguire HF, Hoeffler JP, Siddiqui A (1991) HBV X protein alters the DNA binding specificity of CREB and ATF-2 by protein-protein interactions. Science 252: 842–844

    Google Scholar 

  • Masquilier D, Sassone-Corsi P (1992) Transcriptional cross-talk: nuclear factors CREM and CREB bind to AP-1 sites and inhibit activation by Jun. J Biol Chem 267: 22460–22466

    Google Scholar 

  • McCormick A, Brady H, Theill L, Karin M (1990) Regulation of the pituitary-specific homeobox gene GHF1 by cell-autonomous and environmental cues. Nature 345: 829–832

    Google Scholar 

  • McKnight SG, Clegg CH, Uhler MD, Chrivia JC, Cadd GG, Correll LA, Otten AD (1988) Analysis of the cAMP-dependent protein kinase system using molecular genetic approaches. Rec Progr Horm Res 44: 307–335

    Google Scholar 

  • Mellon PL, Clegg CH, Correll LA, McKnight SG (1989) Regulation of transcription by cyclic AMP-dependent protein kinase. Proc Natl Acad Sci USA 86: 4887–4891

    Google Scholar 

  • Mellström B, Achaval M, Montero D, Naranjo JR, Sassone-Corsi P (1991) Differential expression of the jun family members in rat brain. Oncogene 6: 1959–1964

    Google Scholar 

  • Mellström B, Naranjo JR, Foulkes NS, Lafarga M, Sassone-Corsi P (1993) Transcriptional response to cAMP in brain: specific distribution and induction of CREM antagonists. Neuron 10: 655–665

    Google Scholar 

  • Montmayeur JP, Borrelli E (1991) Transcription mediated by a cAMP-responsive promoter element is reduced upon activation of dopamine D2 receprors. Proc Natl Acad Sci USA 88: 3135–3139

    Google Scholar 

  • Morgan JI, Cohen DR, Hempstead JL, Curran T (1987) Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237: 192–197

    Google Scholar 

  • Naranjo JR, Mellström B, Achaval M, Sassone-Corsi P (1991) Molecular pathways of pain: Fos/Jun mediated activation of a non-canonical AP-1 site in the prodynorphin gene. Neuron 6: 607–617

    Google Scholar 

  • Nichols M, Weih F, Schmid W, DeVack C, Kowenz-Leutz E, Luckow B, Boshart M, Schütz G (1992) Phosphorylation of CREB affects its binding to high and low affinity sites: implications for cAMP induced gene transcription. EMBO J 11: 3337–3346

    Google Scholar 

  • Nishina H, Sata H, Suziki T, Sato M, Iba H (1990) Isolation and characterization of fra-2, an additional member of the fos gene family. Proc Natl Acad Sci USA 87: 3619–3623

    Google Scholar 

  • Nishizuka Y (1986) Studies and perspectives of protein kinase C. Science 233: 305–312

    Google Scholar 

  • Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR (1991) Phosphorylation of c-Jun mediated by MAP kinases. Nature 353: 670–674

    Google Scholar 

  • Rauscher FJ, Cohen DR, Curran T, Bos TJ, Vogt PK, Bohman D, Tjian R, Franza Jr BR (1988) Fos-associated protein p39 is the product of the jun proto-oncogene. Science 240: 1010–1016

    Google Scholar 

  • Rehfuss RP, Walton KM, Loriaux MM, Goodman RH (1991) The cAMP-regulated enhancer-binding protein ATF-1 activates transcription in response to cAMP-dependent protein kinase A. J Biol Chem 266: 18431–18434

    Google Scholar 

  • Roesler WJ, Vanderbark GR, Hanson RW (1988) Cyclic AMP and the induction of eukaryotic gene expression. J Biol Chem 263: 9063–9066

    Google Scholar 

  • Ruppert S, Cole TJ, Boshart M, Schmid E, Schütz G (1992) Multiple mRNA isoforms of the transcription activator protein CREB: generation by alternative splicing and specific expression in primary spermatocytes. EMBO J 11: 1503–1512

    Google Scholar 

  • Ryder K, Lau LF, Nathans D (1988) A gene activated by growth factors is related to the oncogene v-jun. Proc Natl Acad Sci USA 85: 1487–1491

    Google Scholar 

  • Sagar SM, Sharp FR, Curran T (1988). Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science 240: 1328–1331

    Google Scholar 

  • Saris CJM, Domen J, Berns A (1991) The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J 10: 655–664

    Google Scholar 

  • Sassone-Corsi P (1988) Cyclic AMP Induction of early adenovirus promoters involves sequences required for E1A-transactivation. Proc Natl Acad Sci USA 85: 7192–7196

    Google Scholar 

  • Sassone-Corsi P, Visvader J, Ferland L, Mellon PL, Verma IM (1988a) Induction of protooncogene fos transcription through the adenylate cyclase pathway: characterization of a cAMP-responsive element. Genes Dev 2: 1529–1538

    Google Scholar 

  • Sassone-Corsi P, Sisson JC, Verma IM (1988b) Transcriptional autoregulation of the protoonogene fos. Nature 334: 314–319

    Google Scholar 

  • Sassone-Corsi P, Lamph WW, Kamps M, Verma IM (1988c) fos-associated cellular p39 is related to nuclear transcription factor AP-1. Cell 54: 553–560

    Google Scholar 

  • Sassone-Corsi P, Ransone LJ, Verma IM (1990) Cross-talk in signal transduction: TPA-inducible factor Jun/AP-1 activates cAMP responsive enhancer elements. Oncogene 5: 427–431

    Google Scholar 

  • Sharp FR, Sagar SM, Hicks K, Lowenstein D Hisanaga K (1991) c-fos mRNA, Fos and Fos-related antigen induction by hypertonic saline and stress. J Neurosci 11: 2321–2331

    Google Scholar 

  • Shaw G, Kamen R (1986) A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46: 659–667

    Google Scholar 

  • Sheng M, McFadden G, Greenberg ME (1990) Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron 4: 571–582

    Google Scholar 

  • Sheng M, Thompson MA, Greenberg ME (1991) CREB: a Ca2+-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252: 1427–1430

    Google Scholar 

  • Sherman TG, McKelvy JF, Watson SJ (1986) Vasopressin mRNA regulation in individual hypothalamic nuclei: a northern and in situ hybridization analysis. J Neurosci 6: 1685–1694

    Google Scholar 

  • Struthers RS, Vale WW, Arias C, Sawchenko PE, Montminy MR (1991) Somatotroph hypoplasia and dwarfism in transgenic mice expressing a non-phosphorylatable CREB mutant. Nature 350: 622–624

    Google Scholar 

  • Tan T-H, Horikoshi M, Roeder RG (1989) Purification and characterization of multiple nuclear factors that bind to the tax-inducible enhancer within the human T-cell leukemia virus type I long terminal repeat. Mol Cell Biol 9: 1733–1745

    Google Scholar 

  • Vinson CR, Sigler P, McKnight SL (1989) Scissor-grip model for DNA recognition by a family of leucine zipper proteins. Science 246: 911–922

    Google Scholar 

  • Verma IM, Sassone-Corsi P (1987) Proto-oncogene fos: complex but versatile regulation. Cell 51: 513–514

    Google Scholar 

  • Vogt PK, Bos TJ (1989) The oncogene Jun and nuclear signalling. Trends Biochem Sci 14: 172–175

    Google Scholar 

  • Waeber G, Meyer TE, LeSieur M, Hermann HL, Gérard N, Habener JF (1991) Developmental stage-specific expression of cyclic adenosine 3′,5′-monophosphate response element-binding protein CREB during spermatogenesis involves alternative exon splicing. Mol Endocrinol 5: 1418–1430

    Google Scholar 

  • Williams T, Admon A, Luscher B, Tjian R (1988) Cloning and expression of AP-2, a cell-type-specific transcription factor that activates inducible enhancer elements. Genes Dev 2: 1557–1569

    Google Scholar 

  • Woodgett JR (1990) Fos and Jun: two into one will go. Sem Cancer Biol 1: 389–397

    Google Scholar 

  • Yamamoto KK, Gonzales GA, Briggs III WH, Montminy MR (1988) Phosphorylation-induced binding and transcriptional efficiency of nuclear factor CREB. Nature 334: 494–498

    Google Scholar 

  • Yoshimasa T, Sibley DR, Bouvier M, Lefkowitz RJ, Caron MG (1987) Cross-talk between cellular signalling pathways suggested by phorbol ester adenylate cyclase phopshorylation. Nature 327: 67–70

    Google Scholar 

  • Yoshimura T, Fujisawa J-I, Yoshida M (1990) Multiple cDNA clones encoding nuclear proteins that bind to the Tax-dependent enhancer of HTLV-I: all contain a leucine zipper structure and basic amino acid domain. EMBO J 9: 2537–2542

    Google Scholar 

  • Zanger UM, Lund J, Simpson ER, Waterman MR (1991) Activation of transcription in cell-free extracts by a novel cAMP-responsive sequence from the bovine CYP17 gene. J Biol Chem 266: 11417–11420

    Google Scholar 

  • Zerial M, Toschi L, Ryseck RP, Schuermann M, Muller R, Bravo R (1989) The product of a novel growth factor activated gene, FosB, interacts with Jun proteins enhancing their DNA binding activity. EMBO J 8: 805–813

    Google Scholar 

  • Ziff EB (1990) Transcription factors: a new family gathers at the cAMP response site. Trends Genet 6: 69–72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Delmas, V. et al. (1994). Complexity and versatility of the transcriptional response to cAMP. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 124. Reviews of Physiology, Biochemistry and Pharmacology, vol 124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0031030

Download citation

  • DOI: https://doi.org/10.1007/BFb0031030

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57587-0

  • Online ISBN: 978-3-540-48280-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics