The multi-weighted spanning tree problem

Extended abstract
  • Joseph L. Ganley
  • Mordecai J. Golin
  • Jeffrey S. Salowe
Session 3A: Graph Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 959)


Consider a graph in which each edge is associated with q weights. In this paper we discuss different aspects of the problem of minimizing the minimum-spanning-tree cost simultaneously with respect to the different weights.


Span Tree Extreme Point Triangle Inequality Minimum Span Tree Edge Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. J. Alexander and G. Robins, “A new approach to FPGA routing based on multiweighted graphs,” ACM/SIGDA International Workshop on Field-Programmable Gate Arrays (1994).Google Scholar
  2. 2.
    R. Chandrasekaran, “Minimum ratio spanning trees,” Networks 7 (1977) 335–342.Google Scholar
  3. 3.
    R. Cole, J. S. Salowe, W. L. Steiger, and E. Szemerédi, “An optimal-time algorithm for slope selection,” SIAM J. Comput. 18(4) (1989) 792–810.CrossRefGoogle Scholar
  4. 4.
    J. Cong, A. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong, “Provably good performance-driven global routing,” IEEE Trans. on CAD 11(6), (1992), 739–752.Google Scholar
  5. 5.
    J. R. Current, C. S. Revelle, and J. L. Cohon, “The hierarchical network design problem,” Eur. J. Oper. Res. 27 (1986) 55–67.Google Scholar
  6. 6.
    G. B. Dantzig, W. O. Blattner, and M. R. Rao, “Finding a cycle in a graph with minimum cost to time ratio with application to a ship routing problem”, Theory of Graphs, International Symposium, Gordon and Breach (1967) 77–84.Google Scholar
  7. 7.
    C. Duin and T. Volgenant, “Reducing the hierarchical network design problem,” Eur. J. Oper. Res. 39 (1989) 332–344.CrossRefGoogle Scholar
  8. 8.
    C. Duin and T. Volgenant, “The multi-weighted Steiner tree problem,” Ann. Oper. Res. 33 (1991) 451–469.CrossRefGoogle Scholar
  9. 9.
    H. H. Gabow, Z. Galil, T. Spencer, and R. E. Tarjan, “Efficient algorithms for finding minimum spanning trees in undirected and directed graphs,” Combinatorica 6(2) (1986) 109–122.Google Scholar
  10. 10.
    M. X. Goemans and D. P. Williamson, “A general approximation technique for constrained forest problems,” Proc. 3rd SODA (1992) 307–316.Google Scholar
  11. 11.
    M. J. Golin, C. Schwarz, and M. Smid, “Further Dynamic Computational Geometry”, Proc. Fourth Canad. Conf. Comp. Geom. (1992) 154–159.Google Scholar
  12. 12.
    M. R. Garey and D. S. Johnson, Computers and Intractability, W. H. Freeman (1979).Google Scholar
  13. 13.
    D. Gusfield, “Bounds for the parametric minimum spanning tree problem,” Proc. West Coast Conf. Comb., Graph Theory and Comput., 173–181, 1980.Google Scholar
  14. 14.
    D. Gusfield, “Parametric combinatorial computing and a problem of program module distribution,” J. ACM 30(3) (1983) 551–563.CrossRefGoogle Scholar
  15. 15.
    R. Hassin and A. Tamir, “Maximizing classes of two-parameter objectives over matroids,” Math. Oper. Res. 14(2) (1989) 362–375.Google Scholar
  16. 16.
    R. M. Karp and J. B. Orlin, “Parametric shortest path algorithms with an application to cyclic staffing,” Disc. Appl. Math. 3 (1981) 37–45.CrossRefGoogle Scholar
  17. 17.
    N. Katoh, T. Tokuyama, and K. Iwano, “On minimum and maximum spanning trees of linearly moving points”, Proc. 33rd IEEE Symp. Found. Comput. Sci. (1992) 396–405.Google Scholar
  18. 18.
    S. Khuller, B. Raghavachari, N. Young, “Balancing minimum spanning and shortest path trees”, Third Symposium on Discrete Algorithms, 1993.Google Scholar
  19. 19.
    V. P. Kompella, J. C. Pasquale, and G. C. Polyzos, “Multicasting for Multimedia Applications,” Proc. of IEEE INFOCOM '92 (1992).Google Scholar
  20. 20.
    V. P. Kozyrev, “Finding spanning trees that are optimal with respect to several ranked criteria,” Combinatorial Analysis, No. 7 (1986) 66–73, 163–164.Google Scholar
  21. 21.
    E. L. Lawler, “Optimal cycles in doubly weighted directed linear graphs”, Theory of Graphs, International Symposium, Gordon and Breach (1967) 209–214.Google Scholar
  22. 22.
    H.-P. Lenhof, J. S. Salowe, and D. E. Wrege, “Two methods to mix shortest-path and minimum spanning trees,” (1993), manuscript.Google Scholar
  23. 23.
    J. Matoušek, “Approximations and optimal geometric divide-and-conquer,” Proc. Twenty-third ACM Symp. Theory Comput. (1991) 505–511.Google Scholar
  24. 24.
    N. Megiddo, “Combinatorial optimization with rational objective functions,” Math. Oper. Res. 4(4) (1979) 414–424.Google Scholar
  25. 25.
    N. Megiddo, “Applying parallel computation algorithms in the design of serial algorithms,” J. ACM 30(4) (1983) 852–865.CrossRefGoogle Scholar
  26. 26.
    R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, H. B. Hunt III, “Many birds with one stone: Multi-objective approximation algorithms,” Proc. 25th Symp. Theory Comput. (1993) 438–447.Google Scholar
  27. 27.
    G. Robins, personal communication.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Joseph L. Ganley
    • 1
  • Mordecai J. Golin
    • 2
  • Jeffrey S. Salowe
    • 3
  1. 1.Cadence Design Systems, Inc.San Jose
  2. 2.Department of Computer ScienceHong Kong USTKowloonHong Kong
  3. 3.QuesTech, Inc.Falls Church

Personalised recommendations