Advertisement

Output-size sensitiveness of OBDD construction through maximal independent set problem

  • Kazuyoshi Hayase
  • Kunihiko Sadakane
  • Seiichiro Tani
Session 4A: Graph Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 959)

Abstract

This paper investigates output-size sensitiveness of construction of OBDD by analyzing the maximal independent set problem of a graph, which would give several insights to efficient manipulation of Boolean functions by OBDD and graph theory.

Keywords

Boolean Function Equivalence Test Variable Node Binary Decision Diagram Tile Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Trans. on Computers, C-35(8):677–691, 1986.Google Scholar
  2. 2.
    O. Coudert. Doing two-level logic minimization 100 times faster. In Proc. ACM-SIAM Symposium on Discrete Algorithms, pages 112–121, 1995.Google Scholar
  3. 3.
    D. S. Johnson, M. Yannakakis, and H. Papadimitriou. On generating all maximal independent sets. Information Processing Letters, 27:119–123, 1988.CrossRefGoogle Scholar
  4. 4.
    E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Generating all maximal independent sets: NP-hardness and polynomial-time algorithms. SIAM J. Comput., 9(3):558–565, 1980.CrossRefGoogle Scholar
  5. 5.
    S. Tani and H. Imai. A reordering operation for an ordered binary decision diagram and an extended framework for combinatorics of graphs. In ISAAC'94, Lecture Notes in Computer Science, volume 834, pages 575–583, 1994.Google Scholar
  6. 6.
    S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new algorithm for generating all the maximal independent sets. SIAM J. Comput., 6(3):505–517, 1977.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Kazuyoshi Hayase
    • 1
  • Kunihiko Sadakane
    • 1
  • Seiichiro Tani
    • 1
  1. 1.Department of Information ScienceUniversity of TokyoTokyoJapan

Personalised recommendations