Skip to main content

Pharmacological modulation of voltage-dependent calcium channels in intact cells

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 114

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 114))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe T, Koyano K, Saisu H, Nishiuchi Y, Sakakibara S (1986) Binding of ω-conotoxin to receptor sites associated with the voltage-sensitive calcium channel. Neurosci Lett 71:203–208

    Google Scholar 

  • Adams HR, Durrett LR (1978) Gentamicin blockade of slow Ca++ channels in atrial myocardium of guinea pigs. J Clin Invest 62:241–247

    Google Scholar 

  • Affolter H, Coronado R (1986) Sidedness of reconstituted calcium channels from muscle tranverse tubules as determined by D600 and D890 blockade. Biophys J 49:767–772

    Google Scholar 

  • Ahmad SN, Miljanich GP (1988) The calcium channel antagonist, ω-conotoxin and electric organ nerve terminals: binding and inhibition of transmitter release and calcium influx. Brain Res 453:247–256

    Google Scholar 

  • Albus W, Habermann E, Ferry DR, Glossmann H (1984) Novel 1,4-dihydropyridine (Bay K8644) facilitates Ca-dependent [3H]noradrenaline release from PC12 cells. J Neurochem 42:1186–1189

    Google Scholar 

  • Almers W, McCleskey EW, Palade PT (1984) A non-selective cation conductance in frog muscle membrane blocked by micromolar external calcium ions. J Physiol (Lond) 353:565–583

    Google Scholar 

  • Balwierczak JL, Grupp IL, Grupp G, Schwartz A (1986) Effects of bepridil and diltiazem on [3H]intrendipine binding to canine cardiac sarcolemma. Potentiation of pharmacological effects of nitrendipine by bepridil. J Pharmacol Exp Ther 237:40–48

    Google Scholar 

  • Barnes S, Davies JA (1988) The effect of calcium channel agonists and antagonists on the release of endogenous glutamate from cerebellar slices. Neurosci Lett 92:58–63

    Google Scholar 

  • Beam KG, Knudson CM, Powell JA (1986) A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells. Nature 320:168–170

    Google Scholar 

  • Bean BP (1984) Nitrendipine block of cardiac calcium channels: high affinity binding to the inactivated state. Proc Natl Acad Sci USA 81:6388–6392

    Google Scholar 

  • Bean BP (1989) Classes of calcium channels in vertebrate cells. Ann Rev Physiol 51:367–384

    Google Scholar 

  • Bean BP, Nowycky MC, Tsien RW (1984) β-Adrenergic modulation of calcium channels in frog ventricular heart cells. Nature 307:371–375

    Google Scholar 

  • Bean BP (1985) Two kinds of calcium channels in canine atrial cells — differences in kinetics, selectivity and pharmacology. J Gen Physiol 86:1–30

    Google Scholar 

  • Bechem M, Hebisch S, Schramm M (1988) Ca2+ agonists: new sensitive probes for Ca2+ channels. Trends Pharmacol Sci 9:257–261

    Google Scholar 

  • Bellemann P (1984) Binding properties of a novel calcium channel activating dihydropyridine in monolayer cultures of beating myocytes. FEBS Lett 167:88–92

    Google Scholar 

  • Bellemann P, Ferry D, Lübbecke F, Glossmann H (1981) [3H]-Nitrendipine, a potent calcium antagonist, binds with high affinity to cardiac membranes. Arzneimittelforschung 31:2064–2067

    Google Scholar 

  • Bellemann P, Schade A, Towart R (1983) Dihydropyridine receptor in rat brain labeled with [3H]nimodipine. Proc Natl Acad Sci USA 80:2356–2360

    Google Scholar 

  • Benos DJ (1982) Amiloride: a molecular probe of sodium transport in tissues and cells. Am J Physiol 242:C131–C145

    Google Scholar 

  • Bergamaschi S, Govoni S, Cominetti P, Parenti M, Trabucchi M (1988) Direct coupling of a G-protein to dihydropyridine binding sites. Biochem Biophys Res Comm 156:1279–1286

    Google Scholar 

  • Bixby JL, Spitzer NC (1983) Enkephalin reduces quantal content at frog neuromuscular junction. Nature 301:431–432

    Google Scholar 

  • Bkaily G, Sperelakis N, Renaud JF, Payet MD (1985) Apamin, a highly specific Ca2+ blocking agent in heart muscle. Am J Physiol 248:H961–H965

    Google Scholar 

  • Bodewei R, Hering S, Schubert B, Winkler J, Wollenberger A (1985) Calcium channel block by phenytoin in neuroblastoma-glioma hybrid cells. Biomed Biochim Acta 44:1229–1238

    Google Scholar 

  • Bolger GT, Gengo PJ, Luchowski EM, Siegel H, Triggle DJ, Janis RA (1982) High affinity binding of a calcium channel antagonist to smooth and cardiac muscle. Biochem Biophys Res Commun 104:1604–1609

    Google Scholar 

  • Bolger GT, Gengo P, Klockowski R, Luchowski E, Siegel H, Janis RA, Triggle AM, Triggle DJ (1983) Characterization of binding of the Ca++ channel antagonist [H-3]nitrendipine to guinea-pig ileal smooth muscle. J Pharmacol Exp Ther 225:291–309

    Google Scholar 

  • Bolger GT, Marcus KA, Daly JW, Skolnick P (1987) Local anesthetics differentiate dihydropyridine calcium antagonist binding site in rat brain and cardiac membranes. J Pharmacol Exp Ther 240:922–930

    Google Scholar 

  • Bosma M, Sidell N (1988) Retionic acid inhibits Ca2+ currents and cell proliferation in a B-lymphocyte cell line. J Cell Physiol 135:317–323

    Google Scholar 

  • Brown AM, Kunze DL, Yatani A (1984) The agonist effect of dihydropyridines on Ca channels. Nature 311:570–572

    Google Scholar 

  • Brown AM, Yatani A, Lacerda AE, Gurrola GB, Possani LD (1987) Neurotoxins that act selectively on voltage-dependent cardiac calcium channels. Cir Res 61 [Suppl I]:6–9

    Google Scholar 

  • Brum G, Osterrieder W, Trautwein W (1984) β-Adrenergic increase in the calcium conductance of cardiac myocytes studied with the patch clamp. Pflüger Arch Eur J Physiol 401:111–118

    Google Scholar 

  • Burges RA, Gardiner DG, Gwilt M, Higgins AJ, Blackburn KJ, Campbell SF, Cross PE, Stubbs JK (1987) Calcium channel blocking properties of amlodipine in vascular smooth muscle and cardiac muscle in vitro: evidence for voltage modulation of vascular dihydropyridine receptors. J Cardiovasc Pharmacol 9:110–119

    Google Scholar 

  • Cachelin AB, de Peyer JE, Kokubun S, Reuter H (1983) Ca2+ channel modulation by 8-bromocyclic AMP in cultured heart cells. Nature 304:462–464

    Google Scholar 

  • Campbell KP, Leung AT, Sharp AH (1988) The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. Trends Neurosci 11:425–430

    Google Scholar 

  • Caparrotta L, Fassina G, Froldi G, Poja R (1987) Antagonism between (−)-N6-phenylisopropyl-adenosine and the calcium channel facilitator Bay K 8644, on guinea-pig isolated atria. Br J Pharmacol 90:23–30

    Google Scholar 

  • Carbone E, Lux HD (1988) Sodium currents through neuronal calcium channels: kinetics and sensitivity to calcium antagonists. In: Morad M, Nayler W, Kazda S, Schramm M (eds) The calcium channel: structure, function and implications. Springer, Berlin Heidelberg New York, pp 115–127

    Google Scholar 

  • Carbone E, Lux HD (1989) ω-Conotoxin blockade distinguishes Ca from Na permeable states in neuronal calcium channels. Pflügers Arch J Eur Physiol 413:14–22

    Google Scholar 

  • Carbone E, Morad M, Lux HD (1987) External Ni2+ selectively blocks the low-threshold Ca2+ currents of chick sensory neurons. Pflügers Arch Europ J Physiol 408:R60 (abstract)

    Google Scholar 

  • Casteels R, Login IS (1983) Reserpine has a direct action as a calcium antagonist on mammalian smooth muscle cells, J Physiol (Lond) 340:403–414

    Google Scholar 

  • Catterall WA (1977) Activation of the action potential Na+ ionophore by neurotoxins. An allosteric model. J Biol Chem 252:8669–8676

    Google Scholar 

  • Catterall WA (1981) Inhibition of voltage-sensitive sodium channels in neuroblastoma cells by antiarrhythmic drugs. Mol Pharmacol 20:356–362

    Google Scholar 

  • Catterall WA (1987) Common modes of drug action on Na+ channels: local anesthetics antiarrhythmics and anticonvulsants. Trends Pharmacol Sci 8:57–65

    Google Scholar 

  • Catterall WA (1988) Structure and function of voltage-sensitive ion channels. Science 242:50–61

    Google Scholar 

  • Cavalié A, Ochi R, Pelzer D, Trautwein W (1983) Elementary currents through Ca2+ channels in guinea pig myocytes. Pflügers Arch Eur J Physiol 398:284–297

    Google Scholar 

  • Ceña V, Nicolas GP, Sanchez-Garcia P, Kirpekar SM, Garcia AG (1983) Pharmacological dissection of receptor-associated and voltage-sensitive ionic channels involved in catecholamine release. Neuroscience 10:1455–1462

    Google Scholar 

  • Chen C, Corbley MJ, Roberts TM, Hess P (1988) Voltage-sensitive calcium channels in normal and transformed 3T3 fibroblasts. Science 239:1024–1026

    Google Scholar 

  • Chin PJS, Tetzloff G, Chatterjee M, Sybertz EJ (1988) Phorbol 12, 13-dibutyrate, an activator of protein kinase C, stimulates both contraction and Ca2+ fluxes in dog saphenous vein. Naunyn-Schmiedeberg's Arch Pharmacol 338:114–120

    Google Scholar 

  • Cognard C, Romey G, Galizzi JP, Fosset M, Lazdunski M (1986) Dihydropyridine-sensitive Ca2+ channels in mammalian skeletal muscle cells in culture: electrophysiological properties and interactions with Ca2+ channel activator (Bay K 8644) and inhibitor (PN200-110). Proc Natl Acad Sci USA 83:1518–1522

    Google Scholar 

  • Cohen CJ, McCarthy RT (1987) Nimodipine block of calcium channels in rat anterior pituitary cells. J Physiol (Lond) 387:195–225

    Google Scholar 

  • Cohen CJ, McCarthy RT, Barrett PQ, Rasmussen H (1988) Ca channels in adrenal glomerulosa cells: K+ and angiotensin II increase T-type Ca channel current. Proc Natl Acad Sci USA 85:2412–2416

    Google Scholar 

  • Contreras E, Tamayo L, Amigo M (1988) Calcium channel antagonists increase morphine-induced analgesia and antagonize morphine tolerance. Eur J Pharmacol 148:463–466

    Google Scholar 

  • Cota G (1986) Calcium channel currents in pars intermedia cells of the rat pituitary gland. Kinetic properties and washout during intracellular dialysis. J Gen Physiol 88:83–105

    Google Scholar 

  • Crosland RD, Hsiao TH, McClure WO (1984) Purification and characterization of β-leptinotarsin-n an activator of presynaptic calcium channels. Biochemistry 23:734–741

    Google Scholar 

  • Cruz LJ, Olivera BM (1986) Calcium channel antagonist ω-conotoxin defines a new high affinity site. J Biol Chem 261:6230–6233

    Google Scholar 

  • Cruz LJ, Johnson DS, Olivera BM (1987) Characterization of the ω-conotoxin target. Evidence for tissue-specific heterogeneity in calcium channel types. Biochemistry 26:820–824

    Google Scholar 

  • Deisz RA, Lux HD (1985) γ-Aminobutyric acid-induced depression of calcium currents of chick sensory neurons. Neurosci Lett 56:205–210

    Google Scholar 

  • Delorme EM, McGee R (1986) Regulation of voltage-dependent Ca2+ channels of neuronal cells by chronic changes in membrane potentials. Brain Res 397:189–192

    Google Scholar 

  • Delorme EM, Rabe CS, McGee R (1988) Regulation of the number of functional voltage-sensitive Ca++ channels on PC 12 cells by chronic changes in membrane potential. J Pharmacol Exp Ther 244:838–843

    Google Scholar 

  • De Pover A, Grupp I, Grupp G, Schwartz A (1983) Diltiazem potentiates the negative inotropic action of nimodipine in the heart. Biochim Biophys Res Commun 114:922–929

    Google Scholar 

  • DeRiemer SA (1989) Functions for calcium channels in pituitary cells. Ann NY Acad Sci 560:413–414

    Google Scholar 

  • DeRiemer SA, Strong JA, Albert KA, Greengard P, Kaczmarek LK (1985) Enhancement of calcium current in aplysia neurones by phorbol ester and protein kinase C. Nature 313:313–316

    Google Scholar 

  • Désarmenien M, Feltz P, Occhipinti G, Santangelo F, Schlichter R (1984) Coexistence of GABAA and GABAB receptors on Aδ and C primary afferents. Br J Pharmacol 81:327–333

    Google Scholar 

  • Desnuelle C, Askanas V, Engel WK (1987) Insulin enhances development of functional voltagedependent Ca2+ channels in aneurally cultured human muscle. J Neurochem 49:1133–1139

    Google Scholar 

  • DiVirgilio F, Pozzan T, Wollheim CB, Vicentini LM, Meldolesi J (1986) Tumor promoter phorbol myristate acetate inhibits Ca2+ influx through voltage-gated Ca2+ channels in two secretory cell lines, PC 12 and RINm5F. J Biol Chem 261:32–35

    Google Scholar 

  • Docherty RJ (1988) Gadolinium selectively blocks a component of calcium current in rodent neuroblastoma glioma hybrid (NG 108-15) cells. J Physiol (Lond) 398:33–47

    Google Scholar 

  • Dolphin AC, Scott RH (1986) Inhibition of calcium currents in cultured rat dorsal root ganglion neurones by (-)-baclofen. Br J Pharmacol 88:213–220

    Google Scholar 

  • Dolphin AC, Scott RH (1987) Calcium channel currents and their inhibition by (-)-baclofen in rat sensory neurones: modulation by guanine nucleotides. J Physiol (Lond) 386:1–17

    Google Scholar 

  • Dolphin AC, Forda SR, Scott RH (1986) Calcium-dependent currents in cultured rat dorsal root ganglion neurones are inhibited by an adenosine analogue. J Physiol (Lond) 373:47–61

    Google Scholar 

  • Dooley DJ, Lupp A, Hertting G, Osswald H (1988) ω-Conotoxin GVIA and pharmacological modulation of hippocampal noradrenaline release. Eur J Pharmacol 148:261–268

    Google Scholar 

  • Dubé GP, Baik YH, Schwartz A (1985a) Effects of a novel calcium channel agonist dihydropyridine analogue, Bay K 8644, on pig coronary artery: biphasic mechanical response and paradoxial potentiation of contraction by diltiazem and nimodipine. J Cardiovasc Pharmacol 7:377–389

    Google Scholar 

  • Dubé GP, Baik YH, Vaghy PL, Schwartz A (1985b) Nitrendipine potentiates Bay K 8644-induced contraction of isolated porcine coronary artery: evidence for functionally distinct dihydropyridine receptor subtypes. Biochem Biophys Res Commun 128:1295–1302

    Google Scholar 

  • Dunlap K (1981) Two types of γ-aminobutyric acid receptor on embryonic sensory neurons. Br J Pharmacol 74:579–585

    Google Scholar 

  • Dunlap K, Fischbach GD (1981) Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones. J Physiol (Lond) 317:519–535

    Google Scholar 

  • Enyeart JJ, Aizawa T, Hinkle PM (1985) Dihydropyridine Ca2++ antagonists: potent inhibitors of secretion from normal and transformed pituitary cells. Am J Physiol 248:C510–C519

    Google Scholar 

  • Enyeart JJ, Aizawa T, Hinkle PM (1986) Interaction of dihydropyridine Ca2+ agonist Bay-K 8644 with normal and transformed pituitary cells. Am J Physiol 250:C95–C103

    Google Scholar 

  • Enyeart JJ, Sheu SS, Hinkle PM (1987) Pituitary Ca2+ channels: blockade by conventional and novel Ca2+ antagonists. Am J Physiol 253:C162–C170

    Google Scholar 

  • Ewald DA, Matthies HJG, Perney TM, Walker MW, Miller RJ (1988a) The effect of down regulation of protein kinase C on the inhibitory modulation of dorsal root ganglion neuron Ca2+ currents by neuropeptide Y. J Neurosci 8:2447–2451

    Google Scholar 

  • Ewald DA; Sternweis PC, Miller RJ (1988b) Guanine nucleotide-binding protein Go-induced coupling of neuropeptide Y receptors to Ca channels in sensory neurons. Proc Natl Acad Sci USA 85:3633–3637

    Google Scholar 

  • Fish RD, Sperti G, Colucci WS, Clapham DE (1988) Phorbol ester increases the dihydropyridine-sensitive calcium conductance in a vascular smooth muscle cell line. Circ Res 62:1049–1054

    Google Scholar 

  • Fitzpatrick LA, Brandi ML, Aurbach GD (1986) Control of PTH secretion is mediated through calcium channels and is blocked by pertussis toxin treatment of parathyroid cells. Biochem Biophys Res Commun 138:960–965

    Google Scholar 

  • Fitzpatrick LA, Chin H, Nirenberg M, Aurbach GD (1988) Antibodies to an α-subunit of skeletal muscle calcium channels regulate parathyroid cell secretion. Proc Natl Acad Sci USA 85:2115–2119

    Google Scholar 

  • Flaim SF, Brannan MD, Swigart SC, Gleason MM, Muschek LD (1985) Neuroleptic drugs alternate calcium influx and tension development in rabbat thoracic aorta: effects of pimozide, penfluridol, chlorpromazine and haloperidol. Proc Natl Acad Sci USA 82:1237–1241

    Google Scholar 

  • Fleckenstein A (1977) Specific pharmacology of calcium in myocardium, cardiac pacemakers and vascular smooth muscle. Annu Rev Pharmacol Toxicol 17:149–166

    Google Scholar 

  • Forder J, Scriabine A, Rasmussen H (1985) Plasma membrane calcium flux, protein kinase C activation and smooth muscle contraction. J Pharmacol Exp Ther 235:267–273

    Google Scholar 

  • Forscher P, Oxford GS (1985) Modulation of calcium channels by norepinephrine in internally dialyzed avian sensory neurons. J Gen Physiol 85:743–763

    Google Scholar 

  • Fosset M, Jaimovich E, Delpont E, Lazdunski M (1982) [3H]Nitrendipine labelling of the Ca2+-channel in skeletal muscle. Eur J Pharmacol 86:141–142

    Google Scholar 

  • Fox AP, Nowycky MC, Tsien RW (1987a) Kinetic and pharmacological properties distinguishing three types of Ca currents in chick sensory neurons. J Physiol (Lond) 394:149–172

    Google Scholar 

  • Fox AP, Nowycky MC, Tsien RW (1987b) Single channel recordings of three types of calcium channels in chick sensory neurones. J Physiol (Lond) 394:173–200

    Google Scholar 

  • Franckowiak G, Bechem M, Schramm M, Thomas G (1985) The optical isomers of the 1,4-dihydropyridine Bay K 8644 show opposite effects on Ca channels. Eur J Pharmacol 114:223–226

    Google Scholar 

  • Freedman SB, Miller RJ (1984) Calcium channel activation: a different type of drug action. Proc Natl Acad Sci USA 81:5580–5583

    Google Scholar 

  • Galizzi JP, Fosset M, Lazdunski M (1984) Properties of receptors for the Ca2+-channel blocker verapamil in transverse-tubule membranes of skeletal muscle. Stereospecifity, effect of Ca2+ and other inorganic cations, evidence for two categories of sites and effect of nucleoside triphosphate. Eur J Biochem 144:211–214

    Google Scholar 

  • Galizzi JP, Fosset M, Lazdunski M (1985) Characterization of the Ca2+ coordination site regulating binding of Ca2+ channel inhibitors d-cis-diltiazem (±) bepridil and (−) desmethoxyverapamil to their receptor site in skeletal muscle transverse tubule membranes. Biochem Biophys Res Commun 132:49–55

    Google Scholar 

  • Galizzi JP, Borsotto M, Barhanin J, Fosset M, Lazdunski M (1986a) Characterization and photoaffinity labelling of receptor sites for the Ca2+ channel inhibitors d-cis-diltiazem, (±)-bepridil, desmethoxyverapamil and (+)-PN 200-110 in skeletal muscle transverse tubule membranes. J Biol Chem 261:1393–1397

    Google Scholar 

  • Galizzi JP, Fosset M, Romey G, Laduron P, Lazdunski M (1986b) Neuroleptics of the diphenylbutylpiperidine series are potent Ca channel inhibitors. Proc Natl Acad Sci USA 83:7513–7517

    Google Scholar 

  • Galizzi JP, Qar J, Fosset M, van Renterghem C, Lazdunski M (1987) Regulation of calcium channels in aortic muscle cells by protein kinase C activators (diacylglycerol and phorbol esters) and by peptides (vasopressin and bombesin) that stimulate phosphoinositide breakdown. J Biol Chem 262:6947–6950

    Google Scholar 

  • Galvan M, Adams PR (1982) Control of calcium current in rat sympathetic neurons by norepinephrine. Brain Res 244:135–144

    Google Scholar 

  • Garcia AG, Sala F, Reig JA, Viniegra S, Frias J, Fontériz R, Gandia L (1984) Dihydropyridine Bay-K-8644 activates chromaffin cell calcium channels. Nature 309:69–71

    Google Scholar 

  • Garcia ML, King VF, Siegl PKS, Reuben JP, Kaczorowski GJ (1986) Binding of Ca2+ entry blockers to cardiac sarcolemmal membrane viscles. Characterization of diltiazem-binding sites and their interaction with dihydropyridine and aralkylamine receptors. J Biol Chem 261:8146–8157

    Google Scholar 

  • Gershengorn MC, Thaw CN, Raaka EG (1988) Benzodiazepines modulate voltage-sensitive calcium channels in GH3 pituitary cells at sites distinct from thyrotropin-releasing hormone receptors. Endocrinology 123:541–544

    Google Scholar 

  • Gjörstrup P, Hardin H, Isaksson R, Westerlund C (1986) The enantiomers of the dihydropyridine derivative H160/51 show opposite effects of stimulation and inhibition. Eur J Pharmacol 122:357–361

    Google Scholar 

  • Glossmann H, Striessnig J (1988) Calcium channels. Vitam Horm 44:155–328

    Google Scholar 

  • Glossmann H, Striessnig J (1989) Molecular properties of calcium channels. Rev Physiol Biochem Pharmacol (this volume)

    Google Scholar 

  • Glossmann H, Ferry DR, Lübbecke F, Mewes R, Hofmann F (1982) Calcium channels: direct identification with radioligand binding studies. Trends Pharmacol Sci 3:431–437

    Google Scholar 

  • Glossmann H, Ferry DR, Goll A, Striessnig J, Zernig G (1985a) Calcium channels and calcium channel drugs — recent biochemical and biophysical findings. Arzneimittelforschung 35-2:1917–1935

    Google Scholar 

  • Glossmann H, Ferry DR, Goll A, Striessnig J, Schober M (1985b) Calcium channels: basic properties as revealed by radioligand binding studies. J Cardiovasc Pharmacol 7 [Suppl 6]:S20–S30

    Google Scholar 

  • Godfraind T, Miller R, Wibo M (1986) Calcium antagonists and calcium entry blockade. Pharmacol Rev 38:321–416

    Google Scholar 

  • Goll A, Glossmann H, Mannhold R (1986) Correlation between the negative inotropic potency and binding parameters of 1,4-dihydropyridine and phenylalkylamine calcium channel blockers in cat heart. Naunyn-Schmiedeberg's Arch Pharmacol 334:303–312

    Google Scholar 

  • Gould RJ, Murphy KMM, Reynolds IJ, Snyder SH (1983) Antischizophrenic drugs of the diphenylbutylpiperidine type act as Ca channel antagonists. Proc Natl Acad Sci USA 80:5122–5125

    Google Scholar 

  • Gray WR, Olivera BM, Cruz LJ (1988) Peptide toxins from venomous conus snails. Annu Rev Biochem 57:665–700

    Google Scholar 

  • Green FJ, Farmer BB, Wiseman GL, Jose MJL, Watanabe AM (1985) Effect of membrane depolarization on binding of [3H]nitrendipine to rat cardiac myocytes. Circ Res 56:576–585

    Google Scholar 

  • Greenberg DA, Carpenter CL, Messing RO (1986) Depolarization-dependent binding of the calcium channel antagonist (+)-[H-3] PN 200-110 to intact cultured PC 12 cells. J Pharmacol Exp Ther 328:1021–1027

    Google Scholar 

  • Greenberg DA, Carpenter CL, Messing RO (1987) Lectin-induced enhancement of volt-age-dependent calcium flux and calcium channel antagonist binding. J Neurochem 48:888–894

    Google Scholar 

  • Gross RA, Macdonald RL (1987) Dynorphin A selectively reduces a large transient (N-type) calcium current of mouse dorsal root ganglion neurons in cell culture. Proc Natl Acad Sci USA 84:5469–5473

    Google Scholar 

  • Gurney AM, Nerbonne JM, Lester HA (1985) Photoinduced removal of nifedipine reveals mechanisms of calcium antagonist action on single heart cells. J Gen Physiol 86:353–380

    Google Scholar 

  • Hadley RW, Hume JR (1988) Calcium channel antagonist properties of Bay K 8644 in single guinea pig ventricular cells. Circ Res 62:97–104

    Google Scholar 

  • Hagiwara N, Irisawa H, Kameyama M (1988) Contributions of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J Physiol (Lond) 395:233–253

    Google Scholar 

  • Hamilton SL, Perez M (1987) Toxins that affect voltage-dependent calcium channels. Biochem Pharmacol 36:3325–3330

    Google Scholar 

  • Hamilton SL, Yatani A, Hawkes MJ, Redding K, Brown AM (1985) Atrotoxin: a specific agonist for calcium currents in the heart. Science 229:182–185

    Google Scholar 

  • Hamilton SL, Yatani A, Brush K, Schwartz A, Brown AM (1987) A comparison between the binding and electrophysiological effects of dihydropyridines on cardiac membranes. Mol Pharmacol 31:221–230

    Google Scholar 

  • Harris RA, Jones SB, Bruno P, Bylund DB (1985) Effects of dihydropyridine derivatives and anticonvulsant drugs on [3H]nitrendipine binding and calcium and sodium fluxes in brain. Biochem Pharmacol 34:2187–2191

    Google Scholar 

  • Hawthorn MH, Gengo P, Wei XY, Rutledge A, Moran JF, Gallant S, Triggle DJ (1988) Effect of thyroid status on β-adrenoceptors and calcium channels in rat cardiac and vascular tissues. Naunyn-Schmiedeberg's Arch Pharmacol 337:539–544

    Google Scholar 

  • Hay DWP, Wadsworth RM (1982) Local anaesthetic activity of organic calcium antagonists: relevance to their actions on smooth muscle. Eur J Pharmacol 77:221–228

    Google Scholar 

  • Herbette LG, Katz AM (1987) Molecular model for the binding of 1,4-dihydropyridine calcium channel antagonists to their receptor in the heart: drug “imaging” in membranes and consideration for drug design. In: Venter JC, Triggle D (eds) Structure and physiology of the slow inward calcium channel. Liss, New York, pp 89–108 (Receptor Biochemistry and Methodology, vol 9)

    Google Scholar 

  • Hescheler J, Pelzer D, Trube G, Trautwein W (1982) Does the organic calcium channel blocker D 600 act from inside or outside on the cardiac cell membrane? Pflügers Arch Eur J Physiol 393:287–291

    Google Scholar 

  • Hescheler J, Rosenthal W, Trautwein W, Schultz G (1987) The GTP-binding protein, Go, regulates neuronal calcium channels. Nature 325:445–447

    Google Scholar 

  • Hescheler J, Rosenthal W, Hinsch KD, Wulfern M, Trautwein W, Schultz G (1988) Angiotensin II-induced stimulation of voltage-dependent Ca2+ currents in an adrenal cortical cell line. EMBO J 7:619–624

    Google Scholar 

  • Hess P, Tsien RW (1984) Mechanism of ion permeation through calcium channels. Nature 309:453–456

    Google Scholar 

  • Hess P, Lansman JB, Tsien RW (1984) Different modes of channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature 311:538–544

    Google Scholar 

  • Higo K, Saito H, Matsuki N (1988) Characteristics of [3H]nimodipine binding to sarcolemmal membranes from rat vas deferens and its regulation by guanine nucleotide. Jpn J Pharmacol 48:213–222

    Google Scholar 

  • Hille B (1977) Local anesthetics: hydrophilic and hydrophobic pathways for the drug receptor reaction. J Gen Physiol 69:497–515

    Google Scholar 

  • Hille B (1984) Ionic channels of excitable membranes. Sinauer, Sunderland MA, pp 316–320

    Google Scholar 

  • Hirning LD, Fox AP, McCleskey EW, Olivera BM, Thayer SA, Miller RJ, Tsien TW (1988) Dominant role of N-type Ca2+ channels in evoked release of norephinephrine from sympathic neurons. Science 239:57–61

    Google Scholar 

  • Hof RP, Rüegg UT, Hof A, Vogel A (1985) Stereoselectivity at the calcium channel: opposite action of the enantiomers of a 1,4-dihydropyridine. J Cardiovasc Pharmacol 7:689–693

    Google Scholar 

  • Hof RP, Hof A, Rüegg UT, Cook NS, Vogel A (1986) Stereoselectivity at the calcium channel: different profiles of hemodynamic activity of the enantiomers of the dihydropyridine derivative PN 200-110. J Cardiovasc Pharmacol 8:221–226

    Google Scholar 

  • Holck M, Osterrieder W (1985) The peripheral high affinity benzodiazepine binding site is not coupled to the cardiac Ca2+ channel. Eur J Pharmacol 118:293–301

    Google Scholar 

  • Höltje HD, Marrer S (1987) A molecular graphics study on structure-action relationships of calcium-antagonistic and agonistic 1,4-dihydropyridines. J Comp aided Mol Des 1:23–30

    Google Scholar 

  • Holz GG, Rane SG, Dunlap K (1986) GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature 319:670–672

    Google Scholar 

  • Holz GG, Kream RM, Spiegel A, Dunlap K (1989) G-proteins couple α-adrenergic and GABAb receptors to inhibition of peptide secretion from peripheral sensory neurons. J Neurosci 9:657–666

    Google Scholar 

  • Hondeghem LM, Katzung BG (1977) Time and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochem Biophys Acta 472:373–398

    Google Scholar 

  • Hondeghem LM, Katzung BG (1984) Antiarrhythmic agents: the modulated receptor mechanism of action of sodium and calcium channel-blocking drugs. Annu Rev Pharmacol Toxicol 24:387–423

    Google Scholar 

  • Hosey MM, Lazdunski M (1988) Calcium channels: molecular pharmacology, structure and regulation. J Membr Biol 104:81–106

    Google Scholar 

  • Janis RA, Triggle DJ (1984) 1,4-Dihydropyridine Ca2+ channel antagonists and activators: a comparison of binding characteristics with pharmacology. Drug Dev Res 4:257–274

    Google Scholar 

  • Janis RA, Sarmiento JG, Maurer SC, Bolger GT, Triggle DJ (1984a) Characteristics of the binding of [H-3]nitrendipine to rabbit ventricular membranes — modification by other Ca++ channel antagonists and by the Ca++ channel agonist Bay K-8644. J Pharmacol Exp Ther 231:8–15

    Google Scholar 

  • Janis RA, Rampe D, Sarmiento JG, Triggle DJ (1984b) Specific binding of a calcium channel activator [3H] Bay K 8644 to membranes from cardiac muscle and brain. Biochem Biophys Res Commun 121:317–323

    Google Scholar 

  • Janis RA, Silver PJ, Triggle DJ (1987) Drug action and cellular calcium regulation. Adv Drug Res 16:309–589

    Google Scholar 

  • Johansen J, Taft WC, Yang J, Kleinhans AL, de Lorenzo RJ (1985) Inhibition of Ca2+ conductance in identified leech neurons by benzodiazepines. Proc Natl Acad Sci USA 82:3935–3939

    Google Scholar 

  • Kaczmarek LK (1987) The role of protein kinase C in the regulation of ion channels and neurotransmitter release. Trends Neurosci 10:30–34

    Google Scholar 

  • Kanaya S, Arlock P, Katzung BG, Hondeghem LM (1983) Diltiazem and verapamil preferentially block inactivated cardiac calcium channels. J Mol Cell Cardiol 15:145–148

    Google Scholar 

  • Kass RS (1987) Voltage-dependent modulation of cardiac calcium channel current by optical isomers of Bay K 8644: implications for channel gating. Circ Res 61 [Suppl 1]:1–5

    Google Scholar 

  • Kass RS, Arena JP (1989) Influence of pH0 on calcium channel block by amlodipine, a charged dihydropyridine compound. Implications for location of the dihydropyridine receptor. J Gen Physiol 93:1109–1127

    Google Scholar 

  • Kass RS, Krafte DS (1987) Negative surface charge density near heart calcium channels. Relevance to block by dihydropyridines. J Gen Physiol 89:629–644

    Google Scholar 

  • Kass RS, Arena JP, DiManno D (1988) Block of heart calcium channels by amlodipine: Influence of drug charge on blocking activity. J Cardiovasc Pharmacol 12 (Suppl 7):S45–S49

    Google Scholar 

  • Kawashima Y, Ochi R (1988) Voltage-dependent decrease in the availability of single calcium channels by nitrendipine in guinea-pig ventricular cells. J Physiol (Lond) 402:219–235

    Google Scholar 

  • Kerr LM, Yoshikami D (1984) A venom peptide with a novel presynaptic blocking action. Nature 308:282–284

    Google Scholar 

  • King VF, Garcia ML, Himmel D, Reuben JP, Lam YKT, Pan JX, Han GQ, Kaczorowski GJ (1988) Interaction of tetrandrine with slowly inactivating calcium channels. Characterization of Ca channel modulation by an alkaloid of Chinese medical herb origin. J Biol Chem 263:2238–2244

    Google Scholar 

  • Knaus HG, Striessnig J, Koza A, Glossmann H (1987) Neurotoxic aminoglycoside antibiotics are potent inhibitors of [125I]-omega-conotoxin GVIA binding to guinea-pig cerebral cortex membranes. Naunyn-Schmiedeberg's Arch Pharmacol 336:583–586

    Google Scholar 

  • Kobayashi M, Ohizumi Y, Yasumoto T (1985) The mechanism of action of maitotoxin in relation to Ca2+ movements in guinea-pig and rat cardiac muscles. Br J Pharmacol 86:385–391

    Google Scholar 

  • Kobayashi M, Kondo S, Yasumoto T, Ohizumi Y (1986) Cardiotoxic effects of maitotoxin, a principal toxin of seafood poisoning, on guinea pig and rat cardiac muscle. J Pharmacol Exp Ther 238:1077–1083

    Google Scholar 

  • Kojima I, Shibata H, Ogata E (1986) Pertussis toxin blocks angiotensin II-induced calcium influx but not inositol triphosphate production in adrenal glomerulosa cell. FEBS Lett 204:347–351

    Google Scholar 

  • Kokubun S, Reuter H (1984) Dihydropyridine derivatives prolong the open state of Ca channels in cultured cardiac cells. Proc Natl Acad Sci USA 81:4824–4827

    Google Scholar 

  • Kokubun S, Prod'hom B, Porzig H, Reuter H (1986) Studies on Ca channels in intact cardiac cells: voltage-dependent effects and cooperative interactions of dihydropyridine enantiomers. Mol Pharmacol 30:571–584

    Google Scholar 

  • Kongsamut S, Miller RJ (1986) Nerve growth factor modulates the drug sensitivity of neurotransmitter release from PC 12 cells. Proc Natl Acad Sci USA 83:2243–2247

    Google Scholar 

  • Kongsamut S, Kamp TJ, Miller RJ, Sanguinetti MC (1985a) Calcium channel agonist and antagonist effects of the steroisomers of the dihydropyridine 202–791. Biochem Biophys Res Commun 130:141–148

    Google Scholar 

  • Kongsamut S, Freedman SB, Simon BE, Miller RJ (1985b) Interaction of steroidal alkaloid toxins with Ca channels in neuronal cell lines. Life Sci 36:1493–1501

    Google Scholar 

  • Kostyuk PG, Mironov SL, Shuba YM (1983) Two ion-selecting filters in the calcium channel of the somatic membrane of mollusc neurons. J Membr Biol 76:83–93

    Google Scholar 

  • Kunze DL, Hamilton SL, Hawkes MJ, Brown AM (1987) Dihydropyridine binding and calcium channel function in clonal rat adrenal medullary tumor cells. Mol Pharmacol 31:401–409

    Google Scholar 

  • Lacerda AE, Brown AM (1986) Atrotoxin increases probability of opening of single Ca channels in cultured rat ventricular cells. Biophys J 49:174a

    Google Scholar 

  • Lamb GD, Walsh T (1987) Calcium currents, charge movement and dihydropyridine binding in fast-and slow-twitch muscles of rat and rabbit. J Physiol (Lond) 393:595–617

    Google Scholar 

  • Laurent S, Kim D, Smith TW, Marsh JD (1985) Inotropic effect, binding properties and calcium flux effects of the calcium agonist CGP 28392 in intact cultured embryonic chick ventricular cells. Circ Res 56:676–682

    Google Scholar 

  • Lazdunski M, Frelin C, Vigne P (1985) The sodium/hydrogen exchange system in cardiac cells: its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. J Mol Cell Cardiol 17:1029–1042

    Google Scholar 

  • Lee KS, Tsien RW (1983) Mechanism of calcium channel blockade by verapamil, D 600, diltiazem and nitrendipine in single dialysed heart cells. Nature 302:790–794

    Google Scholar 

  • Lee RT, Smith TW, Marsh JD (1987) Evidence for distinct calcium channel agonist and antagonist binding sites in intact cultured embryonic chick ventricular cells. Circ Res 60:683–691

    Google Scholar 

  • Levitan IB (1988) Modulation of ion channels in neurons and other cells. Annu Rev Neurosci 11:119–136

    Google Scholar 

  • Lewis DL, Weight FF, Luini A (1986) A guanine nucleotide-binding protein mediates the inhibition of voltage-dependent calcium current by somatostatin in a pituitary cell line. Proc Natl Acad Sci USA 83:9035–9039

    Google Scholar 

  • Lipscombe D, Tsien RW (1987) Noradenaline inhibits N-type Ca channels in isolated frog sympathetic neurons. J Physiol (Lond) 390:84P

    Google Scholar 

  • Lipscombe D, Madison DV, Poenie M, Reuter H, Tsien RY, Tsien RW (1988) Spatial distribution of calcium channels and cytosolic calcium transients in growth cones and cell bodies of sympathetic neurons. Proc Natl Acad Sci USA 85:2398–2402

    Google Scholar 

  • Ljung B, Kjellstedt A, Orebäck B (1987) Vascular versus myocardial selectivity of calcium antagonists studied by concentration-time-effect relations. J Cardiovasc Pharmacol 10[Suppl 1]:S34–S39

    Google Scholar 

  • Login IS, Judd AM, Cronin MJ, Yasumoto T, Macleod RM (1985) Reserpine is a calcium channel antagonist in normal and GH3 rat pituitary cells. Am J Physiol 248:E15–E19

    Google Scholar 

  • Lorentz M, Hedlung B, Århem P (1988) Morphine activates calcium channels in cloned mouse neuroblastoma cell lines. Brain Res 445:157–159

    Google Scholar 

  • Loutzenhiser R, Rüegg U, Hof RP (1984) Studies on the mechanism of action of the vasoconstrictive dihydropyridine CGP 28392. Eur J Pharmacol 105:229–237

    Google Scholar 

  • Lüllmann H, Mohr K (1987) High and concentration-proportional accumulation of [3H]-nitrendipine by intact cardiac tissue. Br J Pharmacol 90:567–574

    Google Scholar 

  • Maan AC, Hosey MM (1987) Analysis of the properties of binding of calcium-channel activators and inhibitors to dihydropyridine receptors in chick heart membranes. Circ Res 61:379–388

    Google Scholar 

  • Madison DV, Fox AP, Tsien RW (1987) Adenosine reduces an inactivating component of calcium current in hippocampal CA3 neurons. Biophys J 51:30a (abstract)

    Google Scholar 

  • Maggi CA, Patacchini R, Santicioli P, Lippe IT, Guiliani S, Geppetti P, Del Bianco E, Selleri S, Meli A (1988) The effect on omega conotoxin GVIA, a peptide modulator of the N-type voltage sensitive calcium channels, on motor responses produced by activation of efferent and sensory nerves in mammalian smooth muscle. Naunyn-Schmiedeberg's Arch Pharmacol 338:107–113

    Google Scholar 

  • Mannhold R, Rodenkirchen R, Bayer R, Haas W (1984) The importance of drug ionization for the action of calcium antagonists and related compounds. Arzneimittelforschung 34:407–410

    Google Scholar 

  • Marchetti C, Brown AM (1988) Protein kinase activator 1-oleoyl-2-acetyl-sn-glycerol inhibits two types of calcium current in GH3 cells. Am J Physiol 254:C206–C210

    Google Scholar 

  • Marchetti C, Carbone E, Lux HD (1986) Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick. Pflügers Arch Eur J Physiol 406:104–111

    Google Scholar 

  • Martin-Moutot N, Marqueze B, Azais F, Seagar M, Couraud F (1989) Properties of the calcium channel associated ω-conotoxin receptor in rat brain. Ann NY Acad Sci 560:53–55

    Google Scholar 

  • Masuda MO, de Magalhães-Engel G, Barbose Moreira AP (1987) Characterization of isolated ventricular myocytes: two levels of resting potential. J Mol Cell Cardiol 19:831–840

    Google Scholar 

  • Matteson DR, Armstrong CM (1986) Properties of two types of calcium channels in clonal pituitary cells. J Gen Physiol 87:161–182

    Google Scholar 

  • McCleskey EW, Almers W (1985) The Ca channel is a large pore. Proc Natl Acad Sci USA 82:7149–7153

    Google Scholar 

  • McCleskey EW, Fox AP, Feldman DH, Cruz LJ, Olivera BM, Tsien RW, Yoshikami D (1987) ω-Conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc Natl Acad Sci USA 84:4327–4331

    Google Scholar 

  • Messing RO, Carpenter CL, Greenberg DA (1985) Mechanism of calcium channel inhibition by phenytoin: comparison with classical calcium channel antagonists. J Pharmacol Exp Ther 235:407–411

    Google Scholar 

  • Messing RO, Carpenter CL, Greenberg DA (1986a) Inhibition of calcium flux and calcium channel antagonist binding in the PC 12 cell line by phorbol esters and protein kinase C. Biochem Biophys Res Commun 136:1049–1056

    Google Scholar 

  • Messing RO, Carpenter CL, Diamond I, Greenberg DA (1986b) Ethanol regulates calcium channels in clonal neural cells. Proc Natl Acad Sci USA 83:6213–6215

    Google Scholar 

  • Mestre M, Carriot T, Néliat G, Uzan A, Renault C, Dubroeucq MC, Guérémy C, Doble A, LeFur G (1986a) PK 11195 an antagonist of peripheral type benzodiazepine receptors modulates Bay K 8644 sensitive but not β-or H2-receptor sensitive voltage-operated calcium channels in the guinea pig heart. Life Sci 39:329–340

    Google Scholar 

  • Mestre M, Belin C, Uzan A, Renault C, Dubroeucq MC, Gueremy C, LeFur G (1986b) Modulation of voltage-operated, but not receptor-operated, calcium channels in the rabbit aorta by PK 11195, an antagonist of peripheral type benzodiazepine receptors. J Cardiovasc Pharmacol 8:729–734

    Google Scholar 

  • Miller RJ (1987a) Multiple calcium channels and neuronal function. Science 235:46–52

    Google Scholar 

  • Miller RJ (1987b) Calcium channels in neurons. In: Venter JC, Triggle D (eds) Structure and physiology of the slow inward calcium channel. Liss, New York, pp 161–246 (Receptor biochemistry and methodology, vol 9)

    Google Scholar 

  • Miller RJ, Freedman SB (1984) Are dihydropyridine binding sites voltage-sensitive calcium channels? Life Sci 34:1205–1222

    Google Scholar 

  • Mir AK, Spedding M (1987) Calcium antagonist properties of diclofurime isomers. II. Molecular aspects: allosteric interactions with dihydropyridine recognition sites. J Cardiovasc Pharmacol 9:469–477

    Google Scholar 

  • Monod J, Wyman J Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Google Scholar 

  • Morel N, Godfraind T (1987) Prolonged depolarization increases the pharmacological effect of dihydropyridines and their binding affinity for calcium channels of vascular smooth muscle. J Pharmacol Exp Ther 243:711–715

    Google Scholar 

  • Motomura S, Hashimoto K, Hashimoto K (1987) Effects of Bay K 8644 on the coronary vascular selectivity of the dihydropyridine Ca antagonists in the canine isolated blood-perfused papillary muscle preparation. J Cardiovasc Pharmacol 10:627–635

    Google Scholar 

  • Mudge AW, Leeman SE, Fischbach GD (1979) Enkephalin inhibits release of substance P from sensory neurons in culture and decreases action potential duration. Proc Natl Acad Sci USA 76:526–530

    Google Scholar 

  • Murphy KMM, Snyder SH (1982) Calcium antagonist receptor binding sites labeled with [3H]nitrendipine. Eur J Pharmacol 77:201–202

    Google Scholar 

  • Narahashi T (1988) Drugs acting on calcium channels. In: Baker PF (ed) Calcium in drug actions. Springer, Berlin Heidelberg New York, pp 255–274 (Handbuch der experimentellen Pharmakologie, vol 83)

    Google Scholar 

  • Navarro J (1987) Modulation of [3H]dihydropyridine receptors by activation of protein kinase C in chick muscle cells. J Biol Chem 262:4649–4652

    Google Scholar 

  • Nelson MT, Standen NB, Brayden JE, Worley JF (1988) Noradrenaline contracts arteries by activating voltage-dependent calcium channels. Nature 336:382–385

    Google Scholar 

  • Nishiyama T, Kobayashi A, Haga T, Yamazaki N (1986) Chronic treatment with nifedipine does not change the number of [3H]dihydroalprenolol binding sites. Eur J Pharmacol 121:167–172

    Google Scholar 

  • North RA (1986) Opioid receptor types and membrane ion channels. Trends Neurosci 9:114–117

    Google Scholar 

  • Olivera BM, Gray WR, Zeikus R, McIntosh JM, Varga J, Rivier J, de Santos V, Cruz LJ (1985) Peptide neurotoxins from fish-hunting conesnails. Science 230:1338–1343

    Google Scholar 

  • Osugi T, Imaizumi T, Mizushima A, Uchida S, Yoshida H (1986) 1-Oleoyl-2-acetyl-glycerol and phorbol diester stimulate Ca2+ influx through Ca2+ channels in neuroblastoma x glioma hybrid NG 108-15 cells. Eur J Pharmacol 126:47–52

    Google Scholar 

  • Oyama Y, Tsuda Y, Sakakibara S, Akaike N (1987) Synthetic ω-conotoxin: a potent calcium channel blocking neurotoxin. Brain Res 424:58–64

    Google Scholar 

  • Peres A, Sturani E, Zippel R (1988) Properties of the voltage-dependent calcium channel of mouse Swiss 3T3 fibroblasts. J Physiol (Lond) 401:639–656

    Google Scholar 

  • Perney TM, Hirning LD, Leeman SE, Miller RJ (1986) Multiple calcium channels mediate neurotransmitter release from peripheral neurons. Proc Natl Acad Sci USA 83:6656–6659

    Google Scholar 

  • Pietrobon D, Prod'hom B, Hess P (1988) Conformational changes associated with ion permeation in L-type calcium channels. Nature 333:373–376

    Google Scholar 

  • Plummer MR, Logothetis DE, Hess P (1989) Elementary properties and pharmacological sensitivities of calcium channels in mammalian peripheral neurons. Neuron 2:1453–1463

    Google Scholar 

  • Porzig H, Becker C (1988) Potential-dependent allosteric modulation of 1,4-dihydropyridine binding by d-(cis)-diltiazem and (±)-verapmil in living cardiac cells. Mol Pharmacol 34:172–179

    Google Scholar 

  • Porzig H, Becker C, Reuter H (1989) Effects of NGF-induced differentiation on two classes of Ca channels in living PC 12 cells. Experientia 45:A28 (abstract)

    Google Scholar 

  • Postma SW, Catterall WA (1984) Inhibition of binding of [3H]batrachotoxin Δ20-α-benzoate to sodium channels by local anaesthetics. Mol Pharmacol 25:219–227

    Google Scholar 

  • Powers RE, Colucci WS (1985) An increase in putative voltage-dependent calcium channel number following reserpine treatment. Biochem Biophys Res Commun 132:844–849

    Google Scholar 

  • Qar J, Schweitz H, Schmid A, Lazdunski M (1986) A polypeptide toxin from the coral Goniopora. Purification and action on Ca2+ channels. FEBS Lett 202:331–336

    Google Scholar 

  • Qar J, Galizzi JP, Fosset M, Lazdunski M (1987) Receptors for diphenylbutylpiperidine neuroleptics in brain, cardiac and smooth muscle membranes. Relationship with receptors for 1,4-dihydropyridines and phenylalkylamines and with Ca2+ channel blockade. Eur J Pharmacol 141:261–268

    Google Scholar 

  • Ramkumar V, El-Fakahany EE (1984) Increase in [3H]nitrendipine binding sites in the brain in morphine-tolerant mice. Eur J Pharmacol 102:371–373

    Google Scholar 

  • Ramkumar V, El-Fakahany EE (1985) Changes in the affinity of [3H]nimodipine binding sites in the brain upon chlorpromazine treatment and subsequent withdrawal. Res Commun Chem Pathol Pharmacol 48:463–466

    Google Scholar 

  • Rampe D, Triggle DJ (1986) Benzodiazepines and calcium channel function. Trends Pharmacol Sci 7:461–464

    Google Scholar 

  • Rane SG, Dunlap K (1986) Kinase C activator 1,2-oleoyl acetylglycerol attenuates voltage-dependent calcium current in sensory neurones. Proc Natl Acad Sci USA 83:184–188

    Google Scholar 

  • Rane SG, Holz GG, Dunlap K (1987) Dihydropyridine inhibition of neuronal calcium current and substance P release. Pflügers Arch Eur J Physiol 409:361–366

    Google Scholar 

  • Rane SG, Holz GG, Anderson CS, Dunlap K (1989) Calcium channel modulation via G-proteins and protein kinase C. 4th Int. Symp. Calcium Antagonists, Florence May 1989 (abstracts p 5–7)

    Google Scholar 

  • Renaud JF, Kazazoglou T, Schmid A, Romey G, Lazdunski M (1984) Differentiation of receptor sites for [3H]nitrendipine in chick hearts and physiological relation to slow Ca2+ channel and to excitation contraction coupling. Eur J Biochem 139:673–681

    Google Scholar 

  • Reuter H (1983) Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301:569–574

    Google Scholar 

  • Reuter H (1984) Ion channels in cardiac cell membranes. Annu Rev Physiol 46:473–484

    Google Scholar 

  • Reuter H (1987) Modulation of ion channels by phosphorylation and second messengers. News Physiol Sci 2:168–171

    Google Scholar 

  • Reuter H, Stevens CF, Tsien RW, Yellen G (1982) Properties of single calcium channels in cardiac cell culture. Nature 297:501–504

    Google Scholar 

  • Reuter H, Porzig H, Kokubun S, Prod'hom B (1985) 1,4-Dihydropyridines as tools in the study of Ca2+ channels. Trends Neurosci 8:396–400

    Google Scholar 

  • Reuter H, Kokubun S, Prod'hom B (1986) Properties and modulation of cardiac calcium channels. J Exp Biol 124:191–202

    Google Scholar 

  • Reynolds IJ, Gould RJ, Snyder SH (1983) [3H]Verapamil binding sites in brain and skeletal muscle: regulation by calcium. Eur J Pharmacol 95:319–321

    Google Scholar 

  • Reynolds IJ, Wagner JA, Snyder SH, Thayer SA, Olivera BM, Miller RJ (1986) Brain voltagesensitive calcium channel subtypes differentiated by ω-conotoxin fraction G VI A. Proc Natl Acad Sci USA 83:8804–8807

    Google Scholar 

  • Rhodes DG, Sarmiento JG, Herbette LG (1985) Kinetics of binding of membrane-active drugs to receptor sites: diffusion limited rates for a membrane bilayer approach of 1,4-dihydropyridine calcium channel antagonists to their active site. Mol Pharmacol 27:612–623

    Google Scholar 

  • Rios E, Brum G (1987) Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature 325:717–720

    Google Scholar 

  • Rogart RB, de Bruyn Kops A, Dzau VJ (1986) Identification of two calcium channel receptor sites for [3H]nitrendipine in mammalian cardiac and smooth muscle membrane. Proc Natl Acad Sci USA 83:7452–7456

    Google Scholar 

  • Romey G, Lazdunski M (1982) Lipid-soluble toxins thought to be specific for Na+ channels block Ca2+ channels in neuronal cells. Nature 297:79–80

    Google Scholar 

  • Rosenthal W, Schultz G (1988) Funktionen guaninnucleotid-bindender Proteine bei der rezeptorvermittelten Modulation spannungsabhängiger Ionenkanäle. Klin Wochenschr 66:557–564

    Google Scholar 

  • Rosenthal W, Hescheler J, Trautwein W, Schultz G (1988a) Control of voltage-dependent Ca2+ channels by G protein-coupled receptors. FASEB J 2:2784–2790

    Google Scholar 

  • Rosenthal W, Hescheler J, Hinsch KD, Spicher K, Trautwein W, Schultz G (1988b) Cyclic AMP-independent dual regulation of voltage-dependent Ca2+ currents by LHRH and somatostatin in a pituitary cell line. EMBO J 7:1627–1634

    Google Scholar 

  • Sanchez-Chapula J, Josephson IR (1983) Effect of phenytoin on the sodium current in isolated rat ventricular cells. J Mol Cell Cardiol 15:515–522

    Google Scholar 

  • Sanguinetti MC, Kass RS (1984a) Voltage-dependent block of calcium channel current in the calf cardiac Purkinje fiber by dihydropyridine calcium channel antagonists. Circ Res 55:336–348

    Google Scholar 

  • Sanguinetti MC, Kass RS (1984b) Regulation of cardiac calcium channel current and contractile activity by the dihdropyridine Bay K 8644 is voltage-dependent. J Mol Cell Cardiol 16:667–670

    Google Scholar 

  • Sanguinetti MC, Krafte DS, Kass RS (1986) Voltage-dependent modulation of Ca channel current in heart cells by Bay K 8644. J Gen Physiol 88:369–392

    Google Scholar 

  • Sarmiento JG, Janis RA, Katz AM, Triggle DJ (1984) Comparison of high affinity binding of calcium channel blocking drugs to vascular smooth muscle and cardiac sarcolemmal membranes. Biochem Pharmacol 33:3119–3123

    Google Scholar 

  • Sartor P, Vacher P, Mollard P, Dufy B (1988) Tamoxifen reduces calcium currents in clonal pituitary cell line. Endocrinology 123:534–540

    Google Scholar 

  • Schettini G, Meucci O, Florio T, Grimaldi M, Landolfi E, Magri G, Yosumoto T (1988) Pertussis toxin pretreatment abolishes dihydropyridine inhibition of calcium flux in the 235-1 pituitary cell line. Biochem Biophys Res Commun 151:361–369

    Google Scholar 

  • Scheuer T, Kass RS (1983) Phenytoin reduces calcium current in the cardiac Purkinje fiber. Circ Res 53:16–23

    Google Scholar 

  • Schilling WP (1988) Effect of divalent cation chelation on dihydropyridine binding in isolated cardiac sarcolemmal vesicles. Biochem Biophys Acta 943:220–230

    Google Scholar 

  • Schilling WP, Drewe JA (1986) Voltage-sensitive nitrendipine binding in an isolated cardiac sarcolemma preparation. J Biol Chem 261:2750–2758

    Google Scholar 

  • Schmid A, Renaud JF, Lazdunski M (1985) Short term and long term effects of adrenergic effectors and cyclic AMP on nitrendipine-sensitive voltage-dependent Ca2+ channels of skeletal muscle. J Biol Chem 260:13041–13046

    Google Scholar 

  • Scholtysik G, Rüegg P (1987) DPI 201-106. In: Scriabine A (ed) New Cardiovascular Drugs 1987. Raven Press, New York pp 173–188

    Google Scholar 

  • Schramm M, Towart R (1988) Calcium channels as drug receptors. In: Baker PF (ed) Calcium in drug actions. Springer, Berlin Heidelberg New York, pp 89–114 (Handbook of experimental Pharmacology, vol 83)

    Google Scholar 

  • Schramm M, Thomas G, Towart R, Franckowiak (1983) Novel dihydropyridine with positive inotropic action through activation of Ca channels. Nature 303:535–537

    Google Scholar 

  • Schwartz A, Grupp IL, Grupp G, Williams J, Vaghy PL (1984) Effects of dihydropyridine calcium channel modulators in the heart: pharmacological and radioligand binding correlations. Biochem Biophys Res Commun 125:387–394

    Google Scholar 

  • Schwartz LM, McCleskey EW, Almers W (1985) Dihydropyridine receptors in muscle are voltage-dependent but most are not functional calcium channels. Nature 314:747–751

    Google Scholar 

  • Scott RH, Dolphin AC (1987) Activation of a G protein promotes agonist responses to calcium channel ligands. Nature 330:760–762

    Google Scholar 

  • Scott RH, Dolphin AC (1988) The agonist effect of Bay K 8644 on neuronal calcium channel currents is promoted by G-protein. Neurosci Lett 89:170–175

    Google Scholar 

  • Seeman P (1972) The membrane actions of anesthetics and tranquilizers. Pharmacol Rev 24:583–655

    Google Scholar 

  • Sheldon RS, Cannon NJ, Duff HJ (1987) A receptor for type I antiarrhythmic drugs associated with rat cardiac sodium channels. Circ Res 61:492–497

    Google Scholar 

  • Sheldon RS, Cannon NJ, Nies AS, Duff HJ (1988) Sterospecific interaction of tocainide with the cardiac sodium channel. Mol Pharmacol 33:327–331

    Google Scholar 

  • Sher E, Pandiella A, Clementi F (1988) ω-Conotoxin binding and effects on calcium channel function in human neuroblastoma and rat pheochromocytoma cell lines. FEBS Lett 235:178–182

    Google Scholar 

  • Siegl PKS, Garcia ML, King VF, Scott AL, Morgan G, Kaczorowski GJ (1988) Interactions of DPI 201-106, a novel cardiotonic agent, with cardiac calcium channels. Naunyn-Schmiedeberg's Arch Pharmacol 338:684–691

    Google Scholar 

  • Skattebøl A, Triggle DJ (1986) 6-Hydroxydopamine treatment increases β-adrenoceptors and Ca2+ channels in rat heart. Eur J Pharmacol 127:287–289

    Google Scholar 

  • Sladeczek F, Schmidt BH, Alonso R, Vian L, Tep A, Yasumoto T, Cory RN, Bockaert J (1988) New insights into maitotoxin action. Eur J Biochem 174:663–670

    Google Scholar 

  • Spedding M, Gittos M, Mir AK (1987) Calcium antagonist properties of diclofurime isomers. I. Functional aspects. J Cardiovasc Pharmacol 9:461–468

    Google Scholar 

  • Stojikovic SS, Izumi SI, Catt KJ (1988) Participation of voltage-sensitive calcium channels in pituitary hormone release. J Biol Chem 263:13054–13061

    Google Scholar 

  • Streit J, Lux HD (1987) Voltage-dependent calcium currents in PC 12 growth cones and cells during NGF-induced cell growth. Pflügers Arch Eur J Physiol 408:634–641

    Google Scholar 

  • Strong JA, Fox AP, Tsien RW, Kaczmarek LK (1987) Stimulation of protein kinase C recruits covert calcium channels in aplysia bag cell neurons. Nature 325:714–717

    Google Scholar 

  • Sturek M, Hermsmeyer K (1986) Calcium and sodium channels in spontaneously contracting vascular muscle cells. Science 233:475–478

    Google Scholar 

  • Su HD, Mazzei GJ, Vogler WR, Kuo JF (1985) Effect of tamoxifen, a nonsteroidal antioestrogen, on phospholipid calcium-dependent protein kinase and phosphorylation of its endogenous substrate proteins from the rat brain and ovary. Biochem Pharmacol 34:3649–3653

    Google Scholar 

  • Sumimoto K, Hirata M, Kuriyama H (1988) Characterization of [3H]nifedipine binding to intact vascular smooth muscle cells. Am J Physiol 254:C45–C52

    Google Scholar 

  • Swandulla D, Armstrong CM (1988) Fast-deactivating calcium channels in chick sensory neurons. J Gen Physiol 92:197–218

    Google Scholar 

  • Taft WC, DeLorenzo RJ (1984) Micromolar-affinity benzodiazepine receptors regulate voltage-sensitive calcium channels in nerve terminal preparations. Proc Natl Acad Sci USA 81:3118–3122

    Google Scholar 

  • Takahashi M, Tsukui H, Hatanaka H (1985) Neuronal differentiation of Ca2+ channel by nerve growth factor. Brain Res 341:381–384

    Google Scholar 

  • Tan KN, Tashijan AH Jr (1984a) Voltage-dependent calcium channels in pituitary cells in culture. I. Characterization by 45Ca2+ fluxes. J Biol Chem 259:418–426

    Google Scholar 

  • Tan KN, Tashijan AH Jr (1984b) Voltage-dependent calcium channels in pituitary cells in culture. II. Participation in thyrotropin-releasing hormone action. J Biol Chem 259:427–434

    Google Scholar 

  • Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328:313–318

    Google Scholar 

  • Tang CM, Presser F, Morad M (1988) Amiloride selectively blocks the low threshold calcium channel. Science 240:213–215

    Google Scholar 

  • Thayer SA, Hirning LD, Miller RJ (1987) The distribution of multiple types of Ca2+ channels in rat sympathetic neurons in vitro. Mol Pharmacol 32:579–586

    Google Scholar 

  • Thomas G, Gross R, Schramm M (1984) Calcium channel modulation: ability to inhibit or promote calcium influx resides in the same dihydropyridine molecule. J Cardiovasc Pharmacol 6:1170–1176

    Google Scholar 

  • Toll L (1982) Calcium antagonists. High-affinity binding and inhibition of calcium transport in a clonal cell line. J Biol Chem 257:13189–13192

    Google Scholar 

  • Triggle DJ, Janis RA (1987) Calcium channel ligands. Annu Rev Pharmacol Toxicol 27:347–370

    Google Scholar 

  • Tsien RW (1987) Calcium currents in heart cells and neurons. In: Kaczmarek LK, Levitan IB (eds) Neuromodulation. The biochemical control of neuronal excitability. Oxford University Press, Oxford, pp 206–242

    Google Scholar 

  • Tsien RW, Hess P, McCleskey EW, Rosenberg RL (1987) Calcium channels: mechanisms of selectivity, permeation and block. Annu Rev Biophys Biophys Chem 16:265–290

    Google Scholar 

  • Tsien RW, Lipscombe D, Madison DV, Bley RK, Fox AP (1988) Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci 11:431–438

    Google Scholar 

  • Tsunoo A, Yoshii M, Narahashi T (1985) Differential block of two calcium channels in neuroblastoma cells. Biophys J 47:433a

    Google Scholar 

  • Tsunoo A, Yoshii M, Narahashi T (1986) Block of calcium channels by enkephalin and somatostatin in neuroblastoma-glioma hybrid NG-108-15 cells. Proc Natl Acad Sci USA 83:9832–9836

    Google Scholar 

  • Twombly DA, Yoshii M, Narahashi T (1988) Mechanism of calcium channel block by phenytoin. J Pharmacol Exp Ther 246:189–195

    Google Scholar 

  • Tytgat J, Vereeke J, Carmeliet E (1988) Differential effects of verapamil and flunarizine on cardial L-type and T-type Ca channels. Naunyn Schmiedeberg's Arch Pharmacol 337:690–692

    Google Scholar 

  • Uehara A, Hume JR (1985) Interactions of organic calcium channel antagonists with calcium channels in single frog atrial cells. J Gen Physiol 85:621–648

    Google Scholar 

  • Vaghy PL, Grupp IL, Grupp G, Schwartz A (1984a) Effects of Bay K 8644, a dihydropyridine analog on [3H]nitrendipine binding to canine cardiac sarcolemma and the relationship to a positive inotropic effect. Circ Res 55:549–553

    Google Scholar 

  • Vaghy PL, Grupp IL, Grupp G, Balwierczak JL, Williams JS, Schwartz A (1984b) Correlation of nitrendipine and Bay K 8644 binding to isolated canine heart sarcolemma with their pharmacological effects on the canine heart. Eur J Pharmacol 102:373–374

    Google Scholar 

  • Van Skiver, Spires S, Cohen CJ (1988) Block of T-type Ca channels in guinea pig atrial cells by cinnarizine. Biophys J 53:233a

    Google Scholar 

  • Vilven J, Leung AT, Imagawa T, Sharp AH, Campbell KP, Coronado R (1988) Interaction of calcium channels of skeletal muscle with monoclonal antibodies specific for its dihydropyridine receptor. Biophys J 53:556a (abstract)

    Google Scholar 

  • Wagner JA, Snowman AM, Biswas A, Olivera BM, Snyder SH (1988) ω-Conotoxin G VI A binding to a high-affinity receptor in brain: characterization, calcium sensitivity and solubilization. J Neurosci 8:3354–3359

    Google Scholar 

  • Walker MW, Ewald DA, Perney TM, Müller RJ (1988) Neuropeptide Y modulates neurotransmitter release and Ca2+ currents in rat sensory neurones. J Neurosci 8:2438–2446

    Google Scholar 

  • Wanke E, Ferroni A, Malgaroli A, Ambrosini A, Pozzan T, Meldolesi J (1987) Activation of a muscarinic receptor selectively inhibits a rapidly inactivated Ca2+ current in rat sympathetic neurons. Proc Natl Acad Sci USA 84:4313–4317

    Google Scholar 

  • Werz MA, MacDonald RL (1985) Dynorphin and neoendorphin peptides decrease dorsal root ganglion neuron calcium-dependent action potential duration. J Pharmacol Exp Ther 234:49–56

    Google Scholar 

  • Williams JS, Grupp IL, Grupp G, Vaghy PL, Dumont L, Schwartz A, Yatani A, Hamilton S, Brown AM (1985) Profile of the oppositely acting enantiomers of the dihydropyridine 202–791 in cardiac preparations: receptor binding, electrophysiological and pharmacological studies. Biochem Biophys Res Commun 131:13–21

    Google Scholar 

  • Willow M (1986) Pharmacology of diphenylhydantoin and carbamazepine action on voltage-sensitive sodium channels. Trends Neurosci 9:147–149

    Google Scholar 

  • Willow M, Gonoi T, Catterall WA (1985) Voltage clamp analysis of the inhibitory actions of diphenylhydantoin and carbamazepine on voltage-sensitive sodium channels in neuroblastoma cells. Mol Pharmacol 27:549–558

    Google Scholar 

  • Wright JM, Collier B (1977) The effects of neomycin upon transmitter release and action. J Pharmacol Exp Ther 200:576–587

    Google Scholar 

  • Wu CH, Narahashi T (1988) Mechanism of action of novel marine neurotoxins on ion channels. Annu Rev Pharmacol Toxicol 28:141–162

    Google Scholar 

  • Yamashita N, Matsunaga H, Shibuya N, Teramoto A, Takakura K, Ogata E (1988) Two types of calcium channels and hormone release in human pituitary tumor cells. Am J Physiol 255:E137–E145

    Google Scholar 

  • Yatani A, Brown AM (1985) The calcium channel blocker nitrendipine blocks sodium channels in neonatal rat cardiac myocytes. Circ Res 56:868–875

    Google Scholar 

  • Yatani A, Brown AM, Schwartz A (1986a) Bepridil block of cardiac calcium and sodium channels. J Pharmacol Exp Ther 237:9–17

    Google Scholar 

  • Yatani A, Hamilton SL, Brown AM (1986b) Diphenylhydantoin blocks cardiac calcium channels and binds to the dihydropyridine receptor. Circ Res 59:356–361

    Google Scholar 

  • Yatani A, Codina J, Imoto Y, Reeves JP, Birnbaumer L, Brown AM (1987) A G protein directly regulates mammalian cardiac calcium channels. Science 238:1288–1292

    Google Scholar 

  • Yatani A, Kunze DL, Brown AM (1988a) Effects of dihydropyridine calcium channel modulators on cardiac sodium channels. Am J Physiol 254:H140–H147

    Google Scholar 

  • Yatani A, Imoto Y, Codina J, Hamilton SL, Brown AM, Birnbaumer L (1988b) The stimulatory G protein of adenylyl cyclase Gs also stimulates dihydropyridine-sensitive Ca2+ channels. Evidence for direct regulation independent of phosphorylation by cAMP-dependent protein kinase or stimulation by a dihydropyridine agonist. J Biol Chem 263:9887–9895

    Google Scholar 

  • Yeh JZ (1980) Blockage of sodium channels by stereoisomers of local anesthetics. In: Fink BR (ed) Molecular mechanisms of anaesthesia. Raven, New York, pp 35–44 (Progress in anesthesiology, vol 2)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this chapter

Cite this chapter

Porzig, H. (1990). Pharmacological modulation of voltage-dependent calcium channels in intact cells. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 114. Reviews of Physiology, Biochemistry and Pharmacology, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0031020

Download citation

  • DOI: https://doi.org/10.1007/BFb0031020

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51693-4

  • Online ISBN: 978-3-540-46754-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics