Advertisement

Analysis of quorum-based protocols for distributed (k+1)-exclusion

  • Divyakant Agrawal
  • Ömer Eğecioğlu
  • Amr El Abbadi
Session 3B: Distributed/Logic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 959)

Abstract

A generalization of the majority quorum for the solution of the distributed (k+1)-exclusion problem is proposed. This scheme produces a family of quorums of varying sizes and availabilities indexed by integral divisors r of k. The cases r=1 and r=k correspond to known majority based quorum generation algorithms MAJ and DIV, whereas intermediate values of r interpolate between these two extremes. A cost and availability analysis of the proposed methods is also presented.

Keywords

Communication Cost Communication Overhead Critical Section Mutual Exclusion Site Failure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Agrawal and A. El Abbadi. Exploiting Logical Structures of Replicated Databases. IPL, 33(5):255–260, Jan. 1990.CrossRefGoogle Scholar
  2. 2.
    M. Ahamad and M. H. Ammar. Performance Characterization of Quorum-Consensus Algorithms for Replicated Data. IEEE Trans. on Software Engineering, 15(4):492–495, Apr. 1989.CrossRefGoogle Scholar
  3. 3.
    D. Cohen. Basic Techniques of Combinatorial Theory. John Wiley & Sons, 1978.Google Scholar
  4. 4.
    S. Fujita, M. Yamashita, and T. Ae. Distributed k-mutual exclusion problem and k-coteries. In Proc. on the Symp. on Algorithms, pp. 22–31, 1991.Google Scholar
  5. 5.
    H. Garcia-Molina and D. Barbara. How to assign votes in a distributed system. J. of the ACM, 32(4):841–860, Oct. 1985.CrossRefGoogle Scholar
  6. 6.
    D. K. Gifford. Weighted Voting for Replicated Data. In Proc. of 7th ACM Symp. on Operating Systems Principles, pp. 150–159, Dec. 1979.Google Scholar
  7. 7.
    S. Huang, J. Jiang, and Y. Kuo. K-coteries for fault-tolerant k entries to a critical section. In Proc. of 13th Int. Conf. on Dist. Comp. Sys., pp. 74–81, June 1993.Google Scholar
  8. 8.
    H. Kakugawa, S. Fujita, M. Yamashita, and T. Ae. Availability of k-Coteries. IEEE Trans. on Computers, 42(5):553–558, May 1993.CrossRefGoogle Scholar
  9. 9.
    A. Kumar. Hierarchical Quorum Consensus — A New Algorithm for Managing Replicated Data. IEEE Trans. on Computers, 39(9):996–1004, Sep. 1991.CrossRefGoogle Scholar
  10. 10.
    M. Maekawa. A √n algorithm for mutual exclusion in decentralized systems. ACM Trans. on Computer Systems, 3(2):145–159, May 1985.CrossRefGoogle Scholar
  11. 11.
    S. Ranagarajan and S. Tripathi. Robust Distributed Mutual Exclusion Algorithms. In Proc. of 5th Int. Workshop on Distributed Algorithms, pp. 295–308, Oct. 1991. Lecture Notes in Computer Science, 579, Springer-Verlag.Google Scholar
  12. 12.
    K. Raymond. A distributed algorithm for multiple entries to a critical section. IPL, 30(4):189–193, Feb. 1989.CrossRefGoogle Scholar
  13. 13.
    G. Ricart and A. K. Agrawala. An optimal algorithm for mutual exclusion in computer networks. Communications of the ACM, 24(1):9–17, January 1981.CrossRefGoogle Scholar
  14. 14.
    J. Riordan. An Introduction to Combinatorial Analysis. Princeton Univ. Press, 1978.Google Scholar
  15. 15.
    P. K. Srimani and R. L. N. Reddy. Another distributed algorithm for multiple entries to a critical section. IPL, 41(1):51–57, Jan. 1992.CrossRefGoogle Scholar
  16. 16.
    I. Suzuki and T. Kasami. A Distributed Mutual Exclusion Algorithm. ACM Trans. on Computer Systems, 3(4):344–349, Nov. 1985.CrossRefGoogle Scholar
  17. 17.
    S.-M. Yuan and H.-K. Chang. Comments on “Availability of k-Coterie”. IEEE Trans. on Computers, 43(12):1457, Dec. 1994.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Divyakant Agrawal
    • 1
  • Ömer Eğecioğlu
    • 1
  • Amr El Abbadi
    • 1
  1. 1.Department of Computer ScienceUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations