Skip to main content

Properties and regulation of calcium channels in muscle cells

  • Chapter
  • First Online:
Book cover Reviews of Physiology, Biochemistry and Pharmacology, Volume 114

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 114))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaronson PI, Bolton TB, Lang RJ, MacKenzie I (1988) Calcium currents in single isolated smooth muscle cells from the rabbit ear artery in normal-calcium and high-barium solutions. J Physiol (Lond) 405:57–75

    Google Scholar 

  • Affolter H, Coronado R (1985) Agonist Bay-K8644 and CGP-28392 open calcium channels reconstituted from skeletal muscle transverse tubules. Biophys J 48:341–347

    Google Scholar 

  • Agus ZS, Kelepouris E, Dukes I, Morad M (1989) Cytosolic magnesium modulates calcium channel activity in mammalian ventricular cells. Am J Physiol 256:C452–C455

    Google Scholar 

  • Akaike N, Nishi K, Oyama Y (1983) Characteristics of manganese current and its comparison with currents carried by other divalent cations in snail soma membranes. J Membr Biol 76:289–297

    Google Scholar 

  • Alexander RW, Brock TA, Gimbrone MA Jr, Rittenhouse SE (1985) Angiotensin increases inositol trisphosphate and calcium in vascular smooth muscle. Hypertension 7:447–451

    Google Scholar 

  • Allen DG, Morris PG, Orchard CH, Pirolo JS (1985) A nuclear magnetic resonance study of metabolism in the ferret heart during hypoxia and inhibition of glycolysis. J Physiol (Lond) 361:185–204

    Google Scholar 

  • Allen IS, Cohen NM, Dhallan RS, Gaa ST, Lederer WJ, Rogers TB (1988) Angiotensin II increases spontaneous contractile frequency and stimulates calcium current in cultured neonatal rat heart myocytes: insights into the underlying biochemical mechanisms. Circ Res 62:524–534

    Google Scholar 

  • Almers W, McCleskey EW (1984) Non-selective conductance in calcium channels of frog muscle: calcium selectivity in a single-file pore. J Physiol (Lond) 353:585–608

    Google Scholar 

  • Almers W, Palade PT (1981) Slow calcium and potassium currents across frog muscle membrane: measurements with a vaseline-gap technique. J Physiol (Lond) 312:159–176

    Google Scholar 

  • Almers W, Fink R, Palade PT (1981) Calcium depletion in frog muscle tubules: the decline of calcium current under maintained depolarization. J Physiol (Lond) 312:177–207

    Google Scholar 

  • Almers W, McCleskey EW, Palade PT (1984) A non-selective cation conductance in frog muscle membrane blocked by micromolar external calcium ions. J Physiol (Lond) 353:565–583

    Google Scholar 

  • Amédée T, Mironneau C, Mironneau J (1987) The calcium channel current of pregnant rat single myometrial cells in short-term primary culture. J Physiol (Lond) 392:253–272

    Google Scholar 

  • Anand-Srivastava MB, Cantin M (1986) Atrial natriuretic factor receptors are negatively coupled to adenylate cyclase in cultured atrial and ventricular cardiocytes. Biochem Biophys Res Commun 138:427–436

    Google Scholar 

  • Anand-Srivastava MB, Franks DJ, Cantin M, Genest J (1984) Atrial natriuretic factor inhibits adenylate cyclase activity. Biochem Biophys Res Commun 121:855–862

    Google Scholar 

  • Anderson M (1983) Mn ions pass through calcium channels. A possible explanation. J Gen Physiol 81:805–827

    Google Scholar 

  • Anderson NC, Ramon F, Snyder A (1971) Studies on calcium and sodium in uterine smooth muscle excitation under current-clamp and voltage-clamp conditions. J Gen Physiol 58:322–339

    Google Scholar 

  • Armstrong CM, Matteson DR (1985) Two distinct populations of calcium channels in a clonal line of pituitary cells. Science 227:65–67

    Google Scholar 

  • Armstrong D, Eckert R (1987) Voltage-activated calcium channels that must be phosphorylated to respond to membrane depolarization. Proc Natl Acad Sci USA 84:2518–2522

    Google Scholar 

  • Arreola J, Calvo J, García MC, Sánchez JA (1987) Modulation of calcium channels of twitch skeletal muscle fibres of the frog by adrenaline and cyclic adenosine monophosphate. J Physiol (Lond) 393:307–330

    Google Scholar 

  • Ashby CD, Walsh DA (1972) Characterization of the interaction of a protein inhibitor with adenosine 3',5'monophosphate-dependent protein kinase. J Biol Chem 247:6637–6642

    Google Scholar 

  • Baker KM, Singer HA (1988) Identification and characterization of guinea pig angiotensin II ventricular and atrial receptors: coupling to inositol phosphate production. Circ Res 62:896–904

    Google Scholar 

  • Baker KM, Campanile CP, Trachte GJ, Peach MJ (1984) Identification and characterization of the rabbit angiotensin II myocardial receptor. Circ Res 54:286–293

    Google Scholar 

  • Ballermann BJ, Brenner BM (1986) Role of atrial peptides in body fluid homeostasis. Circ Res 58:619–630

    Google Scholar 

  • Baron CB, Cunningham M, Strauss JF III, Coburn RF (1984) Pharmacomechanical coupling in smooth muscle may involve phosphatidylinositol metabolism. Proc Natl Acad Sci USA 81:6899–6903

    Google Scholar 

  • Barres BA, Chun LLY, Corey DP (1985) Voltage-dependent ion channels in glial cells. Soc Neurosci Abstr 11:147

    Google Scholar 

  • Barth R, Elce JS (1981) Immunofluorescent localization of a Ca2+-dependent neutral protease in hamster muscle. Am J Physiol 240:E493–E498

    Google Scholar 

  • Bassingthwaighte JB, Reuter H (1972) Calcium movements and excitation-contraction coupling in cardiac cells. In: De Mello WC (ed) Electrical phenomena in the heart. Academic, New York, pp 353–395

    Google Scholar 

  • Beam KG, Knudson CM (1988a) Calcium currents in embryonic and neonatal mammalian skeletal muscle. J Gen Physiol 91:781–798

    Google Scholar 

  • Beam KG, Knudson CM (1988b) Effect of postnatal development on calcium currents and slow charge movement in mammalian skeletal muscle. J Gen Physiol 91:799–815

    Google Scholar 

  • Beam KG, Knudson CM, Powell JA (1986) A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells. Nature 320:168–170

    Google Scholar 

  • Bean BP (1985) Two kinds of calcium channels in canine atrial cells. Differences in kinetics, selectivity, and pharmacology. J Gen Physiol 86:1–30

    Google Scholar 

  • Bean BP (1989) Multiple types of calcium channels in heart muscle and neurons: modulation by drugs and neurotransmitters. Ann NY Acad Sci 560:334–345

    Google Scholar 

  • Bean BP, Nowycky MC, Tsien RW (1984) β-Adrenergic modulation of calcium channels in frog ventricular heart cells. Nature 307:371–375

    Google Scholar 

  • Bean BP, Sturek M, Puga A, Hermsmeyer K (1986) Calcium channels in muscle cells isolated from rat mesenteric arteries: modulation by dihydropyridine drugs. Circ Res 59:229–235

    Google Scholar 

  • Beaty GN, Stefani E (1976) Inward calcium current in twitch muscle fibres of the frog. J Physiol (Lond) 260:27P

    Google Scholar 

  • Beavo JA, Hardmann JG, Sutherland EW (1971) Stimulation of adenosine 3′,5′monophosphate hydrolysis by guanosine 3',5'monophosphate. J Biol Chem 246:3841–3846

    Google Scholar 

  • Bechem M, Pott L (1985) Removal of Ca current inactivation in dialysed guinea-pig atrial cardioballs by Ca chelators. Pflügers Arch 404:10–20

    Google Scholar 

  • Beeler GW Jr, Reuter H (1970) Membrane calcium current in ventricular myocardial fibres. J Physiol (Lond) 207:191–209

    Google Scholar 

  • Belardinelli L, Isenberg G (1983a) Actions of adenosine and isoproterenol on isolated mammalian ventricular myocytes. Circ Res 53:287–297

    Google Scholar 

  • Belardinelli L, Isenberg G (1983b) Isolated atrial myocytes: adenosine and acetylcholine increase potassium conductance. Am J Physiol 244:H734–H737

    Google Scholar 

  • Belardinelli L, Fenton AR, West A, Linden J, Althaus JS, Berne RM (1982) Extracellular action of adenosine and the antagonism by aminophylline on the atrioventricular conduction of isolated perfused guinea pig and rat hearts. Circ Res 51:569–579

    Google Scholar 

  • Belles B, Malécot CO, Hescheler J, Trautwein W (1988a) “Run-down” of the Ca current during long whole-cell recordings in guinea pig heart cells: role of phosphorylation and intracellular calcium. Pflügers Arch 411:353–360

    Google Scholar 

  • Belles B, Hescheler J, Trautwein W, Blomgren K, Karlsson JO (1988b) A possible physiological role of the Ca-dependent protease calpain and its inhibitor calpastatin on the Ca current in guinea pig myocytes. Pflügers Arch 412:554–556

    Google Scholar 

  • Benham CD, Tsien RW (1988a) Noradrenaline modulation of calcium channels in single smooth muscle cells from rabbit ear artery. J Physiol (Lond) 404:767–784

    Google Scholar 

  • Benham CD, Tsien RW (1988b) A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature 328:275–278

    Google Scholar 

  • Benham CD, Hess P, Tsien RW (1987) Two types of calcium channels in single smooth muscle cells from rabbit ear artery studied with whole-cell and single-channel recordings. Circ Res 61 (Suppl I):I–10–I–16

    Google Scholar 

  • Bernard C, Cardinaux JC, Potreau D (1976) Long-duration responses and slow inward current obtained from isolated skeletal fibres with barium ions. J Physiol (Lond) 256:18P–19P

    Google Scholar 

  • Berridge MJ (1987) Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56:159–193

    Google Scholar 

  • Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321

    Google Scholar 

  • Biegon RL, Pappano AJ (1980) Dual mechanism for inhibition of calcium-dependent action potentials by acetylcholine in avian ventricular muscle. Relationship to cyclic AMP. Circ Res 46:353–362

    Google Scholar 

  • Birnbaumer L, Codina J, Mattera R, Yatani A, Scherer N, Toro M, Brown AM (1987) Signal transduction by G proteins. Kidney Int 32:514–537

    Google Scholar 

  • Bkaily G, Sperelakis N (1985) Injection of guanosine 5′-cyclic monophosphate into heart cells blocks calcium slow channels. Am J Physiol 248:H745–H749

    Google Scholar 

  • Bkaily G, Peyrow M, Sculptoreanu A, Jacques D, Chahine M, Regoli D, Sperelakis N (1988) Angiotensin II increases Isi and blocks IK in single aortic cell of rabbit. Pflügers Arch 412:448–450

    Google Scholar 

  • Blache D, Ciavatti M, Ojeda C (1985) Platelet aggregation may require functional calcium channels. J Physiol (Lond) 358:68P

    Google Scholar 

  • Bolton TB (1979) Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev 59:606–718

    Google Scholar 

  • Bonnardeaux JL, Regoli D (1974) Action of angiotensin II and analogues on the heart. Can J Physiol Pharmacol 52:50–60

    Google Scholar 

  • Bonvallet R (1987) A low threshold calcium current recorded at physiological Ca concentrations in single frog atrial cells. Pflügers Arch 408:540–542

    Google Scholar 

  • Bossu JL, Feltz A, Thomann JM (1985) Depolarization elicits two distinct calcium currents in vertebrate sensory neurons. Pflügers Arch 403:360–368

    Google Scholar 

  • Brehm P, Eckert R (1978) Calcium entry leads to inactivation of calcium channels in Paramecium. Science 202:1203–1206

    Google Scholar 

  • Breitwieser GE, Szabo G (1985) Uncoupling of cardiac muscarinic and β-adrenergic receptors from ion channels by a guanine nucleotide analogue. Nature 317:538–540

    Google Scholar 

  • Brown AM, Birnbaumer L (1988) Direct G protein gating of ion channels. Am J Physiol 254:H401–H410

    Google Scholar 

  • Brown AM, Morimoto K, Tsuda Y, Wilson DL (1981) Calcium current-dependent and voltage-dependent inactivation of calcium channels in Helix aspersa. J Physiol (Lond) 320:193–218

    Google Scholar 

  • Brown HF, Kimura J, Noble D, Noble SJ, Taupignon A (1984) The slow inward current, isi, in the rabbit sino-atrial node investigated by voltage clamp and computer simulation. Proc R Soc Lond [Biol] 222:305–328

    Google Scholar 

  • Brown JH, Buxton IL, Brunton LL (1985) α-Adrenergic and muscarinic cholinergic stimulation of phosphoinositide hydrolysis in adult rat cardiomyocytes. Circ Res 57:532–537

    Google Scholar 

  • Brum G, Flockerzi V, Hofmann F, Osterrieder W, Trautwein W (1983) Injection of catalytic subunit of cAMP-dependent protein kinase into isolated cardiac myocytes. Pflügers Arch 398:147–154

    Google Scholar 

  • Brum G, Osterrieder W, Trautwein W (1984) β-Adrenergic increase in the calcium conductance of cardiac myocytes studied with the patch clamp. Pflügers Arch 401:111–118

    Google Scholar 

  • Bülbring E, Tomita T (1987) Catecholamine action on smooth muscle. Pharmacol Rev 39:49–96

    Google Scholar 

  • Byerly L, Moody WJ (1984) Intracellular calcium ions and calcium currents in perfused neurones of the snail, Lymnaea stagnalis. J Physiol (Lond) 352:637–652

    Google Scholar 

  • Byerly L, Chase PB, Stimers JR (1985) Permeation and interaction of divalent cations in calcium channels of snail neurons. J Gen Physiol 85:491–518

    Google Scholar 

  • Cachelin AB, de Peyer JE, Kokubun S, Reuter H (1983) Ca2+ channel modulation by 8-bromocyclic AMP in cultured heart cells. Nature 304:462–464

    Google Scholar 

  • Campbell DL, Giles WR, Shibata EF (1988a) Ion transfer characteristics of the calcium current in bull-frog atrial myocytes. J Physiol (Lond) 403:239–266

    Google Scholar 

  • Campbell DL, Giles WR, Hume JR, Noble D, Shibata EF (1988b) Reversal potential of the calcium current in bull-frog atrial myocytes. J Physiol (Lond) 403:267–286

    Google Scholar 

  • Campbell DL, Giles WR, Hume JR, Shibata EF (1988c) Inactivation of calcium current in bull-frog atrial myocytes. J Physiol (Lond) 403:287–315

    Google Scholar 

  • Campbell KP, Leung AT, Sharp AH (1988d) The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. TINS 11:425–430

    Google Scholar 

  • Campbell KP, Leung AT, Sharp AH, Imagawa T, Kahl SD (1988e) Ca2+ channel antibodies: subunit-specific antibodies as probes for structure and function. In: Morad M, Nayler W, Kazda S, Schramm M (eds) The calcium channel: structure, function and implications. Springer, Berlin Heidelberg New York Tokyo, pp 586–600

    Google Scholar 

  • Canonico PL, MacLeod RM (1986) Angiotensin peptides stimulate phosphoinositide break-down and prolactin release in anterior pituitary cells in culture. Endocrinology 118:233–238

    Google Scholar 

  • Cantin M, Genest J (1985) The heart and the atrial natriuretic factor. Endocr Rev 6:107–127

    Google Scholar 

  • Capogrossi MC, Kaku T, Pelto DJ, Filburn C, Hansford RG, Spurgeon H, Lakatta EG (1987) Phorbol ester translocates protein kinase C and has a negative inotropic effect in rat cardiac myocytes. Biophys J 51:112a

    Google Scholar 

  • Carbone E, Lux HD (1984a) A low-voltage-activated calcium conductance in embryonic chick sensory neurones. Biophys J 46:413–418

    Google Scholar 

  • Carbone E, Lux HD (1984b) A low-voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature 310:501–502

    Google Scholar 

  • Carbone E, Lux HD (1987a) Kinetics and selectivity of a low-voltage-activated calcium current in chick and rat sensory neurones. J Physiol (Lond) 386:547–570

    Google Scholar 

  • Carbone E, Lux HD (1987b) Single low-voltage-activated calcium channels in chick and rat sensory neurones. J Physiol (Lond) 386:571–601

    Google Scholar 

  • Carbone E, Lux HD (1988) Sodium currents through neuronal calcium channels: kinetics and sensitivity to calcium antagonists. In: Morad M, Nayler W, Kazda S, Schramm M (eds) The calcium channel: structure, function and implications. Springer, Berlin Heidelberg New York Tokyo, pp 115–127

    Google Scholar 

  • Carmeliet E (1978) Cardiac transmembrane potentials and metabolism. Circ Res 42:577–587

    Google Scholar 

  • Carmeliet E, Ramon J (1980) Effects of acetylcholine on time-dependent currents in sheep cardiac Purkinje fibers. Pflügers Arch 387:217–223

    Google Scholar 

  • Carmeliet E, Vereecke J (1979) Electrogenesis of the action potential and automaticity. In: Berne RM (ed) Handbook of physiology, sect 2. The cardiovascular system, vol 1. The heart. American Physiological Society, Bethesda, pp 269–334

    Google Scholar 

  • Castagna M, Takai Y, Kaibuchi A, Sano K, Kikkawa U, Nishizuka Y (1982) Direct activation of calcium-activated phospholipid-dependent protein kinase by tumor promoting phorbol esters. J Biol Chem 257:7847–7851

    Google Scholar 

  • Catterall WA (1988) Structure and function of voltage-sensitive ion channels. Science 242:50–61

    Google Scholar 

  • Cauvin C, Loutzenhiser R, Van Breemen C (1983) Mechanisms of calcium antagonist-induced vasodilatation. Annu Rev Pharmacol Toxicol 23:373–396

    Google Scholar 

  • Cauvin C, Lukeman S, Cameron J, Hwang O, van Breemen C (1985) Differences in norepinephrine activation and diltiazem inhibition of calcium channels in isolated rabbit aorta and mesenteric resistance vessels. Circ Res 56:822–828

    Google Scholar 

  • Cavalié A, Ochi R, Pelzer D, Trautwein W (1983) Elementary currents through Ca2+ channels in guinea pig myocytes. Pflügers Arch 398:284–297

    Google Scholar 

  • Cavalié A, McDonald TF, Pelzer D, Trautwein W (1985) Temperature-induced transitory and steady-state changes in the calcium current of guinea pig ventricular myocytes. Pflügers Arch 405:294–296

    Google Scholar 

  • Cavalié A, Pelzer D, Trautwein W (1986) Fast and slow gating behaviour of single calcium channels in cardiac cells. Relation to activation and inactivation of calcium-channel current. Pflügers Arch 406:241–258

    Google Scholar 

  • Chad JE, Eckert R (1986) An enzymatic mechanism for calcium current inactivation in dialysed Helix neurones. J Physiol (Lond) 378:31–51

    Google Scholar 

  • Chandler WK, Meves H (1965) Voltage clamp experiments on internally perfused giant axons. J Physiol (Lond) 180:788–820

    Google Scholar 

  • Chen C, Corbley MJ, Roberts TM, Hess P (1988a) Voltage-sensitive calcium channels in normal and transformed 3T3 fibroblasts. Science 239:1024–1026

    Google Scholar 

  • Chen C, Corbley MJ, Roberts TM, Hess P (1988b) Dihydropyridine-sensitive and-insensitive Ca2+ channels in normal and transformed fibroblasts. In: Morad M, Nayler W, Kazda S, Schramm M (eds) The calcium channel: structure, function and implications. Springer, Berlin Heidelberg New York Tokyo, pp 92–102

    Google Scholar 

  • Chesnais JM, Coraboeuf E, Sauviat MP, Vassas JM (1975) Sensitivity to H, Li and Mg ions of the slow inward sodium current in frog atrial fibers. J Mol Cell Cardiol 7:627–642

    Google Scholar 

  • Cockcroft S, Gomperts BD (1985) Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase. Nature 314:534–536

    Google Scholar 

  • Codina J, Yatani A, Grenet D, Brown AM, Birnbaumer L (1987) The α subunit of the GTP binding protein Gk opens atrial potassium channels. Science 236:442–445

    Google Scholar 

  • Cognard C, Romey G, Galizzi J-P, Fosset M, Lazdunski M (1986) Dihydropyridine-sensitive Ca2+ channels in mammalian skeletal muscle cells in culture: electrophysiological properties and interactions with Ca2+ channel activator (Bay K8644) and inhibitor (PN 200-110). Proc Natl Acad Sci USA 83:1518–1522

    Google Scholar 

  • Cohen NM, Lederer WJ (1987) Calcium current in isolated neonatal rat ventricular myocytes. J Physiol (Lond) 391:169–191

    Google Scholar 

  • Cohen P (1982) The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature 296:613–620

    Google Scholar 

  • Coraboeuf E (1980) Voltage clamp studies of the slow inward current. In: Zipes DP, Bailey JC, Elharrar V (eds) The slow inward current and cardiac arrhythmias. Nijhoff, The Hague, pp 25–95

    Google Scholar 

  • Coronado R (1987) Planar bilayer reconstittion of calcium channels: lipid effects on single channel kinetics. Circ Res 61 (Suppl II):II–46–II–52

    Google Scholar 

  • Coronado R, Affolter H (1986) Insulation of the conduction pathway of muscle transverse tubule calcium channels from the surface charge of bilayer phospholipid. J Gen Physiol 87:933–953

    Google Scholar 

  • Coronado R, Smith JS (1987) Monovalent ion current through single calcium channels of skeletal muscle transverse tubules. Biophys J 51:497–502

    Google Scholar 

  • Cota G, Stefani E (1984) Saturation of calcium channels and surface charge effects in skeletal muscle fibres of the frog. J Physiol (Lond) 351:135–154

    Google Scholar 

  • Cota G, Stefani E (1986) A fast-activated inward calcium current in twitch muscle fibres of the frog (Rana montezume). J Physiol (Lond) 370:151–163

    Google Scholar 

  • Cota G, Nicola Siri L, Stefani E (1984) Calcium channel inactivation in frog (Rana pipiens and Rana moctezuma) skeletal muscle fibres. J Physiol (Lond) 353:99–108

    Google Scholar 

  • Cramb G, Banks R, Rugg EL, Aiton JF (1987) Actions of atrial natriuretic peptide (ANP) on cyclic nucleotide concentrations and phosphatidylinositol turnover in ventricular myocytes. Biochem Biophys Res Commun 148:962–970

    Google Scholar 

  • Creba JA, Downes CP, Hawkins PT, Brewster G, Mitchell RH, Kirk CJ (1983) Rapid breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-biphosphate in rat hepatocytes stimulated by vasopressin and other Ca2+-mobilizing hormones. Biochem J 212:733–747

    Google Scholar 

  • Daly J (1984) Forskolin, adenylate cyclase, and cell physiology: an overview. Adv Cyclic Nucl Res 17:81–89

    Google Scholar 

  • DeBold AJ (1985) Atrial natriuretic factor: a hormone produced by the heart. Science 230:767–770

    Google Scholar 

  • Deitmer JW (1984) Evidence for two voltage-dependent calcium currents in the membrane of the ciliate Stylonychia. J Physiol (Lond) 355:137–159

    Google Scholar 

  • Dempsey JP, McCallum ZT, Kent KM, Cooper T (1971) Direct myocardial effects of angiotensin II. Am J Physiol 220:477–481

    Google Scholar 

  • DeRiemer SA, Sakmann B (1986) Two calcium currents in normal rat anterior pituitary cells identified by a plaque assay. Exp Brain Res 14:139–154

    Google Scholar 

  • DeRiemer SA, Strong JA, Albert KA, Greengard P, Kaczmarek LK (1985) Enhancement of calcium current in Aplysia neurons by phorbol ester and protein kinase C. Nature 313:313–316

    Google Scholar 

  • Diamond J, Ten Eick RE, Trapani AJ (1977) Are increases in cyclic GMP levels responsible for the negative inotropic effects of acetylcholine in the heart? Biochem Biophys Res Commun 79:912–917

    Google Scholar 

  • Di Virgilio F, Pozzan T, Wollheim CB, Vicentini LM, Meldolesi J (1986) Tumor promoter phorbol myristate acetate inhibits Ca2+ influx through voltage-gated Ca2+ channels in two secretory cell lines, PC12 and RINm5F. J Biol Chem 261:32–35

    Google Scholar 

  • Docherty RJ, Brown DA (1986) Interaction of 1,4-dihydropyridines with somatic Ca currents in hippocampal CA1 neurones of the guinea pig in vitro. Neurosci Lett 70:110–115

    Google Scholar 

  • Donaldson PL, Beam KG (1983) Calcium currents in a fast-twitch skeletal muscle of the rat. J Gen Physiol 82:449–468

    Google Scholar 

  • Donaldson SK, Goldberg ND, Walseth TF, Huetteman DA (1988) Voltage dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in peeled skeletal muscle fibers. Proc Natl Acad Sci USA 85:5749–5753

    Google Scholar 

  • Dösemeci A, Dhallan RS, Cohen NM, Lederer WJ, Rogers TB (1988) Phorbol ester increases calcium current and stimulates the effect of angiotensin II on cultured neonatal rat heart myocytes. Circ Res 62:347–357

    Google Scholar 

  • Droogmans G, Callewaert G (1986) Ca2+-channel current and its modification by the dihydropyridine agonist Bay K 8644 in isolated smooth muscle cells. Pflügers Arch 406:259–265

    Google Scholar 

  • Droogmans G, Declerck I, Casteels R (1987) Effect of adrenergic agonists on Ca2+-channel currents in single vascular smooth muscle cells. Pflügers Arch 409:7–12

    Google Scholar 

  • Dupont JL, Bossu JL, Feltz A (1986) Effect of internal calcium concentration on calcium currents in rat sensory neurones. Pflügers Arch 406:433–435

    Google Scholar 

  • Eckert R, Chad JE (1984) Inactivation of Ca channels. Prog Biophys Mol Biol 44:215–267

    Google Scholar 

  • Eisenman G, Horn R (1983) Ionic selectivity revisited: the role of kinetic and equilibrium processes in ion permeation through channels. J Membr Biol 76:197–225

    Google Scholar 

  • Ellis SB, Williams ME, Ways NR, Brenner R, Sharp AH, Leung AT, Campbell KP, McKenna E, Koch WJ, Hui A, Schwartz A, Harpold MM (1988) Sequence and expression of mRNAs encoding the α 1 and α 2 subunits of a DHP-sensitive calcium channel. Science 241:1661–1664

    Google Scholar 

  • Endoh M, Shimizu T (1979) Failure of dibutyryl and 8-bromo-cyclic GMP to mimic the antagonistic action of carbachol on the positive inotropic effects of sympathomimetic amines in the canine isolated ventricular myocardium. Jpn J Pharmacol 29:423–433

    Google Scholar 

  • Fabiato A (1985) Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol 85:247–289

    Google Scholar 

  • Fatt P, Ginsborg BL (1958) The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol (Lond) 142:516–543

    Google Scholar 

  • Fedida D, Noble D, Shimoni Y, Spindler AJ (1987) Inward current related to contraction in guinea-pig ventricular myocytes. J Physiol (Lond) 385:565–589

    Google Scholar 

  • Fedida D, Noble D, Spindler AJ (1988a) Use-dependent reduction and facilitation of Ca2+ current in guinea-pig myocytes. J Physiol (Lond) 405:439–460

    Google Scholar 

  • Fedida D, Noble D, Spindler AJ (1988b) Mechanism of the use dependence of Ca2+ current in guinea-pig myocytes. J Physiol (Lond) 405:461–475

    Google Scholar 

  • Fedulova SA, Kostyuk PG, Veselovsky NS (1985) Two types of calcium channels in the somatic membrane of new-born rat dorsal root ganglion neurones. J Physiol (Lond) 359:431–446

    Google Scholar 

  • Fenwick EM, Marty A, Neher E (1982) Sodium and calcium channels in bovine chromaffin cells. J Physiol (Lond) 331:599–635

    Google Scholar 

  • Fischmeister R, Hartzell HC (1986) Mechanism of action of acetylcholine on calcium current in single cells from frog ventricle. J Physiol (Lond) 376:183–202

    Google Scholar 

  • Fischmeister R, Hartzell HC (1987) Cyclic guanosine 3′, 5′-monophosphate regulates the calcium current in single cells from frog ventricle. J Physiol (Lond) 387:453–472

    Google Scholar 

  • Fischmeister R, Brocas-Randolph M, Lechene P, Argibay JA, Vassort G (1986) A dual effect of cardiac glycosides on Ca current in single cells of frog heart. Pflügers Arch 406:340–342

    Google Scholar 

  • Fischmeister R, Argibay JA, Hartzell HC (1987) Modifications of cardiac calcium current in cells with inherent differences in current density. Biophys J 51:29 a

    Google Scholar 

  • Fish RD, Sperti G, Colucci WS, Clapham DE (1988) Phorbol ester increases the dihydropyridine-sensitive calcium conductance in a vascular smooth muscle cell line. Circ Res 62:1049–1054

    Google Scholar 

  • Fishman MC, Spector I (1981) Potassium current suppression by quinidine reveals additional calcium currents in neuroblastoma cells. Proc Natl Acad Sci USA 78:5245–5249

    Google Scholar 

  • Fitzpatrick LA, Chin H, Nirenberg M, Aurbach GD (1988) Antibodies to an α subunit of skeletal muscle calcium channels regulate parathyroid cell secretion. Proc Natl Acad Sci USA 85:2115–2119

    Google Scholar 

  • Fleming JW, Strawbridge RA, Watanabe AM (1987) Muscarinic receptor regulation of cardiac adenylate cyclase activity. J Mol Cell Cardiol 19:47–61

    Google Scholar 

  • Flitney FW, Singh J (1981) Evidence that cyclic GMP may regulate cyclic AMP metabolism in the isolated frog ventricle. J Mol Cell Cardiol 13:963–979

    Google Scholar 

  • Flockerzi V, Oeken HJ, Hofmann F, Pelzer D, Cavalié A, Trautwein W (1986) Purified dihydropyridine-binding site from skeletal muscle t-tubules is a functional calcium channel. Nature 323:66–68

    Google Scholar 

  • Fox AP, Krasne S (1984) Two calcium currents in Neanthes arenaceodentatus egg cell membranes. J Physiol (Lond) 356:491–505

    Google Scholar 

  • Fox AP, Hess P, Lansman JB, Nowycky MC, Tsien RW (1984) Slow variations in the gating properties of single calcium channels in guinea-pig heart cells, chick neurones and neuroblastoma cells. J Physiol (Lond) 353:75P

    Google Scholar 

  • Fox AP, Nowycky MC, Tsien RW (1987a) Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. J Physiol (Lond) 394:149–172

    Google Scholar 

  • Fox AP, Nowycky MC, Tsien RW (1987b) Single-channel recordings of three types of calcium channels in chick sensory neurones. J Physiol (Lond) 394:173–200

    Google Scholar 

  • Friedman ME, Suarez-Kurtz G, Kaczorowski GJ, Katz GM, Reuben JP (1986) Two calcium currents in a smooth muscle cell line. Am J Physiol 250:H699–H703

    Google Scholar 

  • Fujii K, Ishimatsu T, Kuriyama H (1986) Mechanism of vasodilation induced by α-human atrial natriuretic polypeptide in rabbit and guinea-pig renal arteries. J Physiol (Lond) 377:315–332

    Google Scholar 

  • Fukuda J, Kawa K (1977) Permeation of manganese, cadmium, zinc, and beryllium through calcium channels of an insect muscle membrane. Science 196:309–311

    Google Scholar 

  • Fukushima Y, Hagiwara S (1985) Currents carried by monovalent cations through calcium channels in mouse neoplastic B lymphocytes. J Physiol (Lond) 358:255–284

    Google Scholar 

  • Galizzi JP, Qar J, Fosset M, Van Renterghem C, Lazdunski M (1987) Regulation of calcium channels in aortic muscle cells by protein kinase C activators (diacylglycerol and phorbol esters) and by peptides (vasopressin or bombesin) that stimulate phosphoinositide breakdown. J Biol Chem 262:6947–6950

    Google Scholar 

  • Ganitkevich VYa, Shuba MF, Smirnov SV (1986) Potential-dependent calcium inward current in a single isolated smooth muscle cell of the guinea-pig taenia caeci. J Physiol (Lond) 380:1–16

    Google Scholar 

  • Ganitkevich VYa, Shuba MF, Smirnov SV (1987) Calcium-dependent inactivation of potential-dependent calcium inward current in an isolated guinea-pig smooth muscle cell. J Physiol (Lond) 392:431–449

    Google Scholar 

  • Ganitkevich VYa, Shuba MF, Smirnov SV (1988) Saturation of calcium channels in single isolated smooth muscle cells of guinea-pig taenia caeci. J Physiol (Lond) 399:419–436

    Google Scholar 

  • Garnier D, Rougier O, Gargouil YM, Coraboeuf E (1969) Electrophysiological analysis of myocard membrane properties during the plateau of the action potential, existence of a slow inward current in solutions without divalent ions. Pflügers Arch 313:321–342

    Google Scholar 

  • Garnier D, Nargeot J, Ojeda C, Rougier O (1978) The action of acetylcholine on background conductance in frog atrial trabeculae. J Physiol (Lond) 274:381–396

    Google Scholar 

  • George WJ, Polson JB, O'Toole AG, Golberg N (1970) Elevation of 3′,5′-cyclic phosphate in rat heart after perfusion with acetylcholine. Proc Natl Acad Sci USA 66:398–403

    Google Scholar 

  • Giles W, Noble SJ (1976) Changes in membrane currents in bullfrog atrium produced by acetylcholine. J Physiol (Lond) 261:103–123

    Google Scholar 

  • Gisbert MP, Fischmeister R (1988) Atrial natriuretic factor regulates the calcium current in frog isolated cardiac cells. Circ Res 62:660–667

    Google Scholar 

  • Glossmann H, Striessnig J (1988) Calcium channels. Vitam Hormon 44:155–328

    Google Scholar 

  • Glossmann H, Striessnig J (1990) Molecular properties of calcium channels. In: Blaustein MP et al. (eds) Reviews of Physiology, Biochemistry and Pharmacology, Vol 114. Springer Berlin Heidelberg New York, pp 1–106

    Google Scholar 

  • Gluecksohn-Waelsch S (1963) Lethal genes and analysis of differentiation. Science 142:1269–1276

    Google Scholar 

  • Godfraind T, Miller R, Wibo M (1986) Calcium antagonists and calcium entry blockade. Pharmacol Rev 38:321–416

    Google Scholar 

  • Goldberg ND, Haddox MK (1977) Cyclic GMP metabolism and involvement in biologic regulation. Annu Rev Biochem 46:823–896

    Google Scholar 

  • Goldberg ND, Haddox MK, Nichol SE, Glass DB, Sanford CH, Kuehl FA, Estensen R (1975) Biologic regulation through opposing influences of cyclic GMP and cyclic AMP: the Yin-Yang hypothesis. Adv Cyclic Nucl Res 5:307–330

    Google Scholar 

  • Gray R, Johnston D (1986) Multiple types of calcium channels in acutely exposed neurons from the adult guinea pig hippocampus. J Gen Physiol 88:25a

    Google Scholar 

  • Graziano MP, Gilman AG (1987) Guanine nucleotide-binding regulatory proteins: mediators of transmembrane signaling. Trends Pharmacol Sci 8:478–481

    Google Scholar 

  • Gross RA, Macdonald RL (1987) Dynorphin A selectively reduces a large transient (N-type) calcium current of mouse dorsal root ganglion neurons in cell culture. Proc Natl Acad Sci USA 84:5469–5473

    Google Scholar 

  • Hadley RW, Hume JR (1987) An intrinsic potential-dependent inactivation mechanism associated with calcium channels in guinea-pig myocytes. J Physiol (Lond) 389:205–222

    Google Scholar 

  • Hadley RW, Hume JR (1988) Calcium channel antagonist properties of Bay K8644 in single guinea pig ventricular cells. Circ Res 62:97–104

    Google Scholar 

  • Hagiwara N, Irisawa H, Kameyama M (1988) Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J Physiol (Lond) 395:233–253

    Google Scholar 

  • Hagiwara S, Byerly L (1981) Calcium channel. Annu Rev Neurosci 4:69–125

    Google Scholar 

  • Hagiwara S, Fukuda J, Eaton DC (1974) Membrane currents carried by Ca, Sr, and Ba in barnacle muscle fiber during voltage clamp. J Gen Physiol 63:564–578

    Google Scholar 

  • Hagiwara S, Ozawa S, Sand O (1975) Voltage clamp analysis of two inward current mechanisms in the egg cell membrane of a starfish. J Gen Physiol 65:617–644

    Google Scholar 

  • Hallam TJ, Rink TJ (1985) Agonists stimulate divalent cation channels in the plasma membrane of human platelets. FEBS Lett 186:175–179

    Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100

    Google Scholar 

  • Hammond C, Paupardin-Tritsch D, Nairn AC, Greengard P, Gerschenfeld HM (1987) Cholecystokinin induces a decrease in Ca2+ current in snail neurons that appears to be mediated by protein kinase C. Nature 325:809–811

    Google Scholar 

  • Hanbauer I, Sanna E, Callewaert G, Morad M (1988) An endogenous purified peptide modulates Ca2+ channels in neurons and cardiac myocytes. In: Morad M, Nayler W, Kazda S, Schramm M (eds) The calcium channel: structure, function and implications. Springer, Berlin Heidelberg New York Tokyo, pp 611–618

    Google Scholar 

  • Hannon JD, Lee NKM, Blinks JR (1988) Calcium release by inositol trisphosphate in amphibian and mammalian skeletal muscle is an artifact of cell disruption, and probably results from depolarization of sealed-off T-tubules. Biophys J 53:607a

    Google Scholar 

  • Harris KM, Kongsamut S, Miller RJ (1986) Protein kinase C mediated regulation of calcium channels in PC-12 pheochromocytoma cells. Biochem Biophys Res Commun 134:1298–1305

    Google Scholar 

  • Harrison SA, Reifsnyder DH, Gallis B, Cadd GG, Beavo JA (1986) Isolation and characterization of bovine cardiac muscle cGMP-inhibited phosphodiesterase: a receptor for new cardiotonic drugs. Mol Pharmacol 29:506–514

    Google Scholar 

  • Hartzell HC, Fischmeister R (1986) Cyclic GMP and cyclic AMP produce opposite effects on Ca current in single heart cells. Nature 323:273–275

    Google Scholar 

  • Hartzell HC, Simmons MA (1987) Comparison of effects of acetylcholine on calcium and potassium currents in frog atrium and ventricle. J Physiol (Lond) 389:411–422

    Google Scholar 

  • Hayashi H, Watanabe T, McDonald TF (1987) Action potential duration in ventricular muscle during selective metabolic block. Am J Physiol 253:H373–H379

    Google Scholar 

  • Hescheler J, Trautwein W (1988) Modification of L-type calcium current by intracellulary applied trypsin in guinea-pig ventricular myocytes. J Physiol (Lond) 404:259–274

    Google Scholar 

  • Hescheler J, Kameyama M, Trautwein W (1986) On the mechanism of muscarinic inhibition of the cardiac Ca current. Pflügers Arch 407:182–189

    Google Scholar 

  • Hescheler J, Kameyama M, Trautwein W, Mieskes G, Söling HD (1987) Regulation of the cardiac calcium channel by protein phosphatases. Eur J Biochem 165:261–266

    Google Scholar 

  • Hescheler J, Rosenthal W, Hinsch KD, Wulfern M, Trautwein W, Schultz G (1988) Angiotensin II-induced stimulation of voltage-dependent Ca2+ currents in an adrenal cortical cell line. EMBO J 7:619–624

    Google Scholar 

  • Hess P, Tsien RW (1984) Mechanism of ion permeation through calcium channels. Nature 309:453–456

    Google Scholar 

  • Hess P, Metzger P, Weingart R (1982) Free magnesium in sheep, ferret and frog striated muscle at rest measured with ion-selective microelectrodes. J Physiol (Lond) 333:173–188

    Google Scholar 

  • Hess P, Lansman JB, Tsien RW (1984) Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature 311:538–544

    Google Scholar 

  • Hess P, Lansman JB, Tsien RW (1986) Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. J Gen Physiol 88:293–319

    Google Scholar 

  • Heyer CB, Lux HD (1976) Properties of a facilitating calcium current in pace-maker neurones of the snail, Helix pomatia. J Physiol (Lond) 262:319–348

    Google Scholar 

  • Hille B (1984) Ionic channels of excitable membranes. Sinauer, Sunderland

    Google Scholar 

  • Hille B, Schwarz W (1978) Potassium channels as multi-ion single-file pores. J Gen Physiol 72:409–442

    Google Scholar 

  • Hino N, Ochi R (1980) Effect of acetylcholine on membrane currents in guinea-pig papillary muscle. J Physiol (Lond) 307:183–197

    Google Scholar 

  • Hiraoka M, Sano T (1978) Role of slow inward current on premature excitation in ventricular muscle. In: Kobayashi T, Sano T, Dhalla NS (eds) Recent advances in studies on cardiac structure and metabolism, vol 11. University Park Press, Baltimore, pp 31–36

    Google Scholar 

  • Hiriart M, Matteson DR (1988) Na channels and two types of Ca channels in rat pancreatic B cells identified with the reverse hemolytic plaque assay. J Gen Physiol 91:617–639

    Google Scholar 

  • Hirning LD, Fox AP, McCleskey EW, Olivera BM, Thayer SA, Miller RJ, Tsien RW (1988) Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. Science 239:57–61

    Google Scholar 

  • Hockberger P, Toselli M, Swandulla D, Lux HD (1989) A diacylglycerol analogue reduces neuronal calcium currents independently of protein kinase C activation. Nature 338:340–342

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol (Lond) 116:497–506

    Google Scholar 

  • Högestätt ED (1984) Characterization of two different calcium entry pathways in small mesenteric arteries from rat. Acta Physiol Scand 122:483–495

    Google Scholar 

  • Hosey MM, Lazdunski M (1988) Calcium channels: molecular pharmacology, structure and regulation. J Membr Biol 104:81–106

    Google Scholar 

  • Hoshi T (1985) Gating of voltage-dependent calcium channels in adrenal chromaffin cells. PhD Thesis, Yale University

    Google Scholar 

  • Hoshi T, Rothlein J, Smith SJ (1984) Facilitation of Ca2+-channel currents in bovine adrenal chromaffin cells. Proc Natl Acad Sci USA 81:5871–5875

    Google Scholar 

  • Houslay MD (1987) Ion channels controlled by guanine nucleotide regulatory proteins. Trends Biol Sci 12:167–168

    Google Scholar 

  • Huang CL, Ives HE, Cogan MG (1986) In vivo evidence that cGMP is the second messenger for atrial natriuretic factor. Proc Natl Acad Sci USA 83:8015–8018

    Google Scholar 

  • Hume JR, Giles W (1983) Ionic currents in single isolated bullfrog atrial cells. J Gen Physiol 81:153–194

    Google Scholar 

  • Iijima T, Irisawa H, Kameyama M (1985) Membrane currents and their modification by acetylcholine in isolated single atrial cells of the guinea-pig. J Physiol (Lond) 359:485–501

    Google Scholar 

  • Ikemoto Y, Goto M (1977) Effects of Ach on slow inward current and tension components of the bullfrog atrium. J Mol Cell Cardiol 9:313–326

    Google Scholar 

  • Imoto Y, Ehara T, Goto M (1985) Calcium channel currents in isolated guinea-pig ventricular cells superfused with Ca-free EGTA solution. Jpn J Physiol 35:917–932

    Google Scholar 

  • Imoto Y, Yatani A, Reeves JP, Codina J, Birnbaumer L, Brown AM (1988) α-Subunit of Gs directly activates cardiac calcium channels in lipid bilayers. Am J Physiol (Lond) 255:H722–H728

    Google Scholar 

  • Ingebritsen TS, Cohen P (1983) Protein phosphatases: properties and role in cellular regulation. Science 221:331–338

    Google Scholar 

  • Inomata H, Kao CY (1976) Ionic currents in the guinea-pig taenia coli. J Physiol (Lond) 255:347–378

    Google Scholar 

  • Inoue D, Hachisu M, Pappano AJ (1983) Acetylcholine increases resting membrane potassium conductance in atrial but not ventricular muscle during muscarinic inhibition of Ca2+-dependent action potentials in chick heart. Circ Res 53:158–167

    Google Scholar 

  • Inui J, Imamura H (1977) Effects of acetylcholine on calcium-dependent electrical and mechanical responses of the guinea-pig papillary muscle partially depolarized by potassium. Naunyn-Schmiedebergs Arch Pharmacol 299:1–7

    Google Scholar 

  • Irisawa H (1984) Electrophysiology of single cardiac cells. Jpn J Physiol 34:375–388

    Google Scholar 

  • Irisawa H, Kokubun S (1983) Modulation by intracellular ATP and cyclic AMP of the slow inward current in isolated single ventricular cells of the guinea-pig. J Physiol (Lond) 338:321–337

    Google Scholar 

  • Irisawa H, Sato R (1986) Intra-and extracellular actions of proton on the calcium current of isolated guinea pig ventricular cells. Circ Res 59:348–355

    Google Scholar 

  • Isenberg G (1977) Cardiac Purkinje fibres. The slow inward current component under the influence of modified [Ca2+]i. Pflügers Arch 371:61–69

    Google Scholar 

  • Isenberg G, Klöckner U (1980) Glycocalyx is not required for slow inward calcium current in isolated rat heart myocytes. Nature 284:358–360

    Google Scholar 

  • Isenberg G, Klöckner U (1982) Calcium currents of isolated bovine ventricular myocytes are fast and of large amplitude. Pflügers Arch 395:30–41

    Google Scholar 

  • Isenberg G, Klöckner U (1985a) The electrophysiological properties of the isolated adult heart cell: an overview. Basic Res Cardiol 80 (Suppl 2):51–54

    Google Scholar 

  • Isenberg G, Klöckner U (1985b) Calcium currents of smooth muscle cells isolated from the urinary bladder of the guinea-pig: inactivation, conductance and selectivity is controlled by micromolar amounts of [Ca]o. J Physiol (Lond) 358:60P

    Google Scholar 

  • Isenberg G, Klöckner U (1985c) Elementary currents through single Ca channels in smooth muscle cells isolated from bovine coronary arteries. Effects of nifedipine and Bay K 8644. Pflügers Arch 403:R23

    Google Scholar 

  • Isenberg G, Cerbai E, Klöckner U (1987) Ionic channels and adenosine in isolated heart cells. In: Gerlach E, Becker BF (eds) Topics and perspectives in adenosine research. Springer, Berlin Heidelberg New York Tokyo, pp 323–335

    Google Scholar 

  • Janis RA, Silver PJ, Triggle DJ (1987) Drug action and cellular calcium regulation. Adv Drug Res 16:309–589

    Google Scholar 

  • Janis RA, Johnson DE, Shrikhande AV, McCarthy RT, Howard AD, Greguski R, Scriabine A (1988) Endogenous 1,4-dihydropyridine-displacing substances acting on L-type Ca2+ channels: isolation and characterization of fractions from brain and stomach. In: Morad M, Nayler W, Kazda S, Schramm M (eds) The calcium channel: structure, function and implications. Springer, Berlin Heidelberg New York Tokyo, pp 564–574

    Google Scholar 

  • Jmari K, Mironneau C, Mironneau J (1986) Inactivation of calcium channel current in rat uterine smooth muscle: evidence for calcium-and voltage-mediated mechanisms. J Physiol (Lond) 380:111–126

    Google Scholar 

  • Jmari K, Mironneau C, Mironneau J (1987) Selectivity of calcium channels in rat uterine smooth muscle: interactions between sodium, calcium and barium ions. J Physiol (Lond) 384:247–261

    Google Scholar 

  • Jones LG, Goldstein D, Brown JH (1988) Guanine nucleotide-dependent inositol trisphosphate formation in chick heart cells. Circ Res 62:299–305

    Google Scholar 

  • Josephson I, Sperelakis N (1982) On the ionic mechanism underlying adrenergic-cholinergic antagonism in ventricular muscle. J Gen Physiol 79:69–86

    Google Scholar 

  • Josephson IR, Sanchez-Chapula J, Brown AM (1984) A comparison of calcium currents in rat and guinea pig single ventricular cells. Circ Res 54:144–156

    Google Scholar 

  • Jy W, Haynes DH (1987) Thrombin-induced calcium movements in platelet activation. Biochim Biophys Acta 929:88–102

    Google Scholar 

  • Kaczmarek LK (1987) The role of protein kinase C in the regulation of ion channels and neurotransmitter release. TINS 10:30–34

    Google Scholar 

  • Kaibara M, Kameyama M (1988) Inhibition of the calcium channel by intracellular protons in single ventricular myocytes of the guinea-pig. J Physiol (Lond) 403:621–640

    Google Scholar 

  • Kameyama A, Nakayama T (1988) Calcium efflux through cardiac calcium channels reconstituted into liposomes — flux measurement with fura-2. Biochem Biophys Res Commun 154:1067–1074

    Google Scholar 

  • Kameyama M, Hofmann F, Trautwein W (1985) On the mechanism of β-adrenergic regulation of the Ca channel in the guinea-pig heart. Pflügers Arch 405:285–293

    Google Scholar 

  • Kameyama M, Hescheler J, Hofmann F, Trautwein W (1986a) Modulation of Ca current during the phosphorylation cycle in the guinea pig heart. Pflügers Arch 407:123–128

    Google Scholar 

  • Kameyama M, Hescheler J, Mieskes G, Trautwein W (1986b) The protein-specific phosphatase 1 antagonizes the β-adrenergic increase of the cardiac Ca current. Pflügers Arch 407:461–463

    Google Scholar 

  • Kameyama M, Kameyama A, Kaibara M, Nakayama T (1987) Involvement of intracellular factor(s) in “run down” of the cardiac L-type Ca channel. J Physiol Soc Jpn 49:501

    Google Scholar 

  • Kameyama M, Kameyama A, Nakayama T, Kaibara M (1988) Tissue extract recovers cardiac calcium channels from “run-down”. Pflügers Arch 412:328–330

    Google Scholar 

  • Kass RS, Blair ML (1981) Effects of angiotensin II on membrane current in cardiac Purkinje fibers. J Mol Cell Cardiol 13:797–809

    Google Scholar 

  • Kass RS, Krafte DS (1987) Negative surface charge density near heart calcium channels. Relevance to block by dihydropyridines. J Gen Physiol 89:629–644

    Google Scholar 

  • Kass RS, Sanguinetti MC (1984) Inactivation of calcium channel current in the calf cardiac Purkinje fiber. Evidence for voltage-and calcium-mediated mechanisms. J Gen Physiol 84:705–726

    Google Scholar 

  • Kass RS, Scheuer T (1982) Slow inactivation of calcium channels in the cardiac Purkinje fiber. J Mol Cell Cardiol 14:615–618

    Google Scholar 

  • Kass RS, Tsien RW (1975) Multiple effects of calcium antagonists on plateau currents in cardiac Purkinje fibers. J Gen Physiol 66:169–192

    Google Scholar 

  • Katoh N, Wise BC, Kuo JF (1983) Phosphorylation of cardiac troponin inhibitory subunit (troponin I) and tropomyosin binding subunit (troponin T) by cardiac phospholipid-sensitive Ca2+-dependent protein kinase. Biochem J 209:189–195

    Google Scholar 

  • Katzung BG, Reuter H, Porzig H (1973) Lanthanum inhibits Ca inward current but not Na-Ca exchange in cardiac muscle. Experientia 29:1073–1075

    Google Scholar 

  • Kawashima Y, Ochi R (1988) Voltage-dependent decrease in the availability of single calcium channels by nitrendipine in guinea-pig ventricular cells. J Physiol (Lond) 402:219–235

    Google Scholar 

  • Keeley SL Jr, Lincoln TM, Corbin JD (1978) Interaction of acetylcholine and epinephrine on heart cyclic AMP-dependent protein kinase. Am J Physiol 234:H432–H438

    Google Scholar 

  • Kelleher DJ, Pessin JE, Ruoho AE, Johnson GL (1984) Phorbol ester induces desensitization of adenylate cyclase and phosphorylation of the β-adrenergic receptor in turkey erythrocytes. Proc Natl Acad Sci USA 81:4316–4320

    Google Scholar 

  • Kerr LM, Yoshikami D (1984) A venom peptide with novel presynaptic blocking action. Nature 308:282–284

    Google Scholar 

  • Klaus MM, Scordilis SP, Rapalus JM, Briggs RT, Powell JA (1983) Evidence for dysfunction in the regulation of cytosolic Ca2+ in excitation-contraction uncoupled dysgenic muscle. Dev Biol 99:152–165

    Google Scholar 

  • Klöckner U, Isenberg G (1985) Calcium currents of cesium loaded isolated smooth muscle cells (urinary bladder of the guinea pig). Pflügers Arch 405:340–348

    Google Scholar 

  • Koch-Weser J (1965) Nature of the inotropic action of angiotensin on ventricular myocardium. Circ Res 16:230–237

    Google Scholar 

  • Kohlhardt M, Haap K (1978) 8-Bromo-guanosine 3′,5′-monophosphate mimics the effect of acetylcholine on slow response action potential and contractile force in mammalian atrial myocardium. J Mol Cell Cardiol 10:573–586

    Google Scholar 

  • Kohlhardt M, Herdey A, Kübler M (1973) Interchangeability of Ca ions and Sr ions as charge carriers of the slow inward current in mammalian myocardial fibres. Pflügers Arch 344:149–158

    Google Scholar 

  • Kohlhardt M, Krause H, Kübler M, Herdey A (1975) Kinetics of inactivation and recovery of the slow inward current in the mammalian ventricular myocardium. Pflügers Arch 355:1–17

    Google Scholar 

  • Kohlhardt M, Haap K, Figulla HR (1976) Influence of low extracellular pH upon the Ca inward current and isometric contractile force in mammalian ventricular myocardium. Pflügers Arch 366:31–38

    Google Scholar 

  • Kokubun S, Irisawa H (1984) Effects of various intracellular Ca ion concentrations on the calcium current of guinea-pig single ventricular cells. Jpn J Physiol 34:599–611

    Google Scholar 

  • Kokubun S, Nishimura M, Noma A, Irisawa H (1982) Membrane currents in the rabbit atrioventricular node cell. Pflügers Arch 393:15–22

    Google Scholar 

  • Kostyuk PG (1984) Intracellular perfusion of nerve cells and its effects on membrane currents. Physiol Rev 64:435–454

    Google Scholar 

  • Kostyuk PG, Krishtal OA (1977) Effects of calcium and calcium-chelating agents on the inward and outward current in the membrane of mollusc neurones. J Physiol (Lond) 270:569–580

    Google Scholar 

  • Kostyuk PG, Mironov SL, Shuba YaM (1983) Two ion-selecting filters in the calcium channel of the somatic membrane of mollusc neurons. J Membr Biol 76:83–93

    Google Scholar 

  • Kostyuk PG, Shuba YaM, Savchenko AN (1987) Three types of calcium channels in the membrane of mouse sensory neurons. Biol Membrany 4:366–373

    Google Scholar 

  • Kostyuk PG, Shuba YaM, Savchenko AN, Teslenko VI (1988) Kinetic characteristics of different calcium channels in the neuronal membrane. In: Morad M, Nayler W, Kazda S, Schramm M (eds) The calcium channel: structure, function and implications. Springer, Berlin Heidelberg New York Tokyo, pp 442–464

    Google Scholar 

  • Kraft AS, Anderson WB (1983) Phorbol esters increase the amount of Ca2+, phospholipid-dependent protein kinase associated with plasma membrane. Nature 301:621–623

    Google Scholar 

  • Kretsinger RH, Moncrief ND, Goodman M, Czelusniak J (1988) Homology of calcium-modulated proteins: their evolutionary and functional relationships. In: Morad M, Nayler W, Kazda S, Schramm M (eds) The calcium channel: structure, function and implications. Springer, Berlin Heidelberg New York Tokyo, pp 16–34

    Google Scholar 

  • Kreutter D, Caldwell AB, Morin MJ (1985) Dissociation of protein kinase C activation from phorbol ester-induced maturation of HL-60 leukemia cells. J Biol Chem 260:5979–5984

    Google Scholar 

  • Kuno M, Gardner P (1987) Ion channels activated by inositol 1,4,5′-trisphosphate in plasma membrane of human T-lymphocytes. Nature 326:301–304

    Google Scholar 

  • Kuo JF, Lee TP, Reyes PL, Walton KG, Donnelly TE, Greengard P (1972) Cyclic nucleotide-dependent protein kinases. X. An assay method for the measurement of guanosine 3′,5′monophosphate in various biological materials and a study of agents regulating its level in heart and brain. J Biol Chem 247:16–22

    Google Scholar 

  • Kurachi Y (1982) The effects of intracellular protons on the electrical activity of single ventricular cells. Pflügers Arch 394:264–270

    Google Scholar 

  • Kurachi Y, Nakajima T, Sugimoto T (1986) On the mechanism of activation of muscarinic K+ channels by adenosine in isolated atrial cells: involvement of GTP-binding proteins. Pflügers Arch 407:264–274

    Google Scholar 

  • Lacerda AE, Rampe D, Brown AM (1988) Effects of protein kinase C activators on cardiac Ca2+ channels. Nature 335:249–251

    Google Scholar 

  • Lamb GD, Walsh T (1987) Calcium currents, charge movement and dihydropyridine binding in fast-and slow-twitch muscles of rat and rabbit. J Physiol (Lond) 393:595–617

    Google Scholar 

  • Lansman JB, Hess P, Tsien RW (1986) Blockade of current through single calcium channels by Cd2+, Mg2+, and Ca2+. Voltage and concentration dependence of calcium entry into the pore. J Gen Physiol 88:321–347

    Google Scholar 

  • Lansman JB, Hallam TJ, Rink TJ (1987) Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers. Nature 325:811–813

    Google Scholar 

  • Lazdunski M, Schmid A, Romey G, Renaud JF, Galizzi JP, Fosset M, Borsotto M, Barhanin J (1987) Dihydropyridine-sensitive Ca2+ channels: molecular properties of interaction with Ca2+ channel blockers, purification, subunit structure, and differentiation. J Cardiovasc Pharmacol 9:S10–S15

    Google Scholar 

  • Leatherman GF, Kim D, Smith TW (1987) Effect of phorbol esters on contractile state and calcium flux in cultured chick heart cells. Am J Physiol 253:H205–H209

    Google Scholar 

  • Lee KS (1987) Potentiation of the calcium-channel currents of internally perfused mammalian heart cells by repetitive depolarization. Proc Natl Acad Sci USA 84:3941–3945

    Google Scholar 

  • Lee KS, Tsien RW (1982) Reversal of current through calcium channels in dialysed single heart cells. Nature 297:498–501

    Google Scholar 

  • Lee KS, Tsien RW (1983) Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature 302:790–794

    Google Scholar 

  • Lee KS, Tsien RW (1984) High selectivity of calcium channels in single dialysed heart cells of the guinea-pig. J Physiol (Lond) 354:253–272

    Google Scholar 

  • Lee KS, Akaike N, Brown AM (1980) The suction pipette method for internal perfusion and voltage clamp of small excitable cells. J Neurosci Methods 2:51–78

    Google Scholar 

  • Lee KS, Marban E, Tsien RW (1985) Inactivation of calcium channels in mammalian heart cells: joint dependence on membrane potential and intracellular calcium. J Physiol (Lond) 364:395–411

    Google Scholar 

  • Leung AT, Imagawa T, Campbell KP (1987) Structural characterization of the 1,4-dihydropyridine receptor of the voltage-dependent calcium channel from rabbit skeletal muscle. J Biol Chem 262:7943–7946

    Google Scholar 

  • Leung AT, Imagawa T, Block B, Franzini-Armstrong C, Campbell KP (1988) Biochemical and ultrastructural characterization of the 1,4-dihydropyridine receptor from rabbit skeletal muscle. Evidence for a 52 000 Da subunit. J Biol Chem 263:994–1001

    Google Scholar 

  • Levi R, DeFelice LJ (1986) Sodium-conducting channels in cardiac membranes in low calcium. Biophys J 50:5–9

    Google Scholar 

  • Levitan IB (1988) Modulation of ion channels in neurons and other cells. Annu Rev Neurosci 11:119–136

    Google Scholar 

  • Limas CJ (1980) Phosphorylation of cardiac sarcoplasmic reticulum by a calcium-activated phospholipid-dependent protein kinase. Biochem Biophys Res Commun 96:1378–1383

    Google Scholar 

  • Lincoln TM, Keely SL (1981) Regulation of cardiac cyclic GMP-dependent protein kinase. Biochim Biophys Acta 676:230–244

    Google Scholar 

  • Linden J, Brooker G (1979) The questionable role of cyclic guanosine 3′,5′monophosphate in heart. Biochem Pharmacol 28:3351–3360

    Google Scholar 

  • Linden J, Hollen C, Patel A (1985) The mechanism by which adenosine and cholinergic agents reduce contractility in rat myocardium. Correlation with cyclic AMP and receptor densities. Circ Res 56:728–735

    Google Scholar 

  • Lipscombe D, Tsien RW (1987) Noradrenaline inhibits N-type Ca channels in isolated frog sympathetic neurones. J Physiol (Lond) 390:84P

    Google Scholar 

  • Lipscombe D, Madison DV, Poenie M, Reuter H, Tsien RY, Tsien RW (1988) Spatial distribution of calcium channels and cytosolic calcium transients in growth cones and cell bodies of sympathetic neurons. Proc Natl Acad Sci USA 85:2398–2402

    Google Scholar 

  • Llano I, Marty A (1987) Protein kinase C activators inhibit the inositol trisphosphate-mediated muscarinic current responses in rat lacrimal cells. J Physiol (Lond) 394:239–248

    Google Scholar 

  • Llinás R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol (Lond) 305:171–195

    Google Scholar 

  • Llinás R, Yarom Y (1981) Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J Physiol (Lond) 315:569–584

    Google Scholar 

  • Loirand G, Pacaud P, Mironneau C, Mironneau J (1986) Evidence for two distinct calcium channels in rat vascular smooth muscle cells in short-term primary culture. Pflügers Arch 407:566–568

    Google Scholar 

  • Lux HD, Carbone E, Zucker H (1988) Block of sodium currents through a neuronal calcium channel by external calcium and magnesium ions. In: Morad M, Nayler W, Kazda S, Schramm M (eds) The calcium channel: structure, function and implications. Springer, Berlin Heidelberg New York Tokyo, pp 128–137

    Google Scholar 

  • Madison D, Fox AP, Tsien RW (1987) Adenosine reduces an inactivating component of calcium current in hippocampal CA3 neurons. Biophys J 51:30a

    Google Scholar 

  • Majerus PW, Connolly TM, Deckman H, Ishii H, Bansal VS, Wilson DB (1986) The metabolism of phosphoinositide-derived messenger molecules. Science 234:1519–1526

    Google Scholar 

  • Marban E, Tsien RW (1982) Enhancement of calcium current during digitalis inotropy in mammalian heart: positive feed-back regulation by intracellular calcium? J Physiol (Lond) 329:589–614

    Google Scholar 

  • Marban E, Wier WG (1985) Ryanodine as a tool to determine the contributions of calcium entry and calcium release to the calcium transient and contraction of cardiac Purkinje fibers. Circ Res 56:133–138

    Google Scholar 

  • Martins TJ, Mumby MC, Beavo JA (1982) Purification and characterization of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from bovine tissues. J Biol Chem 25:1973–1979

    Google Scholar 

  • Massini P, Lüscher EF (1976) On the significance of the influx of calcium ions into stimulated human blood platelets. Biochim Biophys Acta 436:652–663

    Google Scholar 

  • Matsuda H (1986) Sodium conductance in calcium channels of guinea-pig ventricular cells induced by removal of external calcium ions. Pflügers Arch 407:465–475

    Google Scholar 

  • Matsuda H, Noma A (1984) Isolation of calcium current and its sensitivity to monovalent cations in dialysed ventricular cells of guinea-pig. J Physiol (Lond) 357:553–573

    Google Scholar 

  • Matteson DR, Armstrong CM (1986) Properties of two types of calcium channels in clonal pituitary cells. J Gen Physiol 87:161–182

    Google Scholar 

  • Matthies HJG, Palfrey HC, Hirning LD, Miller RJ (1987) Down regulation of protein kinase C in neuronal cells: effects on neurotransmitter release. J Neurosci 7:1198–1206

    Google Scholar 

  • McCleskey EW, Almers W (1985) The Ca channel in skeletal muscle is a large pore. Proc Natl Acad Sci USA 82:7149–7153

    Google Scholar 

  • McCleskey EW, Hess P, Tsien RW (1985) Interaction of organic cations with the cardiac Ca channel. J Gen Physiol 86:22a

    Google Scholar 

  • McCleskey EW, Fox AP, Feldman D, Cruz LJ, Olivera BM, Tsien RW, Yoshikami D (1987) ω-Conotoxin: direct and persistent blockade of specific types of calcium channels in neurones but not muscle. Proc Natl Acad Sci USA 84:4327–4331

    Google Scholar 

  • McDonald TF (1982) The slow inward calcium current in the heart. Annu Rev Physiol 44:425–434

    Google Scholar 

  • McDonald TF, MacLeod DP (1973) Metabolism and the electrical activity of anoxic ventricular muscle. J Physiol (Lond) 229:559–582

    Google Scholar 

  • McDonald TF, Pelzer D, Trautwein W (1981) Does the calcium current modulate the contraction of the accompanying beat? A study of E-C coupling in mammalian ventricular muscle using cobalt ions. Circ Res 49:576–583

    Google Scholar 

  • McDonald TF, Pelzer D, Trautwein W (1984) Cat ventricular muscle treated with D600: characteristics of calcium channel block and unblock. J Physiol (Lond) 352:217–241

    Google Scholar 

  • McDonald TF, Cavalié A, Trautwein W, Pelzer D (1986) Voltage-dependent properties of macroscopic and elementary calcium channel currents in guinea pig ventricular myocytes. Pflügers Arch 406:437–448

    Google Scholar 

  • McDonald TF, Pelzer D, Trautwein W (1989) Dual action (stimulation, inhibition) of D600 on contractility and calcium channels in guinea pig and cat heart cells. J Physiol (Lond) 414:569–586

    Google Scholar 

  • Mellgren R (1987) Calcium-dependent proteases: an enzyme system active at cellular membranes? FASEB J 1:110–115

    Google Scholar 

  • Mentrard D, Vassort G, Fischmeister R (1984) Calcium-mediated inactivation of the calcium conductance in cesium-loaded frog heart cells. J Gen Physiol 83:105–131

    Google Scholar 

  • Merritt JE, Rink TJ (1987) Regulation of cytosolic free calcium in fura-2-loaded rat parotid acinar cells. J Biol Chem 262:17362–17369

    Google Scholar 

  • Messing RO, Carpenter CL, Greenberg DA (1986) Inhibition of calcium flux and calcium channel antagonist binding in the PC12 neural cell line by phorbol esters and protein kinase C. Biochem Biophys Res Commun 136:1049–1056

    Google Scholar 

  • Meves H, Vogel W (1973) Calcium inward currents in internally perfused giant axons. J Physiol (Lond) 235:225–265

    Google Scholar 

  • Middlemiss DN, Spedding M (1985) A functional correlate for the dihydropyridine binding site in rat brain. Nature 314:94–96

    Google Scholar 

  • Miller RJ (1987a) Multiple calcium channels and neuronal function. Science 235:46–52

    Google Scholar 

  • Miller RJ (1987b) Calcium channels in neurons. Receptor Biochem Methodol 9:161–264

    Google Scholar 

  • Miller RJ (1988) G proteins flex their muscles. Trends in Neurol Sci 11:3–6

    Google Scholar 

  • Mironneau J (1974) Voltage clamp analysis of the ionic currents in uterine smooth muscle using the double sucrose gap method. Pflügers Arch 352:197–210

    Google Scholar 

  • Mironneau J, Eugene D, Mironneau C (1982) Sodium action potentials induced by calcium chelation in rat uterine smooth muscle. Pflügers Arch 395:232–238

    Google Scholar 

  • Mitchell MR, Powell T, Terrar DA, Twist VW (1983) Characteristics of the second inward current in cells isolated from rat ventricular muscle. Proc R Soc Lond [Biol] 219:447–469

    Google Scholar 

  • Mitchell MR, Powell T, Terrar DA, Twist VW (1985) Influence of a change in stimulation rate on action potentials, currents and contractions in rat ventricular cells. J Physiol (Lond) 364:113–130

    Google Scholar 

  • Mitra R, Morad M (1986) Two types of calcium channels in guinea pig ventricular myocytes. Proc Natl Acad Sci USA 83:5340–5344

    Google Scholar 

  • Morton ME, Froehner SC (1987) Monoclonal antibody identifies a 200-kDa subunit of the dihydropyridine-sensitive calcium channel. J Biol Chem 262:11904–11907

    Google Scholar 

  • Morton ME, Caffrey JM, Brown AM, Froehner SC (1988) Monoclonal antibody to the α 1-subunit of the dihydropyridine-binding complex inhibits calcium currents in BC 3H1 myocytes. J Biol Chem 263:613–616

    Google Scholar 

  • Movsesian MA, Nishikawa M, Adelstein RS (1984) Phosphorylation of phospholamban by calcium-activated, phospholipid-dependent protein kinase: stimulation of cardiac sarcoplasmic reticulum calcium uptake. J Biol Chem 259:8029–8032

    Google Scholar 

  • Murad F, Chi YM, Rall TW, Sutherland E (1962) Adenylcyclase III. The effect of catecholamines and choline esters on the formation of adenosine 3′,5′-phosphate by preparations from cardiac muscle and liver. J Biol Chem 237:1233–1238

    Google Scholar 

  • Nachshen DA (1985) The early time course of potassium-stimulated calcium uptake in presynaptic nerve terminals isolated from rat brain. J Physiol (Lond) 361:251–268

    Google Scholar 

  • Nakazawa K, Matsuki N, Shigenobu K, Kasuya Y (1987) Contractile response and electrophysiological properties in enzymatically dispersed smooth muscle cells of rat vas deferens. Pflügers Arch 408:112–119

    Google Scholar 

  • Nakazawa K, Saito H, Matsuki N (1988) Fast and slowly inactivating components of Ca-channel current and their sensitivities to nicardipine in isolated smooth muscle cells from rat vas deferens. Pflügers Arch 411:289–295

    Google Scholar 

  • Narahashi T, Tsunoo A, Yoshii M (1987) Characterization of two types of calcium channels in mouse neuroblastoma cells. J Physiol (Lond) 383:231–249

    Google Scholar 

  • Nargeot J, Garnier D (1982) The action of muscarinic agonists and antagonists on frog atrial fibers. Electrophysiological studies. J Pharmacol 13:431–445

    Google Scholar 

  • Nargeot J, Nerbonne JM, Engels J, Lester HA (1983) Time course of the increase in the myocardial slow inward current after a photochemically generated concentration jump of intracellular cAMP. Proc Natl Acad Sci USA 80:2395–2399

    Google Scholar 

  • Nastainczyk W, Röhrkasten A, Sieber M, Rudolph C, Schächtele C, Marmé D, Hofmann F (1987) Phosphorylation of the purified receptor for calcium channel blockers by cAMP kinase and protein kinase C. Eur J Biochem 169:137–142

    Google Scholar 

  • Nathan RD, Kanai K, Clark RB, Giles W (1988) Selective block of calcium current by lanthanum in single bullfrog atrial cells. J Gen Physiol 91:549–572

    Google Scholar 

  • Navarro J (1987) Modulation of [3H] dihydropyridine receptors by activation of protein kinase C in chick muscle cells. J Biol Chem 262:4649–4652

    Google Scholar 

  • Nawrath H (1977) Does cyclic GMP mediate the negative inotropic effect of acetylcholine in the heart? Nature 267:72–74

    Google Scholar 

  • Nelson MT, Standen NB, Brayden JE, Worley JF III (1988) Noradrenaline contracts arteries by activating voltage-dependent calcium channels. Nature 336:382–385

    Google Scholar 

  • Nilius B, Benndorf K (1986) Joint voltage-and calcium-dependent inactivation of Ca channels in frog atrial myocardium. Biomed Biochim Acta 45:795–811

    Google Scholar 

  • Nilius B, Hess P, Lansman JB, Tsien RW (1985) A novel type of cardiac calcium channel in ventricular cells. Nature 316:443–446

    Google Scholar 

  • Nishizuka Y (1986) Studies and perspectives of protein kinase C. Science 233:305–312

    Google Scholar 

  • Nishizuka Y (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334:661–665

    Google Scholar 

  • Noble D (1984) The surprising heart: a review of recent progress in cardiac electrophysiology. J Physiol (Lond) 353:1–50

    Google Scholar 

  • Noble S, Shimoni Y (1981) The calcium and frequency dependence of the slow inward current “staircase” in frog atrium. J Physiol (Lond) 310:57–75

    Google Scholar 

  • Noma A, Shibasaki T (1985) Membrane current through adenosine-triphosphate-regulated potassium channels in guinea-pig ventricular cells. J Physiol (Lond) 363:463–480

    Google Scholar 

  • Noma A, Trautwein W (1978) Relaxation of the Ach-induced potassium current in the rabbit sinoatrial node cell. Pflügers Arch 377:193–200

    Google Scholar 

  • Noma A, Kotake H, Irisawa H (1980) Slow inward current and its role mediating the chronotropic effect of epinephrine in the rabbit sinoatrial node. Pflügers Arch 388:1–9

    Google Scholar 

  • Norman RI, Burgess AJ, Allen E, Harrison TM (1987) Monoclonal antibodies against the 1,4-dihydropyridine receptor associated with voltage-sensitive Ca2+ channels detect similar polypeptides from a variety of tissues and species. FEBS Lett 212:127–132

    Google Scholar 

  • Nowycky MC, Fox AP, Tsien RW (1984) Two components of calcium channel current in chick dorsal root ganglion cells. Biophys J 45:36a

    Google Scholar 

  • Nowycky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316:440–443

    Google Scholar 

  • Ochi R (1970) The slow inward current and the action of manganese ions in guinea-pig's myocardium. Pflügers Arch 316:81–94

    Google Scholar 

  • Ochi R (1975) Manganese action potentials in mammalian cardiac muscle. Experientia 31:1048–1049

    Google Scholar 

  • Ochi R, Hino N, Okuyama H (1986) β-Adrenergic modulation of the slow gating process of cardiac calcium channels. Jpn Heart J 27 (Suppl):51–55

    Google Scholar 

  • Ohmori H, Yoshii M (1977) Surface potential reflected in both gating and permeation mechanisms of sodium and calcium channels of the tunicate egg cell membrane. J Physiol (Lond) 267:429–463

    Google Scholar 

  • Ohya Y, Kitamura K, Kuriyama H (1987) Modulation of ionic currents in smooth muscle balls of the rabbit intestine by intracellularly perfused ATP and cyclic AMP. Pflügers Arch 408:465–473

    Google Scholar 

  • Ohya Y, Kitamura K, Kuriyama H (1988) Regulation of calcium current by intracellular calcium in smooth muscle cells of rabbit portal vein. Circ Res 62:375–383

    Google Scholar 

  • Osterrieder W, Brum G, Hescheler J, Trautwein W, Flockerzi V, Hofmann F (1982) Injection of subunits of cyclic AMP-dependent protein kinase into cardiac myocytes modulates Ca2+ current. Nature 298:576–578

    Google Scholar 

  • Osugi T, Imaizumi T, Mizushima A, Uchida S, Yoshida H (1986) 1-Oleoyl-2-acetyl-glycerol and phorbol diester stimulate Ca2+ influx through Ca2+ channels in neuroblastoma × glioma hybrid NG108-15 cells. Eur J Pharmacol 126:47–51

    Google Scholar 

  • Pacaud P, Loirand G, Mironneau C, Mironneau J (1987) Opposing effects of noradrenaline on the two classes of voltage-dependent calcium channels of single vascular smooth muscle cells in short-term primary culture. Pflügers Arch 410:557–559

    Google Scholar 

  • Palade PT, Almers W (1985) Slow calcium and potassium currents in frog skeletal muscle: their relationship and pharmacologic properties. Pflügers Arch 405:91–101

    Google Scholar 

  • Paupardin-Tritsch D, Hammond C, Gerschenfeld HM, Nairn AC, Greengard P (1986) cGMP-dependent protein kinase enhances Ca2+ current and potentiates the serotonin-induced Ca2+ current increase in snail neurones. Nature 323:812–814

    Google Scholar 

  • Payett MD, Schanne OF, Ruiz-Ceretti E (1981) Frequency dependence of the ionic currents determining the action potential repolarization in rat ventricular muscle. J Mol Cell Cardiol 13:207–215

    Google Scholar 

  • Peach MJ (1977) Renin-angiotensin system: biochemistry and mechanism of action. Physiol Rev 57:313–370

    Google Scholar 

  • Pelzer D, Trautwein W, McDonald TF (1982) Calcium channel block and recovery from block in mammalian ventricular muscle treated with organic channel inhibitors. Pflügers Arch 394:97–105

    Google Scholar 

  • Pelzer D, Cavalié A, Trautwein W (1985) Guinea-pig ventricular myocytes treated with D600: mechanism of calcium-channel blockade at the level of single channels. In: Lichtlen PR (ed) Recent aspects in calcium antagonism. Schattauer, Stuttgart, pp 3–26

    Google Scholar 

  • Pelzer D, Cavalié A, Trautwein W (1986a) Activation and inactivation of single calcium channels in cardiac cells. Exp Brain Res 14:17–34

    Google Scholar 

  • Pelzer D, Cavalié A, McDonald TF, Trautwein W (1986b) Macroscopic and elementary currents through cardiac calcium channels. Prog Zool 33:83–98

    Google Scholar 

  • Pelzer D, Cavalié A, Flockerzi V, Hofmann F, Trautwein W (1988) Reconstitution of solubilized and purified dihydropyridine receptor from skeletal muscle microsomes as two single calcium channel conductances with different functional properties. In: Morad M, Nayler W, Kazda S, Schramm M (eds) The calcium channel: structure, function and implications. Springer, Berlin Heidelberg New York Tokyo, pp 217–230

    Google Scholar 

  • Pelzer D, Cavalié A, McDonald TF, Trautwein W (1989a) Calcium channels in single heart cells. In: Piper HM, Isenberg G (eds) Isolated adult cardiomyocytes II. CRC Press, Boca Raton, pp 29–73

    Google Scholar 

  • Pelzer D, Grant AO, Cavalié A, Pelzer S, Sieber M, Hofmann F, Trautwein W (1989b) Calcium channels reconstituted from the skeletal muscle dihydropyridine receptor protein complex and its α1 peptide subunit in lipid bilayers. Ann NY Acad Sci 560:138–154

    Google Scholar 

  • Penner R, Dreyer F (1986) Two different presynaptic calcium currents in mouse motor nerve terminals. Pflügers Arch 406:190–197

    Google Scholar 

  • Penner R, Matthews G, Neher E (1988) Regulation of calcium influx by second messengers in rat mast cells. Nature 334:499–504

    Google Scholar 

  • Perez-Reyez E, Kim HS, Lacerda AE, Horne W, Wei X, Rampe D, Campbell KP, Brown AM, Birnbaumer L (1989) Induction of calcium currents by the expression of the α1-subunit of the dihydropyridine receptor from skeletal muscle. Nature 340:233–236

    Google Scholar 

  • Perney TM, Hirning LD, Leeman SE, Miller RJ (1986) Multiple calcium channels mediate neurotransmitter release from peripheral neurons. Proc Natl Acad Sci USA 83:6656–6659

    Google Scholar 

  • Pfaffinger PJ, Martin JM, Hunter DD, Nathanson NM, Hille B (1985) GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature 317:536–538

    Google Scholar 

  • Pietrobon D, Prod'hom B, Hess P (1988) Conformational changes associated with ion permeation in L-type calcium channels. Nature 333:373–376

    Google Scholar 

  • Plant TD, Standen NB, Ward TA (1983) The effects of injection of calcium ions and calcium chelators on calcium channel inactivation in Helix neurones. J Physiol (Lond) 334:189–212

    Google Scholar 

  • Poggioli J, Sulpice JC, Vassort G (1986) Inositol phosphate production following α1-adrenergic, muscarinic or electrical stimulation in isolated rat heart. FEBS Lett 206:292–298

    Google Scholar 

  • Porzig H (1990) Pharmacological modulation of voltage-dependent Ca channels in intact cells. In: Blaustein MP et al. (eds) Reviews of Physiology, Biochemistry and Pharmacology, Vol 114. Springer, Berlin Heidelberg New York, pp 209–262

    Google Scholar 

  • Potreau D, Raymond G (1982) Existence of a sodium-induced calcium release mechanism on frog skeletal muscle fibres. J Physiol (Lond) 333:463–480

    Google Scholar 

  • Powell JA, Fambrough DM (1973) Electrical properties of normal and dysgenic mouse skeletal muscle in culture. J Cell Physiol 82:21–38

    Google Scholar 

  • Powell T, Twist VW (1976) Isoprenaline stimulation of cyclic AMP production by isolated cells from adult rat myocardium. Biochem Biophys Res Commun 72:1218–1225

    Google Scholar 

  • Prod'hom B, Pietrobon D, Hess P (1987) Direct measurement of proton transfer rates to a group controlling the dihydropyridine-sensitive Ca2+ channel. Nature 329:243–246

    Google Scholar 

  • Prosser CL, Kreulen DL, Weigel RJ, Yau W (1977) Prolonged potentials in gastrointestinal muscles induced by calcium chelation. Am J Physiol 233:C19–C24

    Google Scholar 

  • Quastel DM, Saint DA, Guan YY (1986) Does the motor nerve terminal have only one transmitter release system and only one species of Ca2+ channel? Soc Neurosci Abstr 12:28

    Google Scholar 

  • Rane SG, Dunlap K (1986) Kinase C activator 1,2-oleoylacetylglycerol attenuates voltage-dependent calcium current in sensory neurons. Proc Natl Acad Sci USA 83:184–188

    Google Scholar 

  • Rane SG, Holz IV GG, Dunlap K (1987) Dihydropyridine inhibition of neuronal calcium current and substance P release. Pflügers Arch 409:361–366

    Google Scholar 

  • Rapoport RM, Ginsburg R, Waldman SA, Murad F (1986) Effects of atriopeptins on relaxation and cyclic GMP levels in human coronary artery in vitro. Eur J Pharmacol 124:193–196

    Google Scholar 

  • Rasmussen H, Forder J, Kojima K, Scriabine A (1984) TPA-induced contraction of isolated rabbit vascular smooth muscle. Biochem Biophys Res Commun 122:776–784

    Google Scholar 

  • Reuter H (1965) Über die Wirkung von Adrenalin auf den zellulären Ca-Umsatz des Meerschweinchenvorhofs. Naunyn-Schmiedebergs Arch Pharmacol 251:401–412

    Google Scholar 

  • Reuter H (1966) Strom-Spannungsbeziehungen von Purkinje-Fasern bei verschiedenen extrazellulären Kalzium-Konzentrationen und unter Adrenalineinwirkung. Pflügers Arch 287:357–367

    Google Scholar 

  • Reuter H (1967) The dependence of slow inward current in Purkinje fibres on the extracellular calcium-concentration. J Physiol (Lond) 192:479–492

    Google Scholar 

  • Reuter H (1973) Divalent cations as charge carriers in excitable membranes. Prog Biophys Mol Biol 26:3–43

    Google Scholar 

  • Reuter H (1974) Localization of β-adrenergic receptors, and effects of noradrenaline and cyclic nucleotides on action potentials, ionic currents and tension in mammalian cardiac muscle. J Physiol (Lond) 242:429–451

    Google Scholar 

  • Reuter H (1979) Properties of two inward membrane currents in the heart. Annu Rev Physiol 41:413–424

    Google Scholar 

  • Reuter H (1983) Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301:569–574

    Google Scholar 

  • Reuter H (1985) A variety of calcium channels. Nature 316:391

    Google Scholar 

  • Reuter H (1987) Modulation of ion channels by phosphorylation and second messengers. News Physiol Sci 2:168–171

    Google Scholar 

  • Reuter H, Scholz H (1977a) A study of the ion selectivity and the kinetic properties of the calcium dependent slow inward current in mammalian cardiac muscle. J Physiol (Lond) 264:17–47

    Google Scholar 

  • Reuter H, Scholz H (1977b) The regulation of the calcium conductance of cardiac muscle by adrenaline. J Physiol (Lond) 264:49–62

    Google Scholar 

  • Reuter H, Stevens CF, Tsien RW, Yellen G (1982) Properties of single calcium channels in cardiac cell culture. Nature 297:501–504

    Google Scholar 

  • Reuter H, Cachelin AB, de Peyer JE, Kokubun S (1983) Modulation of calcium channels in cultured cardiac cells by isoproterenol and 8-bromo-cAMP. Cold Spring Harbor Symp Quant Biol 48:193–200

    Google Scholar 

  • Reynolds IJ, Wagner JA, Snyder SH, Thayer SA, Olivera BM, Miller RJ (1986) Brain voltagesensitive calcium channel subtypes of differentiated by ω-conotoxin fraction GVIA. Proc Natl Acad Sci USA 83:8804–8807

    Google Scholar 

  • Rieger F, Bournaud R, Shimahara T, Garcia L, Pincon-Raymond M, Romey G, Lazdunski M (1987) Restoration of dysgenic muscle contraction and calcium channel function by co-culture with normal spinal cord neurons. Nature 330:563–566

    Google Scholar 

  • Rink TJ (1988) A real receptor-operated calcium channel? Nature 334:649–650

    Google Scholar 

  • Rink TJ, Hallam TJ (1984) What turns platelets on? Trends Biol Sci 9:215–219

    Google Scholar 

  • Rios E, Brum G (1987) Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature 325:717–720

    Google Scholar 

  • Rogers TB (1984) High affinity angiotensin II receptors in myocardial sarcolemmal membranes. J Biol Chem 259:8106–8114

    Google Scholar 

  • Röhrkasten A, Meyer HE, Nastainczyk W, Sieber M, Hofmann F (1988a) cAMP-dependent protein kinase rapidly phosphorylates serine-687 of the skeletal muscle receptor for calcium channel blockers. J Biol Chem 263:15325–15329

    Google Scholar 

  • Röhrkasten A, Meyer HE, Schneider T, Nastainczyk W, Sieber M, Jahn H, Regulla S, Ruth P, Flockerzi V, Hofmann F (1988b) Site-specific phosphorylation of the skeletal muscle receptor for calcium-channel blockers by cAMP-dependent protein kinase. In: Morad M, Nayler W, Kazda S, Schramm M (eds) The calcium channel: structure, function and implications. Springer, Berlin Heidelberg New York Tokyo, pp 193–199

    Google Scholar 

  • Rorsman P (1988) Two types of Ca2+ currents with different sensitivities to organic Ca2+ channel antagonists in guinea pig pancreatic α2 cells. J Gen Physiol 91:243–254

    Google Scholar 

  • Rosenberg RL, Hess P, Reeves J, Smilowitz H, Tsien RW (1986) Calcium channels in planar lipid bilayers: new insights into the mechanisms of permeation and gating. Science 231:1564–1566

    Google Scholar 

  • Rosenberg RL, Hess P, Tsien RW (1988) Cardiac calcium channels in planar lipid bilayers. L-type channels and calcium-permeable channels open at negative membrane potentials. J Gen Physiol 92:27–54

    Google Scholar 

  • Rougier O, Vassort G, Garnier D, Gargouil YM, Coraboeuf E (1969) Existence and role of a slow inward current during the frog atrial action potential. Pflügers Arch 308:91–110

    Google Scholar 

  • Sage SO, Rink TJ (1987) The kinetics of changes in intracellular calcium concentration in fura-2-loaded human platelets. J Biol Chem 262:16364–16369

    Google Scholar 

  • Sakmann B, Neher E (eds) (1983) Single-channel recording. Plenum, New York

    Google Scholar 

  • Sakmann B, Neher E (1984) Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol 46:455–472

    Google Scholar 

  • Sánchez JA, Stefani E (1978) Inward calcium current in twitch muscle fibres of the frog. J Physiol (Lond) 283:197–209

    Google Scholar 

  • Sánchez JA, Stefani E (1983) Kinetic properties of calcium channels of twitch muscle fibres of the frog. J Physiol (Lond) 337:1–17

    Google Scholar 

  • Sato R, Noma A, Kurachi Y, Irisawa H (1985) Effects of intracellular acidification on membrane currents in ventricular cells of the guinea-pig. Circ Res 57:553–561

    Google Scholar 

  • Satoh H, Hashimoto K, Seyama I (1982) Effects of changes in extracellular pH on the membrane current of rabbit atrial node cells. Jpn Heart J 23:57–59

    Google Scholar 

  • Schmid A, Renaud JF, Lazdunski M (1985) Short term and long term effects of β-adrenergic effectors and cyclic AMP on nitrendipine-sensitive voltage-dependent Ca2+ channels of skeletal muscle. J Biol Chem 260:13041–13046

    Google Scholar 

  • Schneider MF, Chandler WK (1973) Voltage-dependent charge movement in skeletal muscle: a possible step in excitation-contraction coupling. Nature 242:244–246

    Google Scholar 

  • Schrader J, Baumann G, Gerlach E (1977) Adenosine as inhibitor of myocardial effects of catecholamines. Pflügers Arch 372:29–35

    Google Scholar 

  • Schultheiss HP, Janda I, Kühl U, Ulrich G, Morad M (1988) Antibodies against the ADP/ATP carrier interact with the calcium channel and induce cytotoxicity by enhancement of calcium permeability. In: Morad W, Nayler W, Kazda S, Schramm M (eds) The calcium channel: structure, function and implications. Springer, Berlin Heidelberg New York Tokyo, pp 619–631

    Google Scholar 

  • Schwartz LM, McCleskey EM, Almers W (1985) Dihydropyridine receptors in muscle are voltage-dependent but most are not functional calcium channels. Nature 314:747–750

    Google Scholar 

  • Scott RH, Dolphin AC (1987) Activation of a G protein promotes agonist responses to calcium channel ligands. Nature 330:760–762

    Google Scholar 

  • Seager MJ, Takahashi M, Catterall WA (1988) Molecular properties of dihydropyridine-sensitive calcium channels from skeletal muscle. In: Morad M, Nayler W, Kazda S, Schramm M (eds) The calcium channel: Structure, function and implications. Springer, Berlin Heidelberg New York Tokyo, pp 200–210

    Google Scholar 

  • Seamon K, Daly J (1983) Forskolin, cyclic AMP and cellular physiology. TIPS 4:120–123

    Google Scholar 

  • Seamon K, Wetzel B (1984) Interaction of forskolin with dually regulated adenylate cyclase. Adv Cyclic Nucl Res 17:91–99

    Google Scholar 

  • Sharp AH, Gaver M, Kahl SD, Campbell KP (1988) Structural characterization of the 32 kDa subunit of the skeletal muscle 1,4-dihydropyridine receptor. Biophys J 53:231a

    Google Scholar 

  • Shenolikar S, Karbon EW, Enna SJ (1986) Phorbol esters down-regulate protein kinase C in rat brain cerebral cortical slices. Biochem Biophys Res Commun 139:251–258

    Google Scholar 

  • Shibata EF, Giles WR (1985) Ionic currents that generate the spontaneous diastolic depolarization in individual cardiac pacemaker cells. Proc Natl Acad Sci USA 82:7796–7800

    Google Scholar 

  • Shibata EF, Northup JK, Momose Y, Giles W (1986) Muscarinic receptor and guanine nucleotides mediated inhibition of ICa in single cells from bullfrog atrium. Biophys J 49:349a

    Google Scholar 

  • Shibata EF, Northup JK, Momose Y, Giles W (1987) Is diacylglycerol a second messenger for the muscarinic guanine nucleotide mediated inhibition of calcium current in bullfrog atrium? Biophys J 51:413a

    Google Scholar 

  • Shimoni Y (1981) Parameters affecting the slow inward channel repriming process in frog atrium. J Physiol (Lond) 320:269–291

    Google Scholar 

  • Shimoni Y, Raz S, Gotsman M (1984) Two potentially arrhythmogenic mechanisms of adrenaline action in cardiac muscle. J Mol Cell Cardiol 16:471–476

    Google Scholar 

  • Shimoni Y, Spindler AJ, Noble D (1987) The control of calcium current reactivation by catecholamines and acetylcholine in single guinea-pig ventricular myocytes. Proc R Soc Lond [Biol] 230:267–278

    Google Scholar 

  • Sibley DR, Nambi P, Peters JR, Lefkowitz RJ (1984) Phorbol diesters promote β-adrenergic receptor phosphorylation and adenylate cyclase desensitization in duck erythrocytes. Biochem Biophys Res Commun 121:973–979

    Google Scholar 

  • Singh J, Flitney FW (1981) Inotropic responses of the frog ventricle to dibutyryl cyclic AMP and 8-bromo-cyclic GMP and related changes in endogenous cyclic nucleotide levels. Biochem Pharmacol 30:1475–1481

    Google Scholar 

  • Sperelakis N (1988) Regulation of calcium slow channels of cardiac muscle by cyclic nucleotides and phosphorylation. J Mol Cell Cardiol 20 (Suppl II):75–105

    Google Scholar 

  • Sperelakis N, Schneider J (1976) A metabolic control mechanism for calcium ion influx that may protect the ventricular myocardial cell. Am J Cardiol 37:1079–1085

    Google Scholar 

  • Sperti G, Colucci WS (1987) Phorbol ester-stimulated bidirectional transmembrane calcium flux in A7r5 vascular smooth muscle cells. Mol Pharmacol 32:37–42

    Google Scholar 

  • Stanfield PR (1977) A calcium-dependent inward current in frog skeletal muscle fibres. Pflügers Arch 368:267–270

    Google Scholar 

  • Stefani E, Toro L, García J (1987) α-and β-adrenergic stimulation of fast and slow Ca2+ channels in frog skeletal muscle. Biophys J 51:425a

    Google Scholar 

  • Strong JA, Fox AP, Tsien RW, Kaczmarek LK (1987) Stimulation of protein kinase C recruits covert calcium channels in Aplysia bag cell neurons. Nature 325:714–717

    Google Scholar 

  • Sturek M, Hermsmeyer K (1986) Calcium and sodium channels in spontaneously contracting vascular muscle cells. Science 233:475–478

    Google Scholar 

  • Tajima T, Tsuji Y, Brown JH, Pappano AJ (1987) Pertussis toxin-insensitive phosphoinositide hydrolysis, membrane depolarization, and positive inotropic effect of carbachol in chick atria. Circ Res 61:436–445

    Google Scholar 

  • Takahashi M, Catterall WA (1987a) Identification of an α subunit of dihydropyridine-sensitive brain calcium channels. Science 236:88–91

    Google Scholar 

  • Takahashi M, Catterall WA (1987b) Dihydropyridine-sensitive calcium channels in cardiac and skeletal membranes: studies with antibodies against the α subunit. Biochemistry 26:5518–5526

    Google Scholar 

  • Takahashi M, Seager MJ, Jones JF, Reber BFX, Catterall WA (1987) Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc Natl Acad Sci USA 84:5478–5482

    Google Scholar 

  • Takai Y, Minakuchi R, Kikkawa U, Sano K, Kaibuchi K, Yu B, Matsubara T, Nishizuka Y (1982) Membrane phospholipid turnover, receptor function, and protein phosphorylation. Prog Brain Res 56:287–301

    Google Scholar 

  • Takuwa Y, Takuwa N, Rasmussen H (1986) Carbachol induces a rapid and sustained hydrolysis of polyphosphoinositide in bovine tracheal smooth muscle measurements of the mass of polyphosphoinositides, 1,2-diacylglycerol, and phosphatidic acid. J Biol Chem 261:14670–14675

    Google Scholar 

  • Talvenheimo JA, Worley JF III, Nelson MT (1987) Heterogeneity of calcium channels from a purified dihydropyridine receptor preparation. Biophys J 52:891–899

    Google Scholar 

  • Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328:313–318

    Google Scholar 

  • Tanabe T, Beam KG, Powell JA, Numa S (1988) Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature 336:134–139

    Google Scholar 

  • Tang CM, Morad M (1988) Amiloride selectively blocks the low threshold (T) calcium channel. Biophys J 53:22a

    Google Scholar 

  • Tang CM, Presser F, Morad M (1988) Amiloride selectively blocks the low threshold (T) calcium channel. Science 240:213–215

    Google Scholar 

  • Taniguchi J, Noma A, Irisawa H (1983) Modification of the cardiac action potential by intracellular injection of adenosine triphosphate and related substances in guinea pig single ventricular cells. Circ Res 53:131–139

    Google Scholar 

  • Taylor CJ, Meisheri KD (1986) Inhibitory effects of a synthetic atrial peptide on contractions and 45Ca fluxes in vascular smooth muscle. J Pharmacol Exp Ther 237:803–808

    Google Scholar 

  • Ten Eick R, Nawrath H, McDonald TF, Trautwein W (1976) On the mechanism of the negative inotropic effect of acetylcholine. Pflügers Arch 361:207–213

    Google Scholar 

  • Teutsch T, Beer W, Frisch G, Weible A, Ruoff HJ (1988) Interaction between phorbol dibutyrate and forskolin on cAMP accumulation and force in isolated left guinea pig atria. Naunyn-Schmiedebergs Arch Pharmacol 337:R61

    Google Scholar 

  • Toro L, Stefani E (1987) Ca2+ and K+ current in cultured vascular smooth muscle cells from rat aorta. Pflügers Arch 408:417–419

    Google Scholar 

  • Trautwein W, Pelzer D (1985a) Voltage-dependent gating of single calcium channels in the cardiac cell membrane and its modulation by drugs. In: Marmé D (ed) Calcium and cell physiology. Springer, Berlin Heidelberg New York Tokyo, pp 53–93

    Google Scholar 

  • Trautwein W, Pelzer D (1985b) Gating of single calcium channels in the membrane of enzymatically isolated ventricular myocytes from adult mammalian hearts. In: Zipes DP, Jalife J (eds) Cardiac electrophysiology and arrhythmias. Grune and Stratton, Orlando, pp 31–42

    Google Scholar 

  • Trautwein W, Pelzer D (1986) Single calcium channels in isolated cardiac cells. In: Bader H, Gietzen K, Rosenthal J, Rüdel R, Wolf HU (eds) Intracellular calcium regulation. Manchester University Press, Manchester, pp 15–34

    Google Scholar 

  • Trautwein W, Pelzer D (1988) Kinetics and β-adrenergic modulation of cardiac Ca2+ channels. In: Morad M, Nayler W, Kazda S, Schramm M (eds) The calcium channel: structure, function and implications. Springer, Berlin Heidelberg New York Tokyo, pp 39–53

    Google Scholar 

  • Trautwein W, McDonald TF, Tripathi O (1975) Calcium conductance and tension in mammalian ventricular muscle. Pflügers Arch 354:55–74

    Google Scholar 

  • Trautwein W, Taniguchi J, Noma A (1982) The effect of intracellular cyclic nucleotides and calcium on the action potential and acetylcholine response of isolated cardiac cells. Pflügers Arch 392:307–314

    Google Scholar 

  • Trautwein W, Kameyama M, Hescheler J, Hofmann F (1986) Cardiac calcium channels and their transmitter modulation. Prog Zool 33:163–182

    Google Scholar 

  • Trautwein W, Cavalié A, Flockerzi V, Hofmann F, Pelzer D (1987) Modulation of calcium channel function by phosphorylation in guinea pig ventricular cells and phospholipid bilayer membranes. Circ Res 61 (Suppl I):I–17–I–23

    Google Scholar 

  • Triggle DJ, Janis RA (1987) Calcium channel ligands. Annu Rev Pharmacol Toxicol 27:347–370

    Google Scholar 

  • Trube G (1983) Enzymatic dispersion of heart and other tissues. In: Sakmann B, Neher E (eds) Single-channel recording. Plenum, New York, pp 69–76

    Google Scholar 

  • Tseng GN (1988) Calcium current restitution in mammalian ventricular myocytes is modulated by intracellular calcium. Circ Res 63:468–482

    Google Scholar 

  • Tseng GN, Robinson RB, Hoffman BF (1987) Passive properties and membrane currents of canine ventricular myocytes. J Gen Physiol 90:671–701

    Google Scholar 

  • Tsien RW (1973) Adrenaline-like effects of intracellular iontophoresis of cyclic AMP in cardiac Purkinje fibers. Nature 245:120–122

    Google Scholar 

  • Tsien RW (1983) Calcium channels in excitable cell membranes. Annu Rev Physiol 45:341–358

    Google Scholar 

  • Tsien RW (1987) Calcium currents in heart cells and neurons. In: Kaczmarek LK, Levitan IB (eds) Neuromodulation. The biochemical control of neuronal excitability. Oxford University Press, Oxford, pp 206–242

    Google Scholar 

  • Tsien RW, Giles WR, Greengard P (1972) Cyclic AMP mediates the effects of adrenaline on cardiac Purkinje fibers. Nature 240:181–183

    Google Scholar 

  • Tsien RW, Bean BP, Hess P, Lansman JB, Nilius B, Nowycky MC (1986) Mechanisms of calcium channel modulation by β-adrenergic agents and dihydropyridine calcium agonists. J Mol Cell Cardiol 18:691–710

    Google Scholar 

  • Tsien RW, Hess P, McCleskey EW, Rosenberg RL (1987) Calcium channels: mechanisms of selectivity, permeation, and block. Annu Rev Biophys Biophys Chem 16:265–290

    Google Scholar 

  • Tsien RW, Lipscombe D, Madison DV, Bley RK, Fox AP (1988) Multiple types of neuronal calcium channels and their selective modulation. TINS 11:431–438

    Google Scholar 

  • Tsuji Y, Inoue D, Pappano AJ (1985) β-Adrenoceptor agonist accelerates recovery from inactivation of calcium-dependent action potentials. J Mol Cell Cardiol 17:517–521

    Google Scholar 

  • Tytgat J, Nilius B, Vereecke J, Carmeliet E (1988) The T-type Ca channel in guinea-pig ventricular myocytes is insensitive to isoproterenol. Pflügers Arch 411:704–706

    Google Scholar 

  • Uehara A, Hume JR (1985) Interactions of organic calcium channel antagonists with calcium channels in single frog atrial cells. J Gen Physiol 85:621–647

    Google Scholar 

  • Uglesity A, Sharma VK, Sheu SS (1987) Effects of protein kinase C activation on the inotropic response induced by α-adrenoceptor stimulation in rat myocardium. Biophys J 51:264a

    Google Scholar 

  • Ui M (1984) Islet-activating protein, pertussis toxin: a probe for functions of the inhibitory guanin nucleotide regulatory component of adenylate cyclase. TIPS 5:277–279

    Google Scholar 

  • Vaghy PL, McKenna E, Schwartz A (1988) Molecular characterization of the 1,4-dihydropyridine receptor in skeletal muscle. In: Morad M, Nayler W, Kazda S, Schramm M (eds) The calcium channel: structure, function and implications. Springer, Berlin Heidelberg, New York Tokyo, pp 211–216

    Google Scholar 

  • van Breemen C, Aaronson P, Loutzenhiser R (1979) Sodium-calcium interactions in mammalian smooth muscle. Pharmacol Rev 30:167–208

    Google Scholar 

  • Vandaele S, Fosset M, Galizzi JP, Lazdunski M (1987) Monoclonal antibodies that coimmunoprecipitate the 1,4-dihydropyridine and phenylalkylamine receptors and reveal the Ca2+ channel structure. Biochemistry 26:5–9

    Google Scholar 

  • Vassort G, Rougier O, Garnier D, Sauviat MP, Coraboeuf E, Gargouil YM (1969) Effects of adrenaline on membrane inward currents during the cardiac action potential. Pflügers Arch 309:70–81

    Google Scholar 

  • Vergara J, Tsien RY, Delay M (1985) Inositol 1,4,5-trisphosphate: a possible chemical link in excitation-contraction coupling in muscle. Proc Natl Acad Sci USA 82:6352–6356

    Google Scholar 

  • Vilven J, Coronado R (1988) Opening of dihydropyridine calcium channels in skeletal muscle membranes by inositol trisphosphate. Nature 336:587–589

    Google Scholar 

  • Vilven J, Leung AT, Imagawa T, Sharp AH, Campbell KP, Coronado R (1988) Interaction of calcium channels of skeletal muscle with monoclonal antibodies specific for its dihydropyridine receptor. Biophys J 53:556a

    Google Scholar 

  • Vivaudou MB, Clapp LH, Walsh JV Jr, Singer JJ (1988) Regulation of one type of Ca2+ current in smooth muscle cells by diacylglycerol and acetylcholine. FASEB J 2:2497–2504

    Google Scholar 

  • Volpe P, Salviati G, Di Virgilio F, Pozzan T (1985) Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle. Nature 316:347–349

    Google Scholar 

  • Walsh JV Jr, Singer JJ (1981) Voltage clamp of single freshly dissociated smooth muscle cells: current-voltage relationships for three currents. Pflügers Arch 390:207–210

    Google Scholar 

  • Walsh JV Jr, Singer JJ (1987) Identification and characterization of major ionic currents in isolated smooth muscle cells using the voltage-clamp technique. Pflügers Arch 408:83–97

    Google Scholar 

  • Walsh KB, Kass RS (1988) Regulation of a heart potassium channel by protein kinase A and C. Science 242:67–69

    Google Scholar 

  • Wanke E, Ferroni A, Malgaroli A, Ambrosini A, Pozzan T, Meldolesi J (1987) Activation of a muscarinic receptor selectively inhibits a rapidly inactivated Ca2+ current in rat sympathetic neurons. Proc Natl Acad Sci USA 84:4313–4317

    Google Scholar 

  • Watanabe AM, Besch HR (1975) Interaction between cyclic adenosine monophosphate and cyclic guanosine monophosphate in guinea pig ventricular myocardium. Circ Res 37:309–317

    Google Scholar 

  • Watanabe AM, Lindemann JP, Fleming JW (1984) Mechanisms of muscarinic modulation of protein phosphorylation in intact ventricles. Fed Proc 43:2618–2623

    Google Scholar 

  • Weingart R, Kass RS, Tsien RW (1978) Is digitalis inotropy associated with enhanced slow inward calcium current? Nature 273:389–391

    Google Scholar 

  • Wendt-Gallitelli MF, Isenberg G (1985) Extra-and intracellular lanthanum: modified calcium distribution, inward currents and contractility in guinea pig ventricular preparations. Pflügers Arch 405:310–322

    Google Scholar 

  • West GA, Belardinelli L (1985) Correlation of sinus slowing and hyperpolarization caused by adenosine in sinus node. Pflügers Arch 403:75–81

    Google Scholar 

  • West GA, Isenberg G, Belardinelli L (1986) Antagonism of forskolin effects by adenosine in isolated hearts and ventricular myocytes. Am J Physiol 250:H769–H777

    Google Scholar 

  • White RE, Hartzell HC (1988) Effects of intracellular free magnesium on calcium current in isolated cardiac myocytes. Science 239:778–780

    Google Scholar 

  • Wilkerson RD, Paddock RJ, George WJ (1976) Effects of derivatives of cyclic AMP and cyclic GMP on contraction force of cat papillary muscles. Eur J Pharmacol 36:247–251

    Google Scholar 

  • Wilson DL, Morimoto K, Tsuda Y, Brown AM (1983) Interaction between calcium ions and surface charge as it relates to calcium currents. J Membr Biol 72:117–130

    Google Scholar 

  • Wise BC, Raynor RL, Kuo JF (1982) Phospholipid-sensitive Ca2+-dependent protein kinase from heart. I. Purification and general properties. J Biol Chem 257:8481–8488

    Google Scholar 

  • Wolff J, Hope-Cook G, Goldhammer A, Londoz C, Hewlett E (1984) Bordetella pertussis: multiple attacks on host cell cyclic AMP regulation. Adv Cyclic Nucl Res 17:161–172

    Google Scholar 

  • Worley JF III, Deitmer JW, Nelson MT, (1986) Single nisoldipine-sensitive calcium channels in smooth muscle cells isolated from rabbit mesenteric artery. Proc Natl Acad Sci USA 83:5746–5750

    Google Scholar 

  • Wright GB, Alexander RW, Ekstein LS, Gimbrone MA Jr (1983) Characterization of the rabbit ventricular myocardial receptor for angiotensin II. Mol Pharmacol 24:213–221

    Google Scholar 

  • Yaari Y, Hamon B, Lux HD (1987) Development of two types of calcium channels in cultured mammalian hippocampal neurons. Science 235:680–682

    Google Scholar 

  • Yatani A, Goto M (1983) The effect of extracellular low pH on the plateau current in isolated, single rat ventricular cells — a voltage clamp study. Jpn J Physiol 33:403–415

    Google Scholar 

  • Yatani A, Codina J, Imoto Y, Reeves JP, Birnbaumer L, Brown AM (1987a) A G protein directly regulates mammalian cardiac calcium channels. Science 238:1288–1292

    Google Scholar 

  • Yatani A, Codina J, Brown AM, Birnbaumer L (1987b) Direct activation of mammalian atrial muscarinic potassium channels by GTP regulatory protein Gk. Science 235:207–211

    Google Scholar 

  • Yatani A, Seidel CL, Allen J, Brown AM (1987c) Whole-cell and single-channel calcium currents of isolated smooth muscle cells from saphenous vein. Circ Res 60:523–533

    Google Scholar 

  • Yatani A, Imoto Y, Codina J, Hamilton SL, Brown AM, Birnbaumer L (1988) The stimulatory G protein of adenylyl cyclase, Gs, also stimulates dihydropyridine-sensitive Ca2+ channels. Evidence for direct regulation independent of phosphorylation by cAMP-dependent protein kinase or stimulation by a dihydropyridine agonist. J Biol Chem 263:9887–9895

    Google Scholar 

  • Yoshino M, Yabu H (1985) Single Ca channel currents in mammalian visceral smooth muscle cells. Pflügers Arch 404:285–286

    Google Scholar 

  • Zschauer A, van Breemen C, Bühler FR, Nelson MT (1988) Calcium channels in thrombin-activated human platelet membrane. Nature 334:703–705

    Google Scholar 

References

  • Heßlinger B, McDonald TF, Pelzer D, Shuba YM, Trautwein W (1989) Whole-cell calcium current in guinea-pig ventricular myocytes dialysed with guanine nucleotides. J Physiol (Lond) (in press)

    Google Scholar 

  • Hosey MM, Chang FC, O'Callahan CM, Ptasienski J (1989) L-type calcium channels in cardiac and skeletal muscle: purification and phosphorylation. Ann NY Acad Sci 560:27–38

    Google Scholar 

  • Mikami A, Imoto K, Tanabe T, Niidome T, Mori Y, Takeshima H, Narumiya S, Numa S (1989) Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 340:230–233

    Google Scholar 

  • Schneider T, Hofmann H (1988) The bovine cardiac receptor for calcium channel blockers is a 195-kDa protein. Eur J Biochem 174:369–375

    Google Scholar 

  • Trautwein W, Cavalié A, Allen TJA, Shuba YM, Pelzer S, Pelzer D (1989) Direct and indirect regulation of cardiac L-type calcium channels by β-adrenoreceptor agonists. Adv Second Messenger Phosphoprotein Res (in press)

    Google Scholar 

  • Yatani A, Brown AM (1989) Rapid β-adrenergic modulation of cardiac calcium channel currents by a fast G protein pathways. Science 245:71–74

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this chapter

Cite this chapter

Pelzer, D., Pelzer, S., McDonald, T.F. (1990). Properties and regulation of calcium channels in muscle cells. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 114. Reviews of Physiology, Biochemistry and Pharmacology, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0031019

Download citation

  • DOI: https://doi.org/10.1007/BFb0031019

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51693-4

  • Online ISBN: 978-3-540-46754-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics