Skip to main content

Algorithmic graph embeddings

Extended abstract

  • Session 3A: Graph Algorithms
  • Conference paper
  • First Online:
Book cover Computing and Combinatorics (COCOON 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 959))

Included in the following conference series:

  • 151 Accesses

Abstract

The complexity of embedding a graph into a variety of topological surfaces is investigated. A new data structure for graph embeddings is introduced and shown to be superior to the previously known data structures. In particular, the new data structure efficiently supports all on-line operations for general graph embeddings. Based on this new data structure, very efficient algorithms are developed to solve the problem “given a graph G and an integer k, construct a genus k embedding for the graph G” for a large range of the integers k and for a large class of graphs.

Supported in part by the United States National Science Foundation grant CCR-9110824 and by a P. R. China HTP-863 grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A. V., Hopcroft, J. E., and Ullman, J. D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, (1974)

    Google Scholar 

  2. Chen, J.: A linear time algorithm for isomorphism of graphs of bounded average genus. SIAM J. on Discrete Mathematics 7 (1994) 614–631

    Article  Google Scholar 

  3. Chen, J., Archdeacon, D., and Gross, J. L.: Maximum genus and connectivity. Discrete Mathematics (1995) to appear

    Google Scholar 

  4. Chen, J., Gross, J. L.: Limit points for average genus I. 3-connected and 2-connected simplicial graphs. J. Comb. Theory Ser. B 55 (1992) 83–103

    Article  Google Scholar 

  5. Chen, J., Gross, J. L.: Limit points for average genus II. 2-connected non-simplicial graphs. J. Comb. Theory Ser. B 56 (1992) 108–129

    Article  Google Scholar 

  6. Chen, J., Gross, J. L.: Kuratowski-type theorems for average genus. J. Comb. Theory Ser. B 57 (1993) 100–121

    Article  Google Scholar 

  7. Chen, J. and Kanchi, S. P.: Graph embeddings and graph ear decompositions. Lecture Notes in Computer Science 790 (1994) 376–387

    Google Scholar 

  8. Chen, J., Kanchi, S. P., and Kanevsky, A.: On the complexity of graph embeddings. Lecture Notes in Computer Science 709 (1993) 234–245

    Google Scholar 

  9. Di Battista, G., Eades, P., and Tamassia, R.: Algorithms for automatic graph drawing: an annotated bibliography. Tech. Report (1993) Dept. Computer Science, Brown University

    Google Scholar 

  10. Djidjev, H. and Reif, J.: An efficient algorithm for the genus problem with explicit construction of forbidden subgraphs. Proc. 23rd Annual ACM Symposium on Theory of Computing (1991) 337–347

    Google Scholar 

  11. Filotti, I. S.: An algorithm for imbedding cubic graphs in the torus. Journal of Computer and System Sciences 20 (1980) 255–276

    Article  Google Scholar 

  12. Filotti, I. S., Miller, G. L., and Reif, J. H.: On determining the genus of a graph in O(vO(g)) steps. Proc. 11th Annual ACM Symp. on Theory of Comput. (1979) 27–37

    Google Scholar 

  13. Frederickson, G. N.: Using cellular graph embeddings in solving all pairs shortest paths problems. Proc. 30th IEEE Symp. on Foundations of Computer Science (1989) 448–453

    Google Scholar 

  14. Frederickson, G. N. and Janardan, R.: Designing networks with compact routing tables. Algorithmica 3 (1988) 171–190

    Article  MathSciNet  Google Scholar 

  15. Furst, M. L., Gross, J. L., and McGeoch, L. A.: Finding a maximum-genus graph imbedding. Journal of ACM 35-3 (1988) 523–534

    Article  Google Scholar 

  16. Garey, M. R. and Johnson, D. S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979

    Google Scholar 

  17. Gross, J. L. and Furst, M. L.: Hierarchy for imbedding-distribution invariants of a graph. J. Graph Theory 11 (1987) 205–220

    Google Scholar 

  18. Gross, J. L., Tucker, T. W.: Topological Graph Theory. Wiley-Interscience, New York (1987)

    Google Scholar 

  19. Hopcroft, J. E. and Tarjan, R. E.: Efficient planarity testing. Journal of the ACM 21 (1974) 549–568.

    Article  Google Scholar 

  20. Italiano, G. F., La Poutre, J. A., and Rauch, M. H.: Fully dynamic planarity testing in planar embedded graphs. Lecture Notes in Computer Science 726 (1993) 576–590.

    Google Scholar 

  21. Mohar, B.: Projective planarity in linear time. Journal of Algorithms 15 (1993) 482–502

    Article  Google Scholar 

  22. Preparata, F. P. and Shamos, M. I.: Computational Geometry: An Introduction. Springer-Verlag 1985

    Google Scholar 

  23. Tamassia, R.: A dynamic data structure for planar graph embedding. Lecture Notes in Computer Science 317 (1988) 576–590.

    Google Scholar 

  24. Thomassen, C.: The graph genus problem is NP-complete. Journal of Algorithms 10 (1989) 568–576

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ding-Zhu Du Ming Li

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, J. (1995). Algorithmic graph embeddings. In: Du, DZ., Li, M. (eds) Computing and Combinatorics. COCOON 1995. Lecture Notes in Computer Science, vol 959. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0030829

Download citation

  • DOI: https://doi.org/10.1007/BFb0030829

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60216-3

  • Online ISBN: 978-3-540-44733-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics