Efficient randomized incremental algorithm for the closest pair problem using Leafary trees

  • V. Kamakoti
  • Kamala Krithivasan
  • C. Pandu Rangan
Session 2A: Computational Geometry
Part of the Lecture Notes in Computer Science book series (LNCS, volume 959)


We present a new data structure, the Leafary tree, for designing an efficient randomized algorithm for the Closest Pair Problem. Using this data structure, we show that the Closest Pair of n points in D-dimensional space, where, D≥2, is a fixed constant, can be found in O(n log n/log log n) expected time. The algorithm does not employ hashing.

Key words

Closest pair Computational Geometry Randomized Algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dietzfelbinger, M., Hagerup, T., Katajainen, J., Penttonen, M.: A reliable randomized algorithm for the Closest-pair problem, Technical report, Personal Communication.Google Scholar
  2. 2.
    Dietzfelbinger, M., Meyer auf der Heide, F.: A new universal class of hash functions and dynamic hashing in real time, Proc. ICALP 90, Lecture Notes in Computer Science, Vol. 443, Springer-Verlag, Berlin, 1990, 6–19.Google Scholar
  3. 3.
    Fortune, S., Hopcroft, J.: A note on Rabin's Nearest-Neighbor algorithm, Information Processing Letters, Vol 8, No 1, (1979), 20–23.CrossRefGoogle Scholar
  4. 4.
    Golin, M., Raman, R., Schwarz, C., Smid, M.: Simple Randomized Algorithms for Closest Pair Problems, Technical Report, Max-Planck-Institut Für Informatik, Saarbrucken, Germany, 1992.Google Scholar
  5. 5.
    Khuller, S., Matias, Y.: A simple randomized sieve algorithm for the closest pair problem, Proc. Third Canadian Conference on Computational Geometry, (1991), 130–134.Google Scholar
  6. 6.
    Preparata, F.P., Shamos, M.I.: Computational Geometry — an Introduction, Springer-Verlag, New York, 1985.Google Scholar
  7. 7.
    Rabin, M.: Probabilistic algorithms in Algorithms and Complexity: New directions and Recent results (J.F. Traub ed.), (1976), pp 21–39.Google Scholar
  8. 8.
    Schwarz, C: Data Structures and Algorithms for the Dynamic Closest Pair Problem, Thesis, Max Planck Institut, Saarbrücken, Germany.Google Scholar
  9. 9.
    Seidel, R.: Backwards Analysis of Randomized Geometric Algorithms, Report TR-92-014, Department of Computer Scince, University of California Berkeley, Berkeley, CA, (1992).Google Scholar
  10. 10.
    Willard, D.E.: Application of Fusion tree method to computational Geometry and searching, Proceedings of the SODA, 1992, 286–295.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • V. Kamakoti
    • 1
  • Kamala Krithivasan
    • 1
  • C. Pandu Rangan
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of TechnologyMadras-600 036, TamilnaduIndia

Personalised recommendations