Skip to main content

Molecular properties of calcium channels

  • Chapter
  • First Online:

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 114))

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Bmax :

maximal density of binding sites

CHAPS:

3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulphonate

DHP:

dihydropyridine

ECC:

excitation-contraction coupling

G-proteins:

GTP-binding proteins

kb:

kilobase

kDa:

kilodalton

PAGE:

polyacrylamide gel electrophoresis

PTX:

pertussis toxin

Kd :

dissociation constant

k−1 :

dissociation rate constant

k+1 :

association rate constant

SDS:

sodium dodecyl sulphate

T-tubule:

transverse tubule

SR:

sarcoplasmic reticulum

BAY K 8644:

methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)-pyridine-5-carboxylate

DPI 201-106:

4-3′-(4″-benzhydril-1″-piperazinyl)-2′-hydroxy-propoxy-1H-indole-2-carbonitrile

BDF 8784:

carries a methyl group instead of the CN group

[N-methyl-3H]LU49888:

((−)-5-[(3-azidophenethyl)[N-methyl-3H]methylamino]-2-(3,4,5-trimethoxy-phenyl)-2-isopropylvalero nitrile

PN200-110:

isopropyl-4-(2,1,3-benzoxadiazol-4-yl)-1,4-dihydro-2,6-dimethyl-5-methoxy-carbonyl-pyridine-3-carboxylate

202-791:

isopropyl-4-(2,1,3-benzoxadiazol-4-yl)-1,4-dihydro-2,6-dimethyl-5-nitro-3-pyridine carboxylate

References

  • Abe T, Saisu H (1987) Identification of the receptor for omega-conotoxin in brain. Probable components of the calcium channel. J Biol Chem 262:9877–9882

    Google Scholar 

  • Abe T, Koyano K, Saisu H, Nishiuchi Y, Sakakibara S (1986) Binding of omega-conotoxin to receptor sites associated with the voltage-sensitive calcium channel. Neurosci Lett 71:203–208

    Google Scholar 

  • Affolter H, Coronado R (1985) Agonists Bay-K8644 and CGP-28392 open calcium channels reconstituted from skeletal muscle transverse tubules. Biophys J 48:341–347

    Google Scholar 

  • Almers W, McCleskey EW, Palade PT (1985) The mechanism of ion selectivity in calcium channels of skeletal muscle membranes. Prog Zool 33:61–73

    Google Scholar 

  • Arahata K, Ishiura S, Ishiguro T, Tsukahara T, Suhara Y, Eguchi C, Ishihara T, Nonaka I, Ozawa E, Sugita H (1988) Immunostaining of skeletal and cardiac muscle surface membrane with antibody against Duchenne muscular dystrophy peptide. Nature 333:861–863

    Google Scholar 

  • Arahata K, Ishiura S, Tsukahara T, Sugita H (1989) Dystrophin digest. Nature 337:606

    Google Scholar 

  • Armah BI, Pfeiffer T, Ravens U (1989) Reversal of the cardiotonic and action potential prolonging effects of DPI 201-106 by BDF 8784, a methyl-indol derivative. Br J Pharmacol 96:807–816

    Google Scholar 

  • Armstrong CM (1981) Sodium channels and gating currents. Physiol Rev. 61:644–683

    Google Scholar 

  • Atchison WD, Adgate L, Beaman CM (1988) Effects of antibiotics on uptake of calcium into isolated nerve terminals. J Exp Pharmacol Toxicol 245:394–401

    Google Scholar 

  • Auguet M, Delaflotte S, Chabrier PE, Pirotzky E, Clostre F, Braquet P (1988) Endothelin and Ca++ agonist Bay K 8644: different vasoconstrictive properties. Biochem Biophys Res Commun 156:186–192

    Google Scholar 

  • Balwierczak JL, Johnson CL, Schwartz A (1987) The relationship between the binding site of [3H]-d-cis-diltiazem and that of other non-dihydropyridine calcium entry blockers in cardiac sarcolemma. Mol Pharmacol 31:175–179

    Google Scholar 

  • Barchi RL (1988) Probing the molecular structure of the voltage-dependent sodium channel. Annu Rev Neurosci 11:455–495

    Google Scholar 

  • Barhanin J, Coppola T, Schmid A, Borsotto M, Lazdunski M (1987) The calcium channel antagonists receptor from rabbit skeletal muscle. Reconstitution after purification and subunit characterization. Eur J Biochem 164:525–531

    Google Scholar 

  • Barhanin J, Schmid A, Lazdunski M (1988) Properties of structure and interaction of the receptor for omega-conotoxin, a polypeptide active on Ca2+ channels. Biochem Biophys Res Commun 150:1051–1062

    Google Scholar 

  • Beam KG, Knudson CM (1988) Calcium currents in embryonic and neonatal mammalian skeletal muscle. J Gen Physiol 91:781–798

    Google Scholar 

  • Beam KG, Knudson CM, Powell JA (1986) A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells. Nature 320:168–170

    Google Scholar 

  • Bean BP (1989) More than a channel? Trends Neurosci 12:128–129

    Google Scholar 

  • Bechem M, Hebish S, Schramm M (1988) Calcium agonists — new sensitive probes for calcium channels. Trends Pharmacol Sci 9:257–261

    Google Scholar 

  • Berta P, Sladeczek F, Derancourt J, Durand M, Travo P, Haiech J (1986) Maitotoxin stimulates the formation of inositol phosphates in rat aortic myocytes. FEBS Lett 197:349–352

    Google Scholar 

  • Berta P, Phaneuf S, Derancourt J, Casanova J, Durand-Clement M, Le Peuch C, Haiech J, Cavadore JC (1988) The effects of maitotoxin on phosphoinositides and calcium metabolism in a primary culture of aortic smooth muscle cells. Toxicon 26:133–141

    Google Scholar 

  • Biswas CJ, Rogers TB (1986) Synthesis of carboxy-nifedipine and its use in the preparation of an affinity resin for the 1,4-dihydropyridine receptor. Biochem Biophys Res Commun 134:922–927

    Google Scholar 

  • Bkaily G, Sperelakis N, Renaud JF, Payet MD (1985) Apamin, a highly specific calcium-blocking agent in heart muscle. Am J Physiol 248:H961–H965

    Google Scholar 

  • Blair LAC, Levitan ES, Marshall J, Dionne VE. Barnard EA (1988) Single subunits of the, GABAA receptor form ion channels with properties of the native receptor. Science 242:577–579

    Google Scholar 

  • Block BA, Imagawa T, Campbell KP, Franzini-Armstrong C (1988) Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol 107:2587–2600

    Google Scholar 

  • Borsotto M, Barhanin J, Norman RI, Lazdunski M (1984a) Purification of the dihydropyridine receptor of the voltage-dependent Ca2+ channel from skeletal muscle transverse tubules using (+)-[3H]PN-200-110. Biochem Biophys Res Commun 122:1357–1366

    Google Scholar 

  • Borsotto M, Norman RI, Fosset M, Lazdunski M (1984b) Solubilization of the nitrendipine receptor from skeletal muscle transverse tubule membranes. Interactions with specific inhibitors of the voltage-dependent Ca2+ channel. Eur J Biochem 142:449–455

    Google Scholar 

  • Borsotto M, Barhanin J, Fosset M, Lazdunski M (1985) The 1,4-dihydropyridine receptor associated with the skeletal muscle voltage-dependent Ca2+ channel. Purification and subunit composition. J Biol Chem 260:14255–14263

    Google Scholar 

  • Bowers CW, Phillips HS, Lee P, Jan YN, Jan LY (1987) Identification and purification of an irreversible presynaptic neurotoxin from the venom of the spider Hololena curta. Proc Natl Acad Sci USA 84:3506–3510

    Google Scholar 

  • Branton WD, Kolton L, Jan YN, Jan LY (1987) Neurotoxins from Plectreurys spider venom are potent presynaptic blockers in Drosophila. J Neurosci 7:4195–4200

    Google Scholar 

  • Brown AM, Birnbaumer L (1988) Direct G-protein gating of ion channels. Am J Physiol 254:401–410

    Google Scholar 

  • Brown AM, Yatani A, Lacerda AE, Gurrola GB, Possani LD (1987) Neurotoxins that act selectively on voltage-dependent cardiac calcium channels. Circ Res 61:6–9

    Google Scholar 

  • Brown RH, Hoffmann EP (1988) Molecular biology of Duchenne muscular dystrophy. Trends Neurosci 11:480–484

    Google Scholar 

  • Brum G, Flockerzi V, Hofmann F, Osterrieder W, Trautwein W (1983) Injection of catalytic subunit of cAMP-dependent protein kinase into isolated cardiac myocytes. Pflugers Arch 398:147–154

    Google Scholar 

  • Brum G, Stefani E, Rios E (1987) Simultaneous measurements of Ca2+ currents and intracellular Ca2+ concentrations in single skeletal muscle fibers of the frog. Can J Physiol Pharmacol 65:681–685

    Google Scholar 

  • Brum G, Fitts R, Pizarro G, Rios E (1988) Voltage sensors of the frog skeletal muscle membrane require calcium to function in excitation-contraction coupling. J Physiol 398:475–505

    Google Scholar 

  • Brunner J, Spiess M, Aggeler R, Huber P, Semenza G (1983) Hydrophobic labeling of a single leaflet of the human erythrocyte membrane. Biochemistry 22:3812–3820

    Google Scholar 

  • Bürgisser E, Hancock AA, Lefkowitz RJ, DeLean A (1981) Anomalous equilibrium binding properties of high-affinity racemic radioligands. Mol Pharmacol 19:205–216

    Google Scholar 

  • Callewaert G, Hanbauer I, Morad M (1989) Modulation of calcium channels in cardiac and neuronal cells by an endogenous peptide. Science 243:663–666

    Google Scholar 

  • Campbell KP, Lipshutz GM, Denney GH (1984) Direct photoaffinity labelling of the high affinity nitrendipine-binding site in subcellular membrane fractions isolated from canine myocardium. J Biol Chem 259:5384–5387

    Google Scholar 

  • Campbell KP, Sharp A, Strom M, Kahl SD (1986) High-affinity antibodies to the 1,4-dihydropyridine Ca2+-channel blockers. Proc Natl Acad Sci USA 83:2792–2796

    Google Scholar 

  • Campbell KP, Knudson CM, Imagawa T, Leung AT, Sutko JL, Kahl SD, Raab CR, Madson L (1987) Identification and characterization of the high-affinity [3H]ryanodine receptor of the junctional sarcoplasmic reticulm Ca2+ release channel. J Biol Chem 262:6460–6463

    Google Scholar 

  • Campbell KP, Leung AT, Sharp AH (1988a) The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. Trends Neurosci 11:425–430

    Google Scholar 

  • Campbell KP, Leung AT, Sharp AH, Imagawa T, Kahl SD (1988b) Calcium channel antibodies: subunit-specific antibodies as probes for structure and function. In: Morad, M et al. (eds) The calcium channel: structure, function and implications. Springer, Berlin Heidelberg New York, pp 586–600

    Google Scholar 

  • Catterall WA (1986) Molecular properties of voltage-sensitive sodium channels. Annu Rev Biochem 55:953–985

    Google Scholar 

  • Catterall WA (1988) Structure and function of voltage-sensitive ion channels. Science 242:50–61

    Google Scholar 

  • Catterall WA, Seagar MJ, Takahashi M (1988) Molecular properties of dihydropyridine-sensitive calcium channels in skeletal muscle. J Biol Chem 263:3535–3538

    Google Scholar 

  • Catterall WA, Seagar MJ, Takahashi M, Nunoki K (1989) Molecular properties of dihydropyridine-sensitive calcium channels. Ann N Y Acad Sci 560:1–14

    Google Scholar 

  • Chhatwal GS, Hessler HJ, Habermann E (1983) The action of palytoxin on erythrocytes and resealed ghosts. Formation of small, nonselective pores linked with Na+, K+ATPase. Naunyn Schmiedebergs Arch Pharmacol 323:261–268

    Google Scholar 

  • Conti-Tronconi BM, Raftery MA (1982) The nicotinic receptor: correlation of molecular structure with functional properties. Annu Rev Biochem 51:491–530

    Google Scholar 

  • Cooper CL, Vandaele S, Barhanin J, Fosset M, Lazdunski M, Hosey MM (1987) Purification and characterization of the dihydropyridine-sensitive voltage-dependent calcium channel from cardiac tissue [published erratum appears in J Biol Chem 1987 Mar 15; 262(8):3927]. J Biol Chem 262:509–512

    Google Scholar 

  • Crosland RD, Hsiao TH, McClure WO (1984) Purification and characterization of beta-leptino-tarsin-h, an activator of presynaptic calcium channels. Biochemistry 23:734–741

    Google Scholar 

  • Cruz LJ, Olivera BM (1986) Calcium channel antagonists. Omega-conotoxin defines a new high-affinity site. J Biol Chem 261:6230–6233

    Google Scholar 

  • Cruz LJ, Johnson DS, Olivera BM (1987) Characterization of the omega-conotoxin target. Evidence for tissue-specific heterogeneity in calcium channel types. Biochemistry 26:820–824

    Google Scholar 

  • Curtis BM, Catterall WA (1983) Solubilization of the calcium antagonist receptor from rat brain. J Biol Chem 258:7280–7283

    Google Scholar 

  • Curtis BM, Catterall WA (1984) Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. Biochemistry 23:2113–2118

    Google Scholar 

  • Curtis BM, Catterall WA (1985) Phosphorylation of the calcium antagonist receptor of the voltage-sensitive calcium channel by cAMP-dependent protein kinase. Proc Natl Acad Sci USA 82:2528–2532

    Google Scholar 

  • Curtis BM, Catterall WA (1986) Reconstitution of the voltage-sensitive calcium channel purified from skeletal muscle transverse tubules. Biochemistry 25:3077–3083

    Google Scholar 

  • Dascal N, Snutch TP, Lübbert H, Davidson N, Lester HA (1986) Expression and modulation of voltage-gated calcium channels after RNA injection in Xenopus oocytes. Science 231:1147–1151

    Google Scholar 

  • DiVirgilio F, Salviati G, Pozzan T, Volpe P (1986) Is a guanine-nucleotide-binding protein involved in excitation-contraction coupling in skeletal muscle? EMBO J 5:259–262

    Google Scholar 

  • Doble A, Benavides J, Ferris O, Bertrand P, Menager J, Vaucher N, Burgevin MC, Uzan A, Gueremy C, Le Fur G (1985) Dihydropyridine and peripheral-type benzodiazepine binding sites: subcellular distribution and molecular size determination. Eur J Pharmacol 119:153–167

    Google Scholar 

  • Dolly JO (1988) Potassium channels — what can protein chemistry contribute? Trends Neurosci 11:186–188

    Google Scholar 

  • Donaldson SK, Goldberg ND, Walseth TF, Huetteman DA (1988) Voltage-dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in peeled skeletal muscle fibers. Proc Natl Acad Sci USA 85:5749–5753

    Google Scholar 

  • Dooley DJ, Lupp A, Hertting G (1987) Inhibition of central neurotransmitter release by omegaconotoxin GVIA, a peptide modulator of the N-type voltage-sensitive calcium channel. Naunyn Schmiedebergs Arch Pharmacol 336:467–470

    Google Scholar 

  • Dooley DJ, Lupp A, Hertting G, Osswald H (1988) Omega-conotoxin GVIA and pharmacological modulation of hippocampal noradrenaline release. Eur J Pharmacol 148:261–267

    Google Scholar 

  • Ebersole BJ, Molinoff PB (1988) Endogenous ligands for voltage-sensitive calcium channels in extracts of rat and bovine brain. In: Morad M et al. (eds) The calcium channel: structure, function and implications. Springer, Berlin Heidelberg New York, pp 601–610

    Google Scholar 

  • Edelstein NG, Catterall WA, Moon RT (1988) Identification of a 33-kilodalton cytoskeletal protein with high affinity for the sodium channel. Biochemistry 27:1818–1822

    Google Scholar 

  • Ehlert FJ (1988) Estimation of the affinities of allosteric ligands using radioligand binding and pharmacological null methods. Mol Pharmacol 33:187–194

    Google Scholar 

  • Ellis SB, Williams ME, Ways NR, Brenner R, Sharp AH, Leung AT, Campbell KP, McKenna E, Koch WJ, Hui A, Schwartz A, Harpold MM (1988) Structure and expression pattern of mRNAs encoding the alpha1 and alpha2 subunits of a DHP-sensitive calcium channel. Science 241:1661–1664

    Google Scholar 

  • Ervasti JM, Cleassens MT, Mickelson JR, Louis CF (1989) Altered transverse tubule dihydropyridine receptor binding in malignant hyperthermia. J Biol Chem 264:2711–2717

    Google Scholar 

  • Fatt P, Ginsborg BL (1958) The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol (Lond) 142:516–543

    Google Scholar 

  • Fatt P, Katz B (1953) The electrical properties of crustacean muscle fibres. J Physiol (Lond) 129:171–204

    Google Scholar 

  • Feigenbaum P, Garcia ML, Kaczorowski GJ (1988) Evidence for distinct sites coupled to high-affinity omega-conotoxin receptors in rat brain synaptic plasma membrane vesicles. Biochem Biophys Res Commun 154:298–305

    Google Scholar 

  • Ferguson DG, Schwartz HW, Franzini-Armstrong C (1984) Subunit structure of junctional feet in triads of skeletal muscle: a freeze-drying, rotary-shadowing study. J Cell Biol 99:1735–1742

    Google Scholar 

  • Ferry DR, Glossmann H (1982) Identification of putative calcium channels in skeletal muscle microsomes. FEBS Lett 148:331–337

    Google Scholar 

  • Ferry DR, Glossmann H (1984) 125I-iodipine, a new high-affinity ligand for the putative calcium channel. Naunyn Schmiedebergs Arch Pharmacol 325:186–189

    Google Scholar 

  • Ferry DR, Goll A, Glossmann H (1983a) Calcium channels: evidence for oligomeric nature by target size analysis. EMBO J 2:1729–1732

    Google Scholar 

  • Ferry DR, Goll A, Glossmann H (1983b) Putative calcium channel molecular weight determination by target size analysis. Naunyn Schmiedebergs Arch Pharmacol 323:292–297

    Google Scholar 

  • Ferry DR, Goll A, Gadow C, Glossmann H (1984a) (-)-3H-desmethoxyverapamil labelling of putative calcium channels in brain: autoradiographic distribution and allosteric coupling to 1,4-dihydropyridine and diltiazem binding sites. Naunyn Schmiedebergs Arch Pharmacol 327:183–187

    Google Scholar 

  • Ferry DR, Rombush M, Goll A, Glossmann H (1984b) Photoaffinity labelling of Ca2+ channels with [3H]azidopine. FEBS Lett 169:112–118

    Google Scholar 

  • Ferry DR, Kaempf K, Goll A, Glossmann H (1985) Subunit composition of skeletal muscle transverse tubule calcium channels evaluated with the 1,4-dihydropyridine photoaffinity probe, [3H]AZIdopine. EMBO J 4:1933–1940

    Google Scholar 

  • Ferry DR, Goll A, Glossmann H (1987) Photoaffinity labelling of the cardiac calcium channel (-)-[3H]azidopine labels a 165-kDa polypeptide, and evidence against a [3H]-1,4-dihydropyridine-isothiocyanate being a calcium-channel-specific affinity ligand. Biochem J 243:127–135

    Google Scholar 

  • Fill M, Coronado R (1988) Ryanodine receptor channel of sarcoplasmic reticulum. Trends Neurosci 11:453–457

    Google Scholar 

  • Fitzpatrick LA, Chin H (1988) The role of calcium channels in the regulation of parathyroid hormone release. In: Morad M et al. (eds) The calcium channel: structure, function and implications. Springer, Berlin Heidelberg New York, pp 418–432

    Google Scholar 

  • Fitzpatrick LA, Brandi ML, Aurbach GD (1986) Control of PTH secretion is mediated through calcium channels and is blocked by pertussis toxin treatment of parathyroid cells. Biochem Biophys Res Commun 138:960–965

    Google Scholar 

  • Fitzpatrick LA, Chin H, Nirenberg M, Aurbach GD (1988) Antibodies to an alpha subunit of skeletal muscle calcium channels regulate parathyroid cell secretion. Proc Natl Acad Sci USA 85:2115–2119

    Google Scholar 

  • Fleckenstein A (1983) Calcium antagonism in heart and smooth muscle. Wiley, New York

    Google Scholar 

  • Fleischer S, Ogunbunmi EM, Dixon MC, Fleer EA (1985) Localization of Ca2+ release channels with ryanodine in junctional terminal cisternae of sarcoplasmic reticulum of fast skeletal muscle. Proc Natl Acad Sci USA 82:7256–7259

    Google Scholar 

  • Flockerzi V, Oeken HJ, Hofnann F, Pelzer D, Cavalie A, Trautwein W (1986a) Purified dihydropyridine-binding site from skeletal muscle T-tubules is a functional calcium channel. Nature 323:66–68

    Google Scholar 

  • Flockerzi V, Oeken HJ, Hofmann F (1986b) Purification of a functional receptor for calcium-channel blockers from rabbit skeletal-muscle microsomes. Eur J Biochem 161:217–224

    Google Scholar 

  • Forsayeth JR, Caro JF, Sinha MK, Maddux BA, Goldfine ID (1987) Monoclonal antibodies to the human insulin receptor that activate glucose transport but not insulin receptor kinase activity. Proc Natl Acad Sci USA 84:3448–3451

    Google Scholar 

  • Fosset M, Jaimovich E, Delpont E, Lazdunski M (1983) [3H]Nitrendipine receptors in skeletal muscle. J Biol Chem 258:6086–6092

    Google Scholar 

  • Freedman SB, Miller RJ, Miller DM, Tindall DR (1984) Interactions of maitotoxin with voltage-sensitive calcium channels in cultured neuronal cells. Proc Natl Acad Sci USA 81:4582–4585

    Google Scholar 

  • Galizzi JP, Borsotto M, Barhanin J, Fosset M, Lazdunski M (1986a) Characterization and photoaffinity labeling of receptor sites for the Ca2+ channel inhibitors d-cis-diltiazem, (+/−)-bepridil, desmethoxyverapamil, and (+)-PN 200-110 in skeletal muscle transverse tubule membranes. J Biol Chem 261:1393–1397

    Google Scholar 

  • Galizzi JP, Fosset M, Romey G, Laduron P, Lazdunski M (1986b) Neuroleptics of the diphenyl-butylpiperidine series are potent calcium channel inhibitors. Proc Natl Acad Sci USA 83:7513–7517

    Google Scholar 

  • Garcia ML, Trumble MJ, Reuben JP, Kaczorowski GJ (1984) Characterization of verapamil binding sites in cardiac membrane vesicles. J Biol Chem 259:15013–15016

    Google Scholar 

  • Garcia ML, King VF, Siegl PK, Reuben JP, Kaczorowski GJ (1986) Binding of Ca2+ entry blockers to cardiac sarcolemmal membrane vesicles. Characterization of diltiazem-binding sites and their interaction with dihydropyridine and aralkylamine receptors. J Biol Chem 261:8146–8157

    Google Scholar 

  • Gilman A (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649

    Google Scholar 

  • Glossmann H, Ferry DR (1983a) Molecular approach to the calcium channel. Drug Development 9:63–98

    Google Scholar 

  • Glossmann H, Ferry DR (1983b) Solubilization and partial purification of putative calcium channels labelled with [3H]nimodipine. Naunyn Schmiedebergs Arch Pharmacol 323:279–291

    Google Scholar 

  • Glossmann H, Ferry DR (1985) Assay for calcium channels. Methods Enzymol 109:513–550

    Google Scholar 

  • Glossmann H, Striessnig J (1988a) Calcium channels. Vitam Horm 44:155–328

    Google Scholar 

  • Glossmann H, Striessnig J (1988b) Structure and pharmacology of voltage-dependent calcium channels. ISI Atlas Pharmacol 2:202–210

    Google Scholar 

  • Glossmann H, Ferry DR, Lübbecke F, Mewes R, Hofmann F (1982) Calcium channels: direct identification with radioligand binding studies. Trends Pharmacol Sci 3:431–437

    Google Scholar 

  • Glossmann H, Ferry DR, Boschek CB (1983a) Purification of the putative calcium channel from skeletal muscle with the aid of [3H] nimodipine binding. Naunyn Schmiedebergs Arch Pharmacol 323:1–11

    Google Scholar 

  • Glossmann H, Linn T, Rombusch M, Ferry DR (1983b) Temperature-dependent regulation of d-cis-[3H] diltiazem binding to Ca2+ channels by 1,4-dihydropyridine channel agonists and antagonists. FEBS Lett 160:226–232

    Google Scholar 

  • Glossmann H, Ferry DR, Goll A, Striessnig J, Zernig G (1985) Calcium channels and calcium channel drugs: recent biochemical and biophysical findings. Arzneimittelforschung 35:1917–1935

    Google Scholar 

  • Glossmann H, Striessnig J, Ferry DR, Goll A, Moosburger K, Schirmer M (1987a) Interaction between calcium channel ligands and calcium channels. Circ Res 61:30–36

    Google Scholar 

  • Glossmann H, Ferry DR, Striessnig J, Goll A, Moosburger K (1987b) Resolving the structure of the calcium channel by photoaffinity labeling. Trends Pharmacol Sci 8:95–100

    Google Scholar 

  • Glossmann H, Striessnig J, Hymel L, Schindler H (1988a) Purification and reconstitution of calcium channel drug-receptor sites. Ann N Y Acad Sci 522:150–161

    Google Scholar 

  • Glossmann H, Striessnig J, Hymel L, Zernig G, Knaus HG, Schindler H (1988b) The structure of the calcium channel: photoaffinity labelling and tissue distribution. In: Morad M, et al. (eds) The calcium channel: structure, function and implications. Springer, Berlin Heidelberg New York, pp 168–192

    Google Scholar 

  • Glossmann H, Knaus HG, Striessnig J, Marrer S, Hoeltje HD (1988c) Enantioselective interactions of drugs with receptors. Naunyn Schmiedebergs Arch Pharmacol 338:R20 (abstr)

    Google Scholar 

  • Glossmann H, Striessnig J, Knaus HG, Müller J, Grassegger A, Höltje HD, Marrer S, Hymel L, Schindler H (1989) Structure of calcium channels. Ann NY Acad Sci 560:198–214

    Google Scholar 

  • Godfraind T, Miller R, Wibo M (1986) Calcium antagonism and calcium entry blockade. Pharmacol Rev 38:321–416

    Google Scholar 

  • Goldin AI, Snutch T, Lübbert H, Dowsett A, Marshall J, Auld V, Downey W, Fritz LC, Lester HA, Dunn R, Catterall WA, Davidson N (1986) Messenger RNA coding for only the alpha subunit of the rat brain Na channel is sufficient for expression of functional channels in Xenopus oocytes. Proc Natl Acad Sci USA 83:7503–7507

    Google Scholar 

  • Goll A, Ferry DR, Glossmann H (1983a) Target-size analysis reveals subunit composition of calcium channels in brain and skeletal muscle. Naunyn Schmiedebergs Arch Pharmacol 324:R45 (abstr)

    Google Scholar 

  • Goll A, Ferry DR, Glossmann H (1983b) Target size analysis of skeletal muscle Ca2+ channels. Positive allosteric heterotropic regulation by d-cis-diltiazem is associated with apparent channel oligomer dissociation. FEBS Lett 157:63–69

    Google Scholar 

  • Goll A, Ferry DR, Glossmann H (1984a) Target size analysis and molecular properties of Ca2+ channels labelled with [3H]verapamil. Eur J Biochem 141:177–186

    Google Scholar 

  • Goll A, Ferry DR, Striessnig J, Schober M, Glossmann H (1984b) (−)-[3H]Desmethoxyverapamil, a novel Ca2+ channel probe. Binding characteristics and target size analysis of its receptor in skeletal muscle. FEBS Lett 176:371–377

    Google Scholar 

  • Goll A, Glossmann H, Mannhold R (1986) Correlation between the negative inotropic potency and binding parameters of 1,4-dihydropyridine and phenylalkylamine calcium channel blockers in cat heart. Naunyn Schmiedebergs Arch Pharmacol 334:303–312

    Google Scholar 

  • Gould RJ, Murphy KM, Snyder SH (1982) [3H]Nitrendipine-labelled calcium channels discriminate calcium agonists and antagonists. Proc Natl Acad Sci USA 79:3656–3660

    Google Scholar 

  • Gould RJ, Murphy KM, Reynolds IJ, Snyder SH (1983) Antischizophrenic drugs of the diphenylbutylpiperidine type act as calcium channel antagonists. Proc Natl Acad Sci USA 80:5122–5125

    Google Scholar 

  • Gould RJ, Murphy KM, Snyder SH (1984) Tissue heterogeneity of calcium channel antagonist binding sites labeled by [3H]nitrendipine. Mol Pharmacol 25:235–241

    Google Scholar 

  • Grassegger A, Striessnig J, Weiler M, Knaus HG, Glossmann H (1989) [3H]HOE166 defines a novel calcium antagonist drug receptor — distinct from the 1,4-dihydropyridine binding domain. Naunyn-Schmiedeberg's Arch (in press)

    Google Scholar 

  • Gray WR, Olivera BM, Cruz LJ (1988) Peptide toxins from venomous conus snails. Annu Rev Biochem 57:665–700

    Google Scholar 

  • Gredal O, Drejer J, Honore T (1987) Different target sizes of the voltage-dependent Ca2+ channel and the [3H]nitrendipine binding site in rat brain. Eur J Pharmacol 136:75–80

    Google Scholar 

  • Greenberg RM, Striessnig J, Koza A, Devay P, Glossmann H, Hall LM (1989) Native and detergent-solubilized membrane extracts from Drosophila heads contain binding sites for phenylalkylamine calcium channel blockers. Insect Biochem 19:309–322

    Google Scholar 

  • Gu X-H, Casley DJ, Nayler WG (1989) Sarafotoxin S6b displaces specifically bound 125I-endothelin. Eur J Pharmacol 162:509–510

    Google Scholar 

  • Gusovsky F, Yasumoto T, Daly JW (1987) Maitotoxin stimulates phosphoinositide breakdown in neuroblastoma hybrid NCB-20 cells. Cell Mol Neurobiol 7:317–322

    Google Scholar 

  • Guy HR, Seetharamulu P (1986) Molecular model of the action potential sodium channel. Proc Natl Acad Sci USA 83:508–512

    Google Scholar 

  • Habermann E (1984) Apamin. Pharmacol Ther 25:255–270

    Google Scholar 

  • Habermann E, Fischer K (1979) Bee venom neurotoxin (apamin): iodine labeling and characterization of binding sites. Eur J Biochem 94:355–364

    Google Scholar 

  • Hamilton SL, Perez M (1987) Toxins that affect voltage-dependent calcium channels. Biochem Pharmacol 36:3325–3329

    Google Scholar 

  • Hamilton SL, Yatani A, Hawkes MJ, Redding K, Brown AM (1985) Atrotoxin: a specific agonist for calcium currents in heart. Science 229:182–184

    Google Scholar 

  • Han C, Abel PW, Minneman KP (1987) Alpha1-adrenoceptor subtypes linked to different mechanism for increasing intracellular Ca2+ in smooth muscle. Naturems 329:333–335

    Google Scholar 

  • Hanbauer I, Sanna E, Callewaert G, Morad M (1988) An endogenous purified peptide modulates Ca2+ channels in neurons and cardiac myocytes. In: Morad M, et al. (eds) The calcium channel: structure, function and implications. Springer, Berlin Heidelberg New York, pp 611–618

    Google Scholar 

  • Hescheler J, Trautwein W (1988) Modification of cardiac calcium current by intracellularly applied trypsin. Pfluger's Arch 210:1227 (abstr)

    Google Scholar 

  • Hescheler J, Kameyama M, Trautwein W, Mieskes G, Soeling HD (1987) Regulation of the cardiac calcium channel by protein phosphatases. Eur J Biochem 165:261–266

    Google Scholar 

  • Hess P, Lansman JB, Tsien RW (1986) Calcium channel selectivity for divalent and monovalent cations voltage and concentration dependence of single-channel current in ventricular heart cells. J Gen Physiol 88:293–319

    Google Scholar 

  • Hille B (1984) Ionic channels of excitable membranes. Sinauer, Sunderland, MA

    Google Scholar 

  • Hirata Y, Yoshimi H, Takata S, Watanabe TX, Kumagai S, Nakajima K, Sakakibara S (1988) Cellular mechanism of action by a novel vasoconstrictor endothelin in cultured rat vascular smooth muscle cells. Biochem Biophys Res Commun 154:868–875

    Google Scholar 

  • Hoffman EP, Knudson CM, Campbell KP, Kunkel LM (1987) Subcellular fractionation of dystrophin to the triads of skeletal muscle. Nature 330:754–758

    Google Scholar 

  • Hofmann F, Nastainczyk W, Röhrkasten A, Schneider T, Sieber M (1987) Regulation of L-type calcium channels. Trends Pharmacol Sci 8:393–398

    Google Scholar 

  • Horne P, Triggle DJ, Venter JC (1984) Nitrendipine and isoproterenol induce phosphorylation of a 42000-dalton protein that co-migrates with the affinity-labeled calcium channel regulatory subunit. Biochem Biophys Res Commun 121:890–898

    Google Scholar 

  • Horne WA, Weiland GA, Oswald RE (1986) Solubilization and hydrodynamic characterization of the dihydropyridine receptor from rat ventricular muscle. J Biol Chem 261:3588–3594

    Google Scholar 

  • Hosey MM, Borsotto M, Lazdunski M (1986) Phosphorylation and dephosphorylation of dihydropyridine-sensitive voltage-dependent Ca2+ channel in skeletal muscle membranes by cAMP-and Ca2+-dependent processes. Proc Natl Acad Sci USA 83:3733–3737

    Google Scholar 

  • Hosey MM, Barhanin J, Schmid A, Vandaele S, Ptasienski J, O'Callahan C, Cooper C, Lazdunski M (1987) Photoaffinity labelling and phosphorylation of a 165-kilodalton peptide associated with dihydropyridine-and phenylalkylamine-sensitive calcium channels. Biochem Biophys Res Commun 147:1137–1145

    Google Scholar 

  • Hymel L, Inui M, Fleischer S, Schindler H (1988a) Purified ryanodine receptor of skeletal muscle sarcoplasmic reticulum forms Ca2+-activated oligomeric Ca2+ channels in planar bilayers. Proc Natl Acad Sci USA 85:441–445

    Google Scholar 

  • Hymel L, Schindler H, Inui M, Fleischer S (1988b) Reconstitution of purified cardiac muscle calcium-release channel (ryanodine receptor) in planar bilayers. Biochem Biophys Res Commun 152:308–314

    Google Scholar 

  • Hymel L, Striessnig J, Glossmann H, Schindler H (1988c) Purified skeletal muscle 1,4-dihydropyridine receptor forms phosphorylation-dependent oligomeric calcium channels in planar bilayers. Proc Natl Acad Sci USA 85:4290–4294

    Google Scholar 

  • Hymel L, Schindler H, Inui M, Fleischer S, Striessnig J, Glossmann H (1989) A molecular model of excitation-contraction coupling at the skeletal muscle triad junction via coassociated oligomeric calcium channels. Annu NY Acad Sci 560:185–188

    Google Scholar 

  • Imagawa T, Leung AT, Campbell KP (1987a) Phosphorylation of the 1,4-dihydropyridine receptor of the voltage-dependent Ca2+ channel by an intrinsic protein kinase in isolated triads from rabbit skeletal muscle. J Biol Chem 262:8333–8339

    Google Scholar 

  • Imagawa T, Smith JS, Coronado R, Campbell KP (1987b) Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+-permeable pore of the calcium-release channel. J Biol Chem 262:16636–16643

    Google Scholar 

  • Inui M, Saito A, Fleischer S (1987a) Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with the feet structures. J Biol Chem 262:15637–15642

    Google Scholar 

  • Inui M, Saito A, Fleischer S (1987b) Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J Biol Chem 262:1740–1747

    Google Scholar 

  • Itoh Y, Yanagisawa M, Ohkubo S, Kimura C, Kosaka T, Inoue A, Ishida N, Mitsui Y, Onda H, Fujino M, et al. (1988) Cloning and sequence analysis of cDNA encoding the precursor of a human endothelium-derived vasoconstrictor peptide, endothelin: identity of human and porcine endothelin. FEBS Lett 231:440–444

    Google Scholar 

  • Janis RA, Silver PJ, Triggle DJ (1987) Drug action and cellular calcium regulation. Adv Drug Res 16:309–591

    Google Scholar 

  • Janis RA, Johnson DE, Shrikhande AV, McCarthy RT, Howard AD, Greguski R, Scriabine A (1988) Endogenous 1,4-dihydropyridine-displacing substances acting on L-type Ca2+ channels: isolation and characterization of fractions from brain and stomach. In: Morad M, et al. (eds) The calcium channel: structure, function and implications. Springer, Berlin Heidelberg New York pp 564–574

    Google Scholar 

  • Johnson DF, Kuo TH, Giacomelli F, Wiener J (1988) Structural analysis of the calcium channel by photoaffinity labelling and limited proteolysis. Biochem Biophys Res Commun 154:455–461

    Google Scholar 

  • Kamp TJ, Miller RJ (1987) Voltage-dependent nitrendipine binding to cardiac sarcolemmal vesicles. Mol Pharmacol 32:278–285

    Google Scholar 

  • Kaul PN, Daftari P (1986) Marine pharmacology: bioactive molecules from the sea. Annu Rev Pharmacol Toxicol 26:117–142

    Google Scholar 

  • Kerr LM, Yoshikami D (1984) A venom peptide with a novel presynaptic blocking action. Nature 308:282–284

    Google Scholar 

  • Kim YI (1987) Lambert-Eaton myasthenic syndrome: evidence for calcium channel blockade. Annu NY Acad Sci 505:377–379

    Google Scholar 

  • Kim YI, Neher E (1988) IgG from patients with Lambert-Eaton syndrome blocks voltage-dependent calcium channels. Science 239:405–408

    Google Scholar 

  • King VF, Garcia ML, Himmel D, Reuben JP, Lam YK, Pan JX, Han GQ, Kaczorowski GJ (1988) Interaction of tetrandrine with slowly inactivating calcium channels. Characterization of calcium channel modulation by an alkaloid of Chinese medicinal herb origin. J Biol Chem 263:2238–2244

    Google Scholar 

  • King VF, Garcia ML, Shevell JL, Slaughter RS, Kaczorowski GJ (1989) Substituted diphenylbutylpiperidines bind to a unique high affinity site on the L-type calcium channel. J Biol Chem 264:5633–5641

    Google Scholar 

  • Kirley TL, Schwartz A (1984) Solubilization and affinity labeling of a dihydropyridine binding site from skeletal muscle: effects of temperature and diltiazem on [3H]dihydropyridine binding to transverse tubules. Biochem Biophys Res Commun 123:41–49

    Google Scholar 

  • Kloog Y, Ambar I, Sokolovsky M, Kochva E, Wollberg Z, Bdolah A (1988) Sarafotoxin, a novel vasoconstrictor peptide: phosphoinositide hydrolysis in rat heart and brain. Science 242:268–270

    Google Scholar 

  • Knaus HG (1988) Neurotoxic aminoglycosyde antibiotics are potent inhibitors of [125I]omega-conotoxin GVIA binding. Naunyn Schmiedebergs Arch Pharmacol 337:R52

    Google Scholar 

  • Knaus HG, Striessnig J, Koza A, Glossmann H (1987) Neurotoxic aminoglycosyde antibiotics are potent inhibitors of [125I]omega-conotoxin GVIA binding to guinea-pig cerebral cortex membranes. Naunyn Schmiedebergs Arch Pharmacol 336:583–586

    Google Scholar 

  • Knudson CM, Hoffman EP, Kahl SD, Kunkel LM, Campbell KP (1988) Evidence for the association of dystrophin with the transverse tubular system in skeletal muscle. J Biol Chem 263:8480–8484

    Google Scholar 

  • Knudson CM, Chaudhari N, Sharp AH, Powell JA, Beam KG, Campbell KP (1989) Specific absence of the alpha1 subunit of the dihydropyridine receptor in mice with muscular dysgenesis. J Biol Chem 264:1345–1348

    Google Scholar 

  • Kobayashi M, Ochi R, Ohizumi Y (1987) Maitotoxin-activated single calcium channels in guinea-pig cardiac cells. Br J Pharmacol 92:665–671

    Google Scholar 

  • Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Feener C, Kunkel LM (1987) Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50:509–517

    Google Scholar 

  • Koenig M, Monaco AP, Kunkel LM (1988) The complete sequence of dystrophin predicts a rodshaped cytoskeletal protein. Cell 53:219–226

    Google Scholar 

  • Koike K, Judd AM, Login IS, Yasumoto T, MacLeod RM (1986) Maitotoxin, a calcium channel activator, increases prolactin release from rat pituitary tumor 7315a cells by a mechanism that may involve leukotriene production. Neuroendocrinology 43:283–290

    Google Scholar 

  • Kokubuhn S, Prod'hom B, Becker C, Porzig H, Reuter H (1986) Studies on Ca channels in intact cardiac cells: voltage-dependent effects and cooperative interactions of dihydropyridine enantiomers. Mol Pharmacol 30:571–584

    Google Scholar 

  • Kosower EM (1985) A structural and dynamic molecular model for the sodium channel of Electrophorus electricus. FEBS Lett 182:234–242

    Google Scholar 

  • Koyano K, Abe T, Nishiuchi Y, Sakakibara S (1987) Effects of synthetic omega-conotoxin on synaptic transmission. Eur J Pharmacol 135:337–343

    Google Scholar 

  • Kuo TH, Johnson DF, Tsang W, Wiener J (1987) Photoaffinity labeling of the calcium channel antagonist receptor in the heart of the cardiomyopathic hamster. Biochem Biophys Res Commun 148:926–933

    Google Scholar 

  • Lai FA, Erickson H, Block BA, Meissner G (1987) Evidence for a junctional feet-ryanodine receptor complex from sarcoplasmic reticulum. Biochem Biophys Res Commun 143:704–709

    Google Scholar 

  • Lai FA, Anderson K, Rousseau E, Liu QY, Meissner G (1988a) Evidence for a Ca2+ channel within the ryanodine receptor complex from cardiac sarcoplasmic reticulum. Biochem Biophys Res Commun 151:441–449

    Google Scholar 

  • Lai FA, Erickson HP, Rousseau E, Liu QY, Meissner G (1988b) Purification and reconstitution of the calcium-release channel from skeletal muscle. Nature 331:315–319

    Google Scholar 

  • Lang B, Newsom-Davis J, Prior C, Wray D (1983) Antibodies to motor nerve terminals: an electrophysiological study of a human myasthenic syndrome transferred to mouse. J Physiol (Lond) 344:335–345

    Google Scholar 

  • Lansman JB, Hess P, Tsien RW (1986) Blockade of current through single calcium channels by Cd2+, Mg2+, and Ca2+. Voltage and concentration dependence of calcium entry into the pore. J Gen Physiol 88:321–347

    Google Scholar 

  • Lazdunski M (1983) Apamin, a neurotoxin specific for one class of Ca2+-dependent K+ channels. Cell Calcium 4:421–428

    Google Scholar 

  • Lazdunski M, Frelin C, Barhanin J, Lombet A, Meiri H, Pauron D, Romey G, Schmid A, Schweitz H, Vigne P, et al. (1986a) Polypeptide toxins as tools to study voltage-sensitive Na+ channels. Annu NY Acad Sci 479:204–220

    Google Scholar 

  • Lazdunski M, Barhanin J, Borsotto M, Fosset M, Galizzi JP, Renaud JF, Romey G, Schmid A (1986b) Dihydropyridine-sensitive Ca2+ channels: molecular properties of interaction with Ca2+-channel blockers, purification, subunit structure, and differentiation. J Cardiovasc Pharmacol 8:S13–S19

    Google Scholar 

  • Leonhard JP, Nargeot J, Snutch TP, Davidson N, Lester HA (1987) Ca channels induced in Xenopus oocytes by rat brain mRNA. J Neurosci 7:875–881

    Google Scholar 

  • Leonard RJ, Labarca CG, Charnet P, Davidson N, Lester HA (1988) Evidence that the M2 membrane-spanning region lines the ion channel pore of the nicotinic receptor. Science 242:1578–1581

    Google Scholar 

  • Lester HA (1988) Heterologous expression of excitability proteins: route to more specific drugs. Science 241:1057–1063

    Google Scholar 

  • Leung AT, Imagawa T, Campbell KP (1987) Structural characterization of the 1,4-dihydropyridine receptor of the voltage-dependent Ca2+ channel from rabbit skeletal muscle. Evidence for two distinct high-molecular-weight subunits. J Biol Chem 262:7943–7946

    Google Scholar 

  • Leung AT, Imagawa T, Block B, Franzini-Armstrong C, Campbell KP (1988) Biochemical and ultrastructural characterization of the 1,4-dihydropyridine receptor from rabbit skeletal muscle. Evidence for a 52000-Da subunit. J Biol Chem 263:994–1001

    Google Scholar 

  • Lodish HF (1988) Multi-spanning membrane proteins: how accurate are the models? Trends Biochem Sci 13:332–334

    Google Scholar 

  • Lotan I, Goelet P, Gigi A, Dascal N (1989) Specific block of calcium channel expression by a fragment of dihydropyridine receptor cDNA. Science 243:666–669

    Google Scholar 

  • Luchowski EM, Yousif F, Triggle DJ, Maurer SC, Sarmiento JG, Janis RA (1984) Effects of metal cations and calmodulin antagonists on [3H]nitrendipine binding in smooth and cardiac muscle. J Pharmacol Exp Ther 230:607–613

    Google Scholar 

  • Ma J, Fill M, Knudson CM, Campbell KP, Coronado R (1988) Ryanodine receptor of skeletal muscle is a gap junction-type channel. Science 242:99–102

    Google Scholar 

  • MacLennan DH, Brandl CJ, Korczak B, Green NM (1985) Amino acid sequence of a Ca2+-and Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 316:696–700

    Google Scholar 

  • Madeddu L, Pozzan T, Robello T, Rolandi R, Hsiao TH, Meldolesi J (1985) Leptinotoxin-h action in synaptosomes, neurosecretory cells, and artifical membranes: stimulation of ion fluxes. J Neurochem 45:1708–1718

    Google Scholar 

  • Maelicke A (1988) Structural similarities between ion channel proteins. Trends Biochem Sci 13:199–202

    Google Scholar 

  • Malouf NN, Coronado R, McMahon D, Meissner G, Gillespie GY (1987) Monoclonal antibody specific for the transverse tubular membrane of skeletal muscle activates the dihydropyridine-sensitive Ca2+ channel. Proc Natl Acad Sci USA 84:5019–5023

    Google Scholar 

  • Mantione CR, Goldman ME, Martin B, Bolger GT, Lueddens HW, Paul SM, Sklnick P (1988) Purification and characterization of an endogenous protein modulator of radioligand binding to “peripheral-type” benzodiazepine receptors and dihydropyridine Ca2+-channel antagonist binding sites. Biochem Pharmacol 37:339–347

    Google Scholar 

  • Marqueze B, Martin-Moutot N, Leveque C, Couraud F (1988) Characterization of the omegaconotoxin molecule in rat brain synaptosomes and cultured neurons. Mol Pharmacol 34:87–90

    Google Scholar 

  • McCleskey EW, Fox AP, Feldman DH, Cruz LJ, Olivera BM, Tsien RW, Yoshikami D (1987) Omega-conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc Natl Acad USA 84:4327–4331

    Google Scholar 

  • McClure WO, Abbott BC, Baxter DE, Hsiao TH, Satin LS, Siger A, Yoshino JE (1980) Leptinotarsin: a presynaptic neurotoxin that stimulates release of acetylcholine. Proc Natl Acad Sci USA 77:1219–1223

    Google Scholar 

  • McCrea PD, Engelman DM, Popot JL (1988) Topography of integral membrane proteins: hydrophobicity analysis vs immunolocalisation. Trends Biochem Sci 13:289–290

    Google Scholar 

  • Meiri H, Zeitoun I, Grunhagen HH, Lev-Ram V, Eshhar Z, Schlessinger J (1984) Monoclonal antibodies associated with sodium channel block nerve impulse and stain nodes of Ranvier. Brain Res 310:168–173

    Google Scholar 

  • Melzer W, Rios E, Schneider MF (1987) A general procedure for determining the rate of calcium release from the sarcoplasmic reticulum in skeletal muscle fibers. Biophys J 51:849–863

    Google Scholar 

  • McGrew SG, Inui M, Chadwick CC, Boucek RJ, Jung CY, Fleischer S (1989) Comparison of the calcium release channel of cardiac and skeletal muscle sarcoplasmic reticulum by target inactivation analysis. Biochemistry 28:1319–1323

    Google Scholar 

  • Meyer H, Wehinger E, Bossert F, et al. (1985) Chemistry of 1,4 dihydropyridines. In: Fleckenstein A, Van Breemen C, Gross R, Hoffmeister F (eds) Cardiovascular effects of dihydropyridine-type calcium antagonists and agonists. Springer, Berlin Heidelberg New York, pp 90–103 (Bayer-Symposium vol 9)

    Google Scholar 

  • Miasiro N, Yamamoto H, Kanaide H, Nakamura M (1988) Does endothelin mobilize calcium from intracellular store sites in rat aortic vascular smooth muscle cells in primary culture? Biochem Biophys Res Commun 156:312–317

    Google Scholar 

  • Michalak M, Dupraz P, Shoshan-Barmatz V (1988) Ryanodine binding to sarcoplasmic reticulum membrane; comparison between cardiac and skeletal muscle. Biochim Biophys Acta 939:587–594

    Google Scholar 

  • Mickelson JR, Gallant EM, Litterer LA, Johnson KM, Rempel WE, Louis CF (1988) Abnormal sarcoplasmic reticulum ryanodine receptor in malignant hyperthermia. J Biol Chem 263:9310–9315

    Google Scholar 

  • Miljanich GP, Yaeger RE, Hsiao TH (1988) Leptinotarsin-D, a neurotoxic protein, evokes neurotransmitter release from, and calcium flux into, isolated electric organ nerve terminals. J Neurobiol 19:373–386

    Google Scholar 

  • Miller C (1988) Shaker shakes out potassium channels. Trends Neurosci 1:185–186

    Google Scholar 

  • Miller RJ (1987) Multiple calcium channels and neuronal function. Science 235:46–52

    Google Scholar 

  • Mir AK, Spedding M (1987) Calcium antagonist properties of diclofurime isomers. II. Molecular aspects: allosteric interactions with dihydropyridine recognition sites. J Cardiovasc Pharmacol 9:469–477

    Google Scholar 

  • Moorman JR, Zhou Z, Kirsch GE, Lacerda AE, Caffrey JM, Lam DM, Joho RH, Brown AM (1987) Expression of single calcium channels in Xenopus oocytes after injection of mRNA from rat heart. Am J Physiol 253:985–991

    Google Scholar 

  • Morton ME, Froehner SC (1987) Monoclonal antibody identifies a 200-kDa subunit of the dihydropyridine-sensitive calcium channel. J Biol Chem 262:11904–11907

    Google Scholar 

  • Morton ME, Caffrey JM, Brown AM, Froehner SC (1988) Monoclonal antibody to the alpha1-subunit of the dihydropyridine-binding complex inhibits calcium currents in BC3H1 myocytes. J Biol Chem 263:613–616

    Google Scholar 

  • Nakayama N, Kirley TL, Vaghy PL, Mc Kenna E, Schwartz A (1987) Purification of putative Ca2+ channel protein from rabbit skeletal muscle. Determination of the amino-terminal sequence. J Biol Chem 262:6572–6576

    Google Scholar 

  • Nastainczyk W, Röhrkasten A, Sieber M, Hofmann F (1987) Phosphorylation of the purified receptor for calcium channel blockers by cAMP kinase and protein kinase C. Eur J Biochem 169:137–142

    Google Scholar 

  • Navarro J (1987) Modulation of [3H]dihydropyridine receptors by activation of protein kinase C in chick muscle cells. J Biol Chem 262:4649–4652

    Google Scholar 

  • Nilius B (1986) Possible functional significance of a novel type of cardiac Ca channel. Biomed Biochim Acta 45:37–45

    Google Scholar 

  • Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi H, Nakayama H, Kanaoka Y, Minamino N, Kangawa K, Matsuo H, Raftery MA, Hirose T, Inayama S, Hayashida H, Miyata T, Numa S (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312:121–127

    Google Scholar 

  • Noda M, Ikeda T, Kayano T, Suzuki H, Takeshima H, Kurasaki M, Takahashi H, Numa S (1986a) Existence of distinct sodium channel messenger RNAs in rat brain. Nature 320:188–192

    Google Scholar 

  • Noda M, Ikeda T, Suzuki H, Takeshima H, Takahashi T, Kuno M, Numa S (1986b) Expression of functional sodium channels from cloned cDNA. Nature 322:826–828

    Google Scholar 

  • Norman RI, Borsotto M, Fosset M, Lazdunski M, Ellory JC (1983) Determination of the molecular size of the nitrendipine-sensitive Ca2+ channel by radiation inactivation. Biochem Biophys Res Commun 111:878–883

    Google Scholar 

  • O'Callahan CM, Hosey MM (1988) Multiple phosphorylation sites in the 165-kilodalton peptide associated with dihydropyridine calcium channels. Biochemistry 27:6071–6077

    Google Scholar 

  • Oiki S, Danho W, Madison V, Montal M (1988) M2 delta, a candidate for the structure lining the ionic channel of the nicotinic cholinergic receptor. Proc Natl Acad Sci 85:8703–8707

    Google Scholar 

  • Olivera BM, Gray WR, Zeikus R, McIntosh JM, Varga J, Rivier J, de Santos V, Cruz LJ (1985) Peptide neurotoxins from fish-hunting cone snails. Science 230:1338–1343

    Google Scholar 

  • Olivera BM, Cruz LJ, de Santos V, LeCheminant GW, Griffin D, Zeikus R, McIntosh JM, Galyean R, Varga J, Gray WR, et al. (1987) Neuronal calcium-channel antagonists. Discrimination between calcium-channel subtypes using omega-conotoxin from Conus magus venom. Biochemistry 26:2086–2090

    Google Scholar 

  • Papazian DM, Schwarz TL, Tempel BL, Jan YN, Jan LY (1987) Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237:749–753

    Google Scholar 

  • Pastan I, Gottesman M (1987) Multiple-drug resistance in human cancer. N Engl J Med 316:1388–1393

    Google Scholar 

  • Pauron D, Qar J, Barhanin J, Fournier D, Cuany A, Pralavorio M, Berge JB, Lazdunski M (1987) Identification and affinity labeling of very high affinity binding sites for the phenylalkylamine series of Ca2+ channel blockers in the Drosophila nervous system. Biochemistry 26:6311–6315

    Google Scholar 

  • Pelzer D, Grant AO, Cavalie A, Pelzer S, Sieber M, Hofmann F, Trautwein W (1989a) Modulation of calcium channels reconstituted from the skeletal muscle DHP receptor protein complex and its alpha1 peptide subunit in lipid bilayers. Annu NY Acad Sci 560:138–154

    Google Scholar 

  • Pelzer S, Barhanin J, Pauron D, Trautwein W, Lazdunski M, Pelzer D (1989b) Diversity and novel pharmacological properties of Ca2+ channels in Drosophila brain membranes. EMBO J 8:2365–2371

    Google Scholar 

  • Pessah IN, Francini AO, Scales DJ, Waterhouse AL, Casida JE (1986) Calcium ryanodine receptor complex. J Biol Chem 261:8643–8648

    Google Scholar 

  • Pessah IN, Stambuk RA, Casida JE (1987) Ca2+-activated ryanodine binding: mechanisms of sensitivity and intensity modulation by Mg2+, caffeine, and adenine nucleotides. Mol Pharmacol 31:232–238

    Google Scholar 

  • Pin JP, Yasumoto T, Bockaert J (1988) Maitotoxin-evoked gamma-aminobutyric acid release is due not only to the opening of calcium channels. J Neurochem 50:1227–1232

    Google Scholar 

  • Pincon-Raymond M, Rieger F, Fosset M, Lazdunski M (1985) Abnormal transverse tubule system and abnormal amount of receptors for Ca2+ channel inhibitors of the dihydropyridine family in skeletal muscle from mice with embryonic muscular dysgenesis. Dev Biol 112:458–466

    Google Scholar 

  • Pizarro G, Brum G, Fill R, Rodriguez M, Uribe I, Rios E (1988) The voltage sensor of skeletal muscle excitation contraction coupling: a comparison with calcium channels. In: Morad M, et al. (eds). The calcium channel: structure, function and implications. Springer, Berlin Heidelberg New York, pp 138–158

    Google Scholar 

  • Porzig H, Becker C (1988) Potential-dependent allosteric modulation of 1,4 dihydropyridine binding by d-cis-diltiazem and (±)-verapamil in living cardiac cells. Mol Pharmacol 34:172–179

    Google Scholar 

  • Powell JA, Fambrough DM (1973) Electrical properties of normal and dysgenic mouse skeletal muscle in culture. J Cell Physiol 82:21–38

    Google Scholar 

  • Putney JW (1987) Formation and actions of calcium-mobilizing messenger, inositol 1,4,5-trisphosphate. Am J Physiol 252:G149–G157

    Google Scholar 

  • Qar J, Schweitz H, Schmid A, Lazdunski M (1986) A polypeptide toxin from the coral Goniopora. Purification and action on Ca2+-channels. FEBS Lett 202:331–336

    Google Scholar 

  • Qar J, Galizzi JP, Fosset M, Lazdunski M (1987) Receptors for diphenylbutylpiperidine neuroleptics in brain, cardiac, and smooth muscle membranes. Relationship with receptors for 1,4-dihydropyridines and phenylalkylamines and with Ca2+ channel blockade. Eur J Pharmacol 141:261–268

    Google Scholar 

  • Qar J, Barhanin J, Romey G, Henning R, Lerch U, Oekonomopulos R, Urbach H, Lazdunski M (1988) A novel high-affinity class of Ca2+ channel blockers. Mol Pharmacol 33:363–369

    Google Scholar 

  • Reber BF, Catterall WA (1987) Hydrophobic properties of the beta1 and beta2 subunits of the rat brain sodium channel. J Biol Chem 262:11369–11374

    Google Scholar 

  • Revel JP (1962) The sarcoplasmic reticulum of the bat crycothyroid muscle. J Cell Biol 12:572–588

    Google Scholar 

  • Reuter H (1983) Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301:569–574

    Google Scholar 

  • Reynolds IJ, Snowman AD, Snyder SH (1986a) (−)-[3H]Desmethoxyverapamil labels multiple calcium channel modulator receptors in brain and skeletal muscle membranes: differentiation by temperature and dihydropyridines. J Pharmacol Exp Ther 237:731–738

    Google Scholar 

  • Reynolds IJ, Wagner JA, Snyder SH, Thayer SA, Olivera BM, Miller RJ (1986b) Brain voltage-sensitive calcium-channel subtypes differentiated by omega-conotoxin fraction GVIA. Proc Natl Acad Sci USA 83:8804–8807

    Google Scholar 

  • Rieger F, Bournaud R, Shimahara T, Garcia L, Pincon-Raymond M, Romey G, Lazdunski M (1987) Restoration of dysgenic muscle contraction and calcium channel function by co-culture with normal spinal cord neurons. Nature 330:563–566

    Google Scholar 

  • Rios E, Brum G (1987) Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature 325:717–720

    Google Scholar 

  • Rios E, Pizarro G (1988) The voltage-sensor and calcium channels of excitation-contraction coupling. News Physiol Sci 3:223–227

    Google Scholar 

  • Rios E, Fitts R, Uribe I, Pizarro G, Brum G (1989) A third role for calcium in excitation-contraction coupling. In: Bacigalupo J (ed) Transduction in biological systems. Plenum, New York (in press)

    Google Scholar 

  • Rivier J, Galyean R, Gray WR, Azimi-Zonooz A, McIntosh JM, Cruz LJ, Olivera BM (1987) Neuronal calcium channel inhibitors. Synthesis of omega-conotoxin GVIA and effects on 45Ca uptake by synaptosomes. J Biol Chem 262:1194–1198

    Google Scholar 

  • Röhrkasten A, Meyer HE, Nastainczyk W, Sieber M, Hofmann F (1988) cAMP-dependent protein kinase rapidly phosphorylates Serine-687 of the skeletal muscle receptor for calcium channel blockers. J Biol Chem 263:15325–15329

    Google Scholar 

  • Romey G, Rieger F, Renaud JF, Pincon-Raymond M, Lazdunski M (1986) The electrophysiological expression of Ca2+ channels and of apamin-sensitive Ca2+-activated K+ channels is abolished in skeletal muscle cells from mice with muscular dysgenesis. Biochem Biophys Res Commun 136:935–940

    Google Scholar 

  • Romey G, Quast U, Pauron D, Frelin C, Renaud JF, Lazdunski M (1987) Na+ channels as sites of action of the cardioactive agent DPI 201-106 with agonist and antagonist enantiomers. Proc Natl Acad Sci USA 84:896–900

    Google Scholar 

  • Rosenthal W, Schultz G (1987) Modulation of voltage-dependent ion channels by extracellular signals. Trends Pharmacol Sci 8:351–354

    Google Scholar 

  • Ruth P, Flockerzi V, von Nettelbladt E, Oeken J, Hofmann F (1985) Characterization of the binding sites for nimodipine and (−)-desmethoxyverapamil in bovine cardiac sarcolemma. Eur J Biochem 150:313–322

    Google Scholar 

  • Ruth P, Flockerzi V, Oeken HJ, Hofmann F (1986) Solubilization of the bovine cardiac sarcolemmal binding sites for calcium channel blockers. Eur J Biochem 155:613–620

    Google Scholar 

  • Saito A, Seiler S, Chu A, Fleischer S (1984) Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle. J Cell Biol 99:875–885

    Google Scholar 

  • Saito A, Inui M, Radermacher M, Frank J, Fleischer S (1988) Ultrastructure of the calcium-release channel of sarcoplasmic reticulum. J Cell Biol 107:211–219

    Google Scholar 

  • Sano K, Enomoto K, Maeno T (1987) Effects of synthetic omega-conotoxin, a new-type Ca2+ antagonist, on frog and mouse neuromuscular transmission. Eur J Pharmacol 141:235–241

    Google Scholar 

  • Sarmiento JG, Epstein PM, Rowe WA, Chester DW, Smilowitz H, Wehinger E, Janis RA (1986) Photoaffinity labelling of a 33 000-to 35 000-dalton protein in cardiac, skeletal and smooth muscle membranes using a new 125I-labelled 1,4-dihydropyridine calcium channel antagonist. Life Sci 39:2401–2409

    Google Scholar 

  • Scheffauer F (1989) Immuno-photoaffinity labelling of calcium channel drug receptors. Naunyn Schmiedebergs Arch Pharmacol 339:1245

    Google Scholar 

  • Schilling WP, Drewe JA (1986) Voltage-sensitive nitrendipine binding in an isolated cardiac sarcolemma preparation. J Biol Chem 261:2750–2758

    Google Scholar 

  • Schindler H (1989) Planar lipid-protein membranes: strategies of formation and of detecting dependencies of ion-transport functions on membrane conditions. Methods Enzymol (in press)

    Google Scholar 

  • Schmid A, Barhanin J, Coppola T, Borsotto M, Lazdunski M (1986a) Immunochemical analysis of subunit structures of 1,4-dihydropyridine receptors associated with voltage-dependent Ca2+ channels in skeletal, cardiac, and smooth muscles. Biochemistry 25:3492–3495

    Google Scholar 

  • Schmid A, Barhanin J, Mourre C, Coppola T, Borsotto M, Lazdunski M (1986b) Antibodies reveal the cytolocalization and subunit structure of the 1,4-dihydropyridine component of the neuronal Ca2+ channel. Biochem Biophys Res Commun 139:996–1002

    Google Scholar 

  • Schneider MF (1981) Membrane charge movement and depolarization-contraction coupling. Annu Rev Physiol 43:507–517

    Google Scholar 

  • Schneider MF, Chandler WK (1973) Voltage-dependent charge movement in skeletal muscle: a possible step in excitation-contraction coupling. Nature 242:244–246

    Google Scholar 

  • Schneider T, Hofmann F (1988) The bovine cardiac receptor for calcium channel blockers is a 195-kDa protein. Eur J Biochem 174:369–375

    Google Scholar 

  • Schoemaker H, Langer SZ (1985) [3H]Diltiazem binding to calcium channel-antagonist recognition sites in rat cerebral cortex. Eur J Pharmacol 111:273–277

    Google Scholar 

  • Schwarz TL, Tempel BL, Papazian DM, Jan YN, Jan LY (1988) Multiple potassium-channel components are produced by alternative splicing at the Shaker locus in Drosophila. [Published erratum appears in Nature 1988 Apr 21; 332(6166):740]. Nature 331:137–142

    Google Scholar 

  • Seagar MJ, Labbe-Jullie C, Granier C, Goll A, Glossmann H, Van Rietschoten J, Couraud F (1986) Molecular structure of rat brain apamin receptor: differential photoaffinity labeling of putative K+ channel subunits and target size analysis. Biochemistry 25:4051–4057

    Google Scholar 

  • Shalaby IA, Kongsamut S, Miller RJ (1986) Maitotoxin-induced release of gamma-3H]aminobutyric acid from cultures of striatal neurons. J Neurochem 46:1161–1165

    Google Scholar 

  • Sharp AH, Campbell KP (1987) Affinity purification of antibodies specific for 1,4-dihydropyridine Ca2+ channel blockers. Circ Res 61:37–45

    Google Scholar 

  • Sharp AH, Campbell KP (1989) Characterization of the 1,4-dihydropyridine receptor using subunit-specific antibodies. J Biol Chem 264:2816–2825

    Google Scholar 

  • Sharp AH, Imagawa T, Leung AT, Campbell KP (1987) Identification and characterization of the dihydropyridine-binding subunit of the skeletal muscle dihydropyridine receptor. J Biol Chem 262:12309–12315

    Google Scholar 

  • Sieber M, Nastainczyk W, Röhrkasten A, Hofmann F (1987a) Reconstitution of the purified receptor for calcium channel blockers. Biomed Biochim Acta 46:357–362

    Google Scholar 

  • Sieber M, Nastainczyk W, Zubor V, Wernet W, Hofmann F (1987b) The 165-kDa peptide of the purified skeletal muscle dihydropyridine receptor contains the known regulatory sites of the calcium channel. Eur J Biochem 167:117–122

    Google Scholar 

  • Silberberg SD, Poder TC, Lacerda AE (1989) Endothelin increases single-channel calcium currents in coronary arterial smooth muscle. FEBS Lett 247:68–72

    Google Scholar 

  • Smith JS, McKenna EJ, Ma JJ, Vilven J, Vaghy PL, Schwartz A, Coronado R (1987) Calcium channel activity in a purified dihydropyridine-receptor preparation of skeletal muscle. Biochemistry 26:7182–7188

    Google Scholar 

  • Soldatov NM (1988) Purification and characterization of dihydropyridine receptor from rabbit skeletal muscle. Eur J Biochem 173:327–338

    Google Scholar 

  • Srinivasan Y, Elmer L, Davis J, Bennett V, Angelides K (1988) Ankyrin and spectrin associate with voltage-dependent sodium channels in brain. Nature 333:177–180

    Google Scholar 

  • Striessnig J, Zernig G, Glossmann H (1985a) Ca2+ antagonist receptor sites on human red blood cell membranes. Eur J Pharmacol 108:329–330

    Google Scholar 

  • Striessnig J, Zernig G, Glossmann H (1985b) Human red-blood-cell Ca2+-antagonist binding sites. Evidence for an unusual receptor coupled to the nucleoside transporter. Eur J Biochem 150:67–77

    Google Scholar 

  • Striessnig J, Goll A, Moosburger K, Glossmann H (1986a) Purified calcium channels have three allosterically coupled drug receptors. FEBS Lett 197:204–210

    Google Scholar 

  • Striessnig J, Moosburger K, Goll A, Ferry DR, Glossmann H (1986b) Stereoselective photoaffinity labelling of the purified 1,4-dihydropyridine receptor of the voltage-dependent calcium channel. Eur J Biochem 161:603–609

    Google Scholar 

  • Striessnig J, Knaus HG, Grabner M, Moosburger K, Seitz W, Lietz H, Glossmann H (1987) Photoaffinity labelling of the phenylalkylamine receptor of the skeletal muscle transverse-tubule calcium channel. FEBS Lett 212:247–253

    Google Scholar 

  • Striessnig J, Meusburger E, Grabner M, Knaus HG, Glossmann H, Kaiser J, Schölkens B, Becker R, Linz W, Henning R (1988a) Evidence for a distinct Ca2+-antagonist receptor for a novel benzothiazinone compound HOE 166. Naunyn Schmiedebergs Arch Pharmacol 337:331–340

    Google Scholar 

  • Striessnig J, Knaus HG, Glossmann H (1988b) Photoaffinity labelling of the calcium channel-associated 1,4-dihydropyridine and phenylalkylamine receptor in guinea-pig hippocampus. Biochem J 253:37–46

    Google Scholar 

  • Striessnig J, Scheffauer F, Mitterdorfer J, Schirmer M, Glossmann H (1990) Identification of the benzothiazepine-binding polypeptide of skeletal muscle calcium channels with (+)-cis-azidodiltiazem and antiligand antibodies. J Biol Chem (in press)

    Google Scholar 

  • Suszkiw JB, Murawsky MM, Fortner RC (1987) Heterogeneity of presynaptic calcium channels revealed by species differences in the sensitivity of synaptosomal 45Ca entry to omega-conotoxin. Biochem Biophys Res Commun 145:1283–1286

    Google Scholar 

  • Takahashi M, Catterall WA (1987a) Dihydropyridine-sensitive calcium channels in cardiac and skeletal muscle membranes: studies with antibodies against the alpha subunits. Biochemistry 26:5518–5526

    Google Scholar 

  • Takahashi M, Catterall WA (1987b) Identification of an alpha subunit of dihydropyridine-sensitive brain calcium channels. Science 236:88–91

    Google Scholar 

  • Takahashi M, Tatsumi M, Ohizumi Y, Yasumoto T (1983) Ca2+ channel-activating function of maitotoxin, the most potent marine toxin known, in clonal rat pheochromocytoma cells. J Biol Chem 258:10944–10949

    Google Scholar 

  • Takahashi M, Seagar MJ, Jones JF, Reber BF, Catterall WA (1987) Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc Natl Acad Sci USA 84:5478–5482

    Google Scholar 

  • Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328:313–318

    Google Scholar 

  • Tanabe T, Beam KG, Powell JA, Numa S (1988) Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor cDNA. Nature 336:134–139

    Google Scholar 

  • Tang CM, Presser F, Morad M (1988) Amiloride selectively blocks the low-threshold (T) calcium channel. Science 240:213–215

    Google Scholar 

  • Tempel BL, Papazian DM, Schwarz TL, Jan YN, Jan LY (1987) Sequence of a probable potassium-channel component encoded at Shaker locus of Drosophila. Science 237:770–775

    Google Scholar 

  • Timpe LC, Schwarz TL, Tempel BL, Papazian DM, Jan YN, Jan LY (1988) Expression of functional potassium channels from Shaker cDNA in Xenopus oocytes. Nature 331:143–145

    Google Scholar 

  • Toutant M, Barhanin J, Bockaert J, Rouot B (1988) G-proteins in skeletal muscle. Biochem J 254:405–409

    Google Scholar 

  • Triggle DJ (1988) Endogenous ligands for the calcium channel — mythos and realities. In: Morad M, et al. (eds). The calcium channel: structure, function and implications. Springer, Berlin Heidelberg New York, pp 549–563

    Google Scholar 

  • Triggle DJ, Janis RA (1987) Calcium channel ligands. Annu Rev Pharmacol Toxicol 27:347–369

    Google Scholar 

  • Tsien RW, Lipscombe DV, Madison KR, Bley KR, Fox AP (1988) Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci 11:431–438

    Google Scholar 

  • Turner TJ, Goldin SM (1985) Calcium channels in rat brain synaptosomes: identification and pharmacological characterization. High-affinity blockade by organic Ca2+ channel blockers. J Neurosci 5:841–849

    Google Scholar 

  • Umbach JA, Gundersen CB (1987) Expression of an omega-conotoxin-sensitive calcium channel in Xenopus oocytes injected with mRNA from Torpedo electric lobe. Proc Natl Acad Sci USA 84:5464–5468

    Google Scholar 

  • Vaghy PL, Striessnig J, Miwa K, Knaus HG, Itagaki K, McKenna E, Glossmann H, Schwartz A (1987) Identification of a novel 1,4-dihydropyridine-and phenylalkylamine-binding polypeptide in calcium channel preparations. J Biol Chem 262:14337–14342

    Google Scholar 

  • Vaghy PL, McKenna E, Itagaki K, Schwartz A (1988) Resolution of the identity of the Ca2+-antagonist receptor in skeletal muscle. Trends Pharmacol Sci 9:398–402

    Google Scholar 

  • Vandaele S, Fosset M, Galizzi JP, Lazdunski M (1987) Monoclonal antibodies that coimmunoprecipitate the 1,4-dihydropyridine and phenylalkylamine receptors and reveal the Ca2+ channel structure. Biochemistry 26:5–9

    Google Scholar 

  • Venter JC, Fraser CM, Schaber JS, Jung CY, Bolger G, Triggle DJ (1983) Molecular properties of the slow inward calcium channel. Molecular weight determinations by radiation inactivation and covalent affinity labeling. J Biol Chem 258:9344–9348

    Google Scholar 

  • Vergara J, Tsien RY, Delay M (1985) Inositol 1,4,5-trisphosphate: a possible chemical link in excitation-contraction coupling in muscle. Proc Natl Acad Sci USA 82:6352–6356

    Google Scholar 

  • Volpe P, Salviati G, Di Virgilio F, Pozzan T (1985) Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle. Nature 316:347–349

    Google Scholar 

  • Volpe P, Di Virgilio F, Pozzan T, Salviati G (1986) Role of inositol 1,4,5-trisphosphate in excitation-contraction coupling in skeletal muscle. FEBS Lett 197:1–4

    Google Scholar 

  • Wagner JA, Snowman AM, Olivera BM, Snyder SH (1987) Aminoglycoside effects on voltage-sensitive calcium channels and neurotoxicity (letter). N Engl J Med 317:1669

    Google Scholar 

  • Wagner JA, Snowman AM, Biswas A, Olivera BM, Snyder SH (1988) Omega-conotoxin GVIA binding to a high-affinity receptor in brain: characterization, calcium sensitivity, and solubilization. J Neurosci 8:3354–3359

    Google Scholar 

  • Waser PG (1986) The cholinergic receptor. In: Parnham MJ, Bruinvels J (eds) Discoveries in pharmacology. Elsevier, Amsterdam, pp 157–202

    Google Scholar 

  • Watkins SC, Hoffman EP, Slayter HS, Kunkel LM (1988) Immunoelectron-microscopic localization of dystrophin in myofibres. Nature 333:863–866

    Google Scholar 

  • Wu CH, Narahashi T (1988) Mechanism of action of novel marine neurotoxins on ion channels. Annu Rev Pharmacol Toxicol 28:141–161

    Google Scholar 

  • Yamaguchi T, Saisu H, Mitsui H, Abe T (1988) Solubilization of the omega-conotoxin receptor associated with voltage-sensitive calcium channels from bovine brain. J Biol Chem 263:9491–9498

    Google Scholar 

  • Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415

    Google Scholar 

  • Yang CP, Mellado W, Horwitz SB (1988) Azidopine photoaffinity labeling of multidrug resistance-associated glycoproteins. Biochem Pharmacol 37:1416–1421

    Google Scholar 

  • Yatani A, Codina J, Imoto Y, Reeves JP, Birnbaumer L, Brown AM (1987) A G-protein directly regulates mammalian cardiac calcium channels. Science 238:1288–1292

    Google Scholar 

  • Yatani A, Kunze DL, Brown AM (1988) Effects of dihydropyridine calcium channel modulators on cardiac sodium channels. Am J Physiol 254:H140–H147

    Google Scholar 

  • Yeager RE, Yoshikami D, Rivier J, Cruz LJ, Miljanich GP (1987) Transmitter release from presynaptic terminals of electric organ: inhibition by the calcium channel antagonist omega Conus toxin. J Neurosci 7:2390–2396

    Google Scholar 

  • Yoshii M, Tsunoo A, Kuroda Y, Wu CH, Narahashi T (1987) Maitotoxin-induced membrane current in neuroblastoma cells. Brain Res 424:119–125

    Google Scholar 

  • Zech C, Greenberg RM, Hall L (1989) Very high affinity interaction of sodium channel ligands with Drosophila head membranes. Naunyn Schmiedebergs Arch Pharmacol 339:1245

    Google Scholar 

  • Zernig G, Glossmann H (1988) A novel 1,4-dihydropyridine binding site on mitochondrial membranes from guinea-pig heart, liver and kidney. Biochem J 253:49–58

    Google Scholar 

  • Zernig G, Moshammer T, Graziadei I, Glossmann H (1988) The mitochondrial high-capacity, low-affinity [3H]nitrendipine binding site is regulated by nucleotides. Eur J Pharmacol 157:67–73

    Google Scholar 

References

  • Mikami A, Imoto K, Tanabe T, Niidome T, Mori Y, Takeshima H, Narumiya S, Numa S (1989) Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 340:231–233

    Google Scholar 

  • Perez-Reyes E, Kim HS, Lacerda AE, Horne W, Wei X, Rampe D, Campbell KP, Brown AM, Birnbaumer L (1989) Induction of calcium currents by the expression of the alpha1-subunit of the dihydropyridine receptor from skeletal muscle. Nature 340:233–236

    Google Scholar 

  • Takeshima H, NIshimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N, Matsuo H, Ueda M, Hanaoka M, Hirose T, Numa S (1989) Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339:439–445

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work is dedicated to Professor Emeritus Heribert Konzett

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this chapter

Cite this chapter

Glossmann, H., Striessnig, J. (1990). Molecular properties of calcium channels. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 114. Reviews of Physiology, Biochemistry and Pharmacology, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0031018

Download citation

  • DOI: https://doi.org/10.1007/BFb0031018

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51693-4

  • Online ISBN: 978-3-540-46754-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics